CSE logo University of Washington Computer Science & Engineering
 Fractal Data
 Stuart Reges, Principal Lecturer
  CSE Home   About Us    Search    Contact Info 

This page has a collection of resources from a talk given at the 2011 CS4HS workshop at the University of Washington.

I mentioned that the theme of the talk is the idea of using real world data as a way to make our courses more relevant and interesting to our students. I mentioned two examples from my intro programming class:

I mentioned three kinds of distributions:

When we think of fractals, we normally think of those pretty pictures you can produce with a fractal shape. Fractals have a property known as self-similarity. One way to think of it is that if you zoom in and out, you see the same kind of pattern. Many natural phenomena have this same property. Think of looking at a mountain range and zooming in and out. You tend to see the same kinds of patterns at every scale.

Exponential sequences have this same propert of self-similarity. And that gives them some curious properties. For example, if you have numbers that come from an exponential process, then you'll find that most of them start with a 1 (over 30%). The odd distribution of digits is known as Benford's Law. We see this property in all sorts of real world data.

We explored why this is so using an excel spreadsheet.

I used a program for counting the distribution of leading digits that is available either as a Java program or a Python program.

I mentioned three data sets as examples:

Stuart Reges
Last modified: Fri Aug 12 09:32:26 PDT 2011