
AUTONOMOUS ROBOT CONTROL WITH DSP AND VIDEO CAMERA USING

MATLAB STATE-FLOW CHART

Aviv Lichtigstein*, Roy Or-El*, and Arie Nakhmani

Control and Robotics Lab, Department of Electrical Engineering, Technion – Israel Institute of Technology

* First 2 authors made an equal contribution to the paper

ABSTRACT

This paper presents an embedded system for autonomous

control of iRobot Create that consists of real time target

tracking and robot navigation. Tracking and navigation

algorithms were implemented using the TI DM6437 EVM

board. The robot's performance demonstrates that a visual

tracking and navigation can be efficiently and robustly

implemented, and TI DSP is suitable for running both

algorithms simultaneously due to its low power

consumption and high-speed performance. The proposed

tools have a steep learning curve, and they can be used as a

platform for the further development.

1. INTRODUCTION

Autonomous systems have been a very active research area

over the past decade. One of the main reasons for the

massive research activity in this area is its important

applications, especially in security and safety devices. For

many of these applications a low-cost, accurate and robust

tracking and navigation solution is required.

Though a well studied area, tracking and navigation based

on a video source still holds many scientific and

technological challenges. Maintaining a fast and smooth

navigation of the autonomous system is complicated since

we need to handle a dynamic environment. Target tracking

can be time consuming and, as a result, the delayed robot

reaction may produce errors. For embedded applications,

avoiding excessive calculations and large memory

consumption is another important challenge.

Previous works of robot navigation with a video camera

were implemented using two processing units. Xiao et al.

[1] suggested an omnidirectional vision system to facilitate

vision-based multiple robot coordination, which uses TI

F2812 DSP for implementing the robot control system, and

a host PC for image processing. Sawasaki et al. [2]

proposed a stereo-vision-based system that performs feature

extraction and block matching operations for autonomous

navigation. It has an image processing dedicated board with

TI C6713 DSP and an ALTERA Stratix FPGA. Masar and

Gerke work [3] presents a neuro-fuzzy controller for

trajectory following. Although there is a camera in their

robot, a vision algorithm was not presented.

Autonomous navigation systems are not a new area in our

lab. Several researches, which involved C2000 series DSPs,

were implemented in the past. Those works included only

distance sensors and as a result the performances were less

accurate.

The algorithms of visual tracking using DSP were proposed

earlier, e.g., by Roichman et al. [4]. This algorithm for real

time pedestrian detection and tracking is uniquely combines

background subtraction and temporal differencing for

motion detection, and tracks targets by predicting their

location according to their motion vector. The algorithm for

detection and tracking [4] have been implemented on

DM643x family of DSPs. Unfortunately, this algorithm

assumes a static camera, which is not suitable for our robot.

Our prototype system uses a fixed camera and background

geometrical properties for robot navigation. TI DM 6437 is

responsible for target detection, target tracking, and robot

navigation. The chosen solution comprises the advantages

of using a single code development environment of

MATLAB Simulink. This allows achieving system’s

modularity, expandability, and a user friendly interface.

The modularity and expandability enables future

implementation of more complex detection and tracking

algorithms.

The classical open loop approach of "detect and drive",

where the target is detected in the video frame, the robot’s

trajectory is computed, and the commands are sent to the

robot, may be inefficient and not accurate. In the proposed

algorithm, the DSP constantly receives feedback from the

camera, thus the obtained trajectory is smooth, and the

robot is able to robustly navigate after a moving target.

Also, this allows accuracy in tracking and navigation.

The prototype described in this paper defines the target to

be a red, blob-like, target. By using the proposed

algorithms, the robot detects, tracks, and navigates until it

reaches the target, and stops.

Section 2 outlines the proposed target detection, tracking

and navigating algorithm. Sections 3, 4, and 5 describe the

implementation, results, and conclusion respectively.

2. ALGORITHM

Our embedded system is based on target detection,

tracking, and navigation of the robot to the target. First, we

present the target detection and tracking algorithms.

Afterwards, we present the proposed navigation method.

2.1 Target detection and tracking
Target detection is obtained by analyzing the video frames

captured by the camera. Camera works in an interlace mode

with the resolution of pixels. Therefore, data

arrive in a YCbCr 4:2:2 format [5]. Data is deinterlaced and

should be transformed from YCbCr to RGB color space,
but because of uneven matrix sizes, it cannot be

transformed directly. Linear extrapolation of the Cb and Cr

channels, thus, reconstructing the image back to 4:4:4

format turned out to be too slow and damaged real time

execution of the algorithm. Instead, the Y channel was

decimated by keeping only even rows of the image. The

computed target’s center of mass (centroid) coordinates,

were adjusted accordingly.

A binary mask is than created for each frame in order to

find all the red targets in the frame. Any desired color can

be masked by a similar procedure. Red masking is

performed by setting two thresholds T1 and T2 (T1<T2),

using R, G, and B channels:

 (1)

After the red mask has been formed, it is filtered to

eliminate any anomalies that may have been caused by

lightning conditions, clutter, and noise. Median filter has

been chosen due to its good performance in salt and pepper

noise filtering, which suits to our purpose.

After the filtering, blob analysis is performed to find the

centroid of each red blob. Centroids of blobs smaller than

50 pixels are ignored.

We assume that lightning conditions can cause some of the

pixels to appear in a slightly different color than their

original color. Therefore, large target can break into

fractions during the masking process. Morphological

operations such as imclose can fix this problem but their

implementation using Simulink has the drawback of not

being very computationally efficient, and cannot be part of

a real time system.

In order to address the problem above, we propose to unify

the centroids of any broken targets. Target’s true centroid is

approximately estimated by the location of its fractions

centroids. Centroids are unified by creating a smart labeling

algorithm that detects neighboring groups of centroids and

gives them the same label. The algorithm scans all the

centroids found. If a number of centroids are within a

relatively small predefined area, the algorithm assigns the

same label to the relevant centroids. Two centroids that are

relatively far from each other get different labels.

Afterwards, the average centroid is calculated for each

group of centroids that carries the same label. By that, we

have achieved a robust, quick and efficient method that can

substitute the imclose operation. The purposed solution

complexity is O(N
2
) where N represents the number of

centroids found in each frame. Therefore, many

calculations are saved because N is much smaller than the

frame size.

To keep tracking the correct target, we have assumed that

there is only one target in the first video frame. No such

assumptions were made for any other frame. In each frame

the target's centroid location is saved. In the next frame a

new set of centroids arrives. The centroid most likely to

belong to the target is the nearest neighbor to the target's

centroid from the previous frame. In that way, the robot is

able to ignore multiple targets of the same color, and reach

the desired target without being distracted by other similar

targets. Therefore, the closest centroid to the previous

frame centroid is chosen as the current frame target's

centroid. The chosen centroid is stored in memory for the

next frame and also used as an input for the navigation.

2.2 Robot navigation

To successfully navigate the robot to the target, we have

used the target's centroid found in the detection and

tracking algorithm. Our navigation goal is to bring the

target's centroid to a desired location in the image. The

desired location is a 180x192 rectangle in the bottom

middle (BM) of the screen (see Figure 1). This location is

set by considering the camera location on the robot and it

represents the area just in front of the robot. By the current

centroid location we are able to give the robot navigation

directions (such as go forward, stop, turn left, or turn right)

for each of the predefined Top, Bottom, Left, Middle, and

Right regions (TL, TM, TR, BL, BM, BR).

Figure 1: Robot’s point of view. Left - go forward area;

Right - turn left and go forward area.

The robot turning radius is also set by the centroid location

on the screen. Note that when the turning radius is set to R,

the robot will move in circles of radius R. for straight line

motion, one should set R=max (= 2
15

mm). The turning

radius was calculated using two heuristic geometrical

considerations. First, the radius should decrease when the

centroid is going away from the center column of the

screen. Second, the radius should increase when the

centroid is going towards the upper part of the screen, and

that is because targets in the bottom part of the screen are

closer to the robot than targets in the upper part of the

screen. Turning radius is calculated by:

 

152 ,

1800 5
2000 5.55 360 ,

576 576

c

c c
c

if x TM or x BMc
R y y

x otherwise

  


   
     

 

(2)

Where (xc,yc) is the centroid column and row coordinates,

and negative radius represents a right turn. Note that (1,1) is

a top left corner pixel.

720 576

2 1 11, if , ,
red mask

0, otherwise

R T G T B T  
 


TL TM TR

BL BM BR

If no target was detected, the robot turns around his axis to

acquire a new target. Once a target is found the robot

automatically starts navigating towards the target using the

method above.

However, if the robot loses its target, there is a small

waiting period before the robot starts searching for a new

target. By that we achieve more robustness in cases where

the target is hidden from the camera for a small amount of

time. The robot stands still and waits for the target to

reappear for the waiting period, which is user defined,

before it starts looking for another target.

3. IMPLEMENTATION

The prototype system was implemented using the

TMS320DM6437 EVM [6] board, the iRobot Create [7],

and a SENTech STC-635TC video camera. The EVM

board includes a DM6437 DSP with a UART serial port,

composite video inputs and outputs, and many other

peripherals.

The EVM board is mounted on a plastic base above the

robot's cargo bay, using spacers to support it. A steel

framework was built, to attach the video camera to the

system, and avoid camera vibrations, that can be caused by

the robot's movement. The camera sits on an aluminum

pole which is perpendicularly connected to the center of the

steel framework. A bolt secures the camera into the pole

and keeps the camera at a fixed position (see Figure 2).

Figure 2: Left – system top view, Right – system front

view.

The robot and DSP are communicating via RS-232

protocol. Connection is done by a special cable which is

supplied with the robot and connects to the UART

connector at the EVM side and to the Mini-DIN connector

at the robot's side. The video camera is connected to the

EVM board composite video input.

The robot's instructions are composed of one byte Opcode

and a number of data bytes that varies for each instruction.

Robot's movement can be controlled by the Drive

instruction which has 4 data bytes, 2 for velocity and 2 for

turning radius. For additional details see [7].

Tracking and navigation algorithms were designed in

MATLAB Simulink and MATLAB State-Flow chart

environment. The described system uses the Simulink C-

code generator toolbox to generate an automated high level

real time environment for the DM6437 processor.

3.1 Detection and tracking

Implementation of target detection and tracking is done by

MATLAB Simulink blocks, including blocks from Target

support package specially designated for DM6437 EVM

board. In addition, Embedded MATLAB code has been

used. The operation of YCbCr to RGB conversion is

implemented using MATLAB embedded function.

Tracking is done by comparing the distances between each

centroid found in the current frame and the chosen centroid

from the previous frame. The centroid with the shortest

distance to the previous frame centroid is chosen as the

current frame centroid. The chosen centroid is transferred to

the navigation part of the algorithm, and also saved in

memory to help determining the next frame centroid.

3.2 Robot navigation

The frame was divided into 6 areas: turn left (BL), turn left

and go forward (TL), turn right (BR), turn right and go

forward (TR), go forward (TM), and stop (BM) (see Figure

1). The turning radius is determined and transferred to the

robot as described in Section 2. For debugging, an external

monitor was connected to the composite video output of the

EVM (see Figure 2).

Rate Transition block is used to synchronize between

tracking algorithm sample rate, and navigation algorithm

sample rate. Two unsynchronized sample rates can cause

timing problems which in turn cause undetermined data

transfer. The block ensures that data transfer between the

two algorithms will remain determined while the system is

running (see Figure 3).

Truth Table block is used to define the conditions regarding

the location of the centroid in each frame. The output of the

block specifies in which area of the frame the centroid is

located by the following rules:

The State Flow Chart block receives the radius variables, as

they were calculated according to Section 2, and the output

of the Truth Table (see Figure 3). Note that the radius is

represented by two bytes of data.

The State Flow Chart is the mind of the system. In each

frame, the chart decides how the robot should act. Each of

the possible inputs is translated to a binary condition in a

state flow chart which leads to different state in the chart. In

each state, a different command vector of five bytes is sent

to the robot through the UART.

The state machine structure consists of 26 states, and it is

built to operate autonomously, therefore, all the optional

dynamic scenes were considered. Furthermore, the state

flow chart supports an advanced set of commands which

if 0 then for new target

if or then

if or then

if (,) then

if (,) then

c c

c c

c c

c c

c c

x y Scan

x TL x BL Turn Left

x TR x BR Turn Right

x y TM Drive Forward

x y BM Stop

 

 

 





are sent to the robot. Scanning mode and internal timer are

implemented by creating combination of new states, and

they enable the system to operate independently.

The location of the centroid is changing in each frame, and

as a result the state in the State Flow Chart is updated, and a

new command is sent to the robot. The camera frame rate

allows for the update rate of several times per second.

The extensibility and readability of the state flow chart

creates a unique simple autonomous control environment

which can easily be suited to new complicated tasks.

4. RESULTS

The system with the DM6437 EVM board and standard

video camera, both connected to the iRobot was field tested

at various real scenarios and different lighting conditions.

Targets were detected and tracked accurately, and the robot

reached its target every time. The results of successful

navigation can be seen in Figure 4.

The robot is able to function for more than two hours with a

single battery charging. This demonstrates power efficiency

of the proposed robotic framework.

The demonstration of robot abilities can be seen on the

internet [8]. The proposed algorithms took less than 4% of

DSP memory resources, thus they can be expanded easily

to more sophisticated projects.

Figure 3: System top level block diagram.

Figure 4: Left – stop command, Right – stop, external

view.

5. CONCLUSIONS

This paper presents a low cost algorithm for target tracking

and navigation, and its implementation using DM6437

EVM board, video camera, and iRobot Create. The system

operates autonomously, and run in real time.

The advantage of reevaluating the location of the target

several times per second, and updating the commands

which sent to robot from a clearly defined state machine,

supported the accuracy of the real time embedded system.

System's implementation main advantage is in its unified

development environment, which enables very large

modularity in algorithm's design. Simulink lets the user

assemble large and complex systems in very short time and

thus, the proposed robot and DSP platform can be used as a

base for future development of more complex tracking and

navigation algorithms.

6. ACKNOWLEDGMENT

The authors thank Koby Kohai, Orly Wigderson, Roey

Hochman and Eran Domb from Control and Robotics Lab

for their help and support to our work.

A special thanks to Yair Moshe and Nimrod Peleg from the

Signal and Image Processing lab for contributing their

knowledge in DSP and MATLAB Simulink.

REFERENCES

[1] J. Xiao, A. Calle, J. Ye, and Z. Zhu, "A Mobile Robot

Platform With DSP-based Controller and Omnidirectional

Vision System," IEEE International Conference on

Robotics and Biomimetics, 2004.

[2] N. Sawasaki, M. Nakao, Y. Yamamoto and K.

Okabayashi, "Embedded Vision System for Mobile Robot

Navigation," Proceedings of IEEE International Conference

on Robotics and Automation, 2006.

[3] I. Masar, and M. Gerke, "DSP – Based Control of

Mobile Robots", Proceedings of European DSP Education

and Research Symposium, 2004.

[4] E. Roichman, Y. Salomon, and Y. Moshe, "Real-Time

Pedestrian Detection and Tracking," Proceedings of the 3
rd

European DSP Education and Research Symposium, Tel-

Aviv, Israel, 2008, pp.281-288.

[5] K. Jack, "Video Demystified: A handbook for the

digital engineer," 4-th edition, Elsevier 2005.

[6] TMS320DM6437 Digital media processor, Texas

Instruments, SPRS345D, November 2006, revised June

2008.

[7] iRobot Create, Open interface – V2, iRobot corporation,

2006.

[8] A. Lichtigstein, R. Or-El, (2010), “Autonomous robot

control with DSP and video camera,” Available:

http://www.youtube.com/watch?v=wQ6yQNlbUqo

http://www.youtube.com/watch?v=wQ6yQNlbUqo

