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ABSTRACT 
 

This paper presents an embedded system for autonomous 

control of iRobot Create that consists of real time target 

tracking and robot navigation. Tracking and navigation 

algorithms were implemented using the TI DM6437 EVM 

board. The robot's performance demonstrates that a visual 

tracking and navigation can be efficiently and robustly 

implemented, and TI DSP is suitable for running both 

algorithms simultaneously due to its low power 

consumption and high-speed performance. The proposed 

tools have a steep learning curve, and they can be used as a 

platform for the further development.    

1.    INTRODUCTION 

Autonomous systems have been a very active research area 

over the past decade. One of the main reasons for the 

massive research activity in this area is its important 

applications, especially in security and safety devices. For 

many of these applications a low-cost, accurate and robust 

tracking and navigation solution is required. 

Though a well studied area, tracking and navigation based 

on a video source still holds many scientific and 

technological challenges. Maintaining a fast and smooth 

navigation of the autonomous system is complicated since 

we need to handle a dynamic environment. Target tracking 

can be time consuming and, as a result, the delayed robot 

reaction may produce errors. For embedded applications, 

avoiding excessive calculations and large memory 

consumption is another important challenge. 

Previous works of robot navigation with a video camera 

were implemented using two processing units. Xiao et al. 

[1] suggested an omnidirectional vision system to facilitate 

vision-based multiple robot coordination, which uses TI 

F2812 DSP for implementing the robot control system, and 

a host PC for image processing. Sawasaki et al. [2] 

proposed a stereo-vision-based system that performs feature 

extraction and block matching operations for autonomous 

navigation. It has an image processing dedicated board with 

TI C6713 DSP and an ALTERA Stratix FPGA. Masar and 

Gerke work [3] presents a neuro-fuzzy controller for 

trajectory following. Although there is a camera in their 

robot, a vision algorithm was not presented.  

Autonomous navigation systems are not a new area in our 

lab. Several researches, which involved C2000 series DSPs, 

were implemented in the past. Those works included only 

distance sensors and as a result the performances were less 

accurate.   

The algorithms of visual tracking using DSP were proposed 

earlier, e.g., by Roichman et al. [4]. This algorithm for real 

time pedestrian detection and tracking is uniquely combines 

background subtraction and temporal differencing for 

motion detection, and tracks targets by predicting their 

location according to their motion vector. The algorithm for 

detection and tracking [4] have been implemented on 

DM643x family of DSPs. Unfortunately, this algorithm 

assumes a static camera, which is not suitable for our robot. 

Our prototype system uses a fixed camera and background 

geometrical properties for robot navigation. TI DM 6437 is 

responsible for target detection, target tracking, and robot 

navigation. The chosen solution comprises the advantages 

of using a single code development environment of 

MATLAB Simulink. This allows achieving system’s 

modularity, expandability, and a user friendly interface. 

The modularity and expandability enables future 

implementation of more complex detection and tracking 

algorithms.  

The classical open loop approach of "detect and drive", 

where the target is detected in the video frame, the robot’s 

trajectory is computed, and the commands are sent to the 

robot, may be inefficient and not accurate. In the proposed 

algorithm, the DSP constantly receives feedback from the 

camera, thus the obtained trajectory is smooth, and the 

robot is able to robustly navigate after a moving target. 

Also, this allows accuracy in tracking and navigation.  

The prototype described in this paper defines the target to 

be a red, blob-like, target. By using the proposed 

algorithms, the robot detects, tracks, and navigates until it 

reaches the target, and stops.   

Section 2 outlines the proposed target detection, tracking 

and navigating algorithm. Sections 3, 4, and 5 describe the 

implementation, results, and conclusion respectively.  

2.   ALGORITHM 

Our embedded system is based on target detection, 

tracking, and navigation of the robot to the target. First, we 

present the target detection and tracking algorithms. 

Afterwards, we present the proposed navigation method. 



2.1 Target detection and tracking  
Target detection is obtained by analyzing the video frames 

captured by the camera. Camera works in an interlace mode 

with the resolution of  pixels. Therefore, data 

arrive in a YCbCr 4:2:2 format [5]. Data is deinterlaced and 

should be transformed from YCbCr to RGB color space, 
but because of uneven matrix sizes, it cannot be 

transformed directly. Linear extrapolation of the Cb and Cr 

channels, thus, reconstructing the image back to 4:4:4 

format turned out to be too slow and damaged real time 

execution of the algorithm. Instead, the Y channel was 

decimated by keeping only even rows of the image. The 

computed target’s center of mass (centroid) coordinates, 

were adjusted accordingly. 

A binary mask is than created for each frame in order to 

find all the red targets in the frame. Any desired color can 

be masked by a similar procedure. Red masking is 

performed by setting two thresholds T1 and T2 (T1<T2), 

using R, G, and B channels: 

 (1)  

After the red mask has been formed, it is filtered to 

eliminate any anomalies that may have been caused by 

lightning conditions, clutter, and noise. Median filter has 

been chosen due to its good performance in salt and pepper 

noise filtering, which suits to our purpose.  

After the filtering, blob analysis is performed to find the 

centroid of each red blob. Centroids of blobs smaller than 

50 pixels are ignored. 

We assume that lightning conditions can cause some of the 

pixels to appear in a slightly different color than their 

original color. Therefore, large target can break into 

fractions during the masking process. Morphological 

operations such as imclose can fix this problem but their 

implementation using Simulink has the drawback of not 

being very computationally efficient, and cannot be part of 

a real time system.  

In order to address the problem above, we propose to unify 

the centroids of any broken targets. Target’s true centroid is 

approximately estimated by the location of its fractions 

centroids. Centroids are unified by creating a smart labeling 

algorithm that detects neighboring groups of centroids and 

gives them the same label. The algorithm scans all the 

centroids found. If a number of centroids are within a 

relatively small predefined area, the algorithm assigns the 

same label to the relevant centroids. Two centroids that are 

relatively far from each other get different labels. 

Afterwards, the average centroid is calculated for each 

group of centroids that carries the same label. By that, we 

have achieved a robust, quick and efficient method that can 

substitute the imclose operation. The purposed solution 

complexity is O(N
2
) where N represents the number of 

centroids found in each frame. Therefore, many 

calculations are saved because N is much smaller than the 

frame size. 

To keep tracking the correct target, we have assumed that 

there is only one target in the first video frame. No such 

assumptions were made for any other frame. In each frame 

the target's centroid location is saved. In the next frame a 

new set of centroids arrives. The centroid most likely to 

belong to the target is the nearest neighbor to the target's 

centroid from the previous frame. In that way, the robot is 

able to ignore multiple targets of the same color, and reach 

the desired target without being distracted by other similar 

targets. Therefore, the closest centroid to the previous 

frame centroid is chosen as the current frame target's 

centroid. The chosen centroid is stored in memory for the 

next frame and also used as an input for the navigation.   

2.2 Robot navigation 

To successfully navigate the robot to the target, we have 

used the target's centroid found in the detection and 

tracking algorithm. Our navigation goal is to bring the 

target's centroid to a desired location in the image. The 

desired location is a 180x192 rectangle in the bottom 

middle (BM) of the screen (see Figure 1). This location is 

set by considering the camera location on the robot and it 

represents the area just in front of the robot. By the current 

centroid location we are able to give the robot navigation 

directions (such as go forward, stop, turn left, or turn right) 

for each of the predefined Top, Bottom, Left, Middle, and 

Right regions (TL, TM, TR, BL, BM, BR). 

 

Figure 1: Robot’s point of view. Left - go forward area; 

Right - turn left and go forward area.  

The robot turning radius is also set by the centroid location 

on the screen. Note that when the turning radius is set to R, 

the robot will move in circles of radius R. for straight line 

motion, one should set R=max (= 2
15

mm). The turning 

radius was calculated using two heuristic geometrical 

considerations. First, the radius should decrease when the 

centroid is going away from the center column of the 

screen. Second, the radius should increase when the 

centroid is going towards the upper part of the screen, and 

that is because targets in the bottom part of the screen are 

closer to the robot than targets in the upper part of the 

screen. Turning radius is calculated by: 
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Where (xc,yc) is the centroid column and row coordinates, 

and negative radius represents a right turn. Note that (1,1) is 

a top left corner pixel. 
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If no target was detected, the robot turns around his axis to 

acquire a new target. Once a target is found the robot 

automatically starts navigating towards the target using the 

method above. 

However, if the robot loses its target, there is a small 

waiting period before the robot starts searching for a new 

target. By that we achieve more robustness in cases where 

the target is hidden from the camera for a small amount of 

time. The robot stands still and waits for the target to 

reappear for the waiting period, which is user defined, 

before it starts looking for another target.        

3.  IMPLEMENTATION 

The prototype system was implemented using the 

TMS320DM6437 EVM [6] board, the iRobot Create [7], 

and a SENTech STC-635TC video camera. The EVM 

board includes a DM6437 DSP with a UART serial port, 

composite video inputs and outputs, and many other 

peripherals. 

The EVM board is mounted on a plastic base above the 

robot's cargo bay, using spacers to support it.  A steel 

framework was built, to attach the video camera to the 

system, and avoid camera vibrations, that can be caused by 

the robot's movement. The camera sits on an aluminum 

pole which is perpendicularly connected to the center of the 

steel framework. A bolt secures the camera into the pole 

and keeps the camera at a fixed position (see Figure 2).   

 

 

Figure 2:  Left – system top view, Right – system front 

view. 

The robot and DSP are communicating via RS-232 

protocol. Connection is done by a special cable which is 

supplied with the robot and connects to the UART 

connector at the EVM side and to the Mini-DIN connector 

at the robot's side. The video camera is connected to the 

EVM board composite video input.  

The robot's instructions are composed of one byte Opcode 

and a number of data bytes that varies for each instruction. 

Robot's movement can be controlled by the Drive 

instruction which has 4 data bytes, 2 for velocity and 2 for 

turning radius. For additional details see [7]. 

Tracking and navigation algorithms were designed in 

MATLAB Simulink and MATLAB State-Flow chart 

environment. The described system uses the Simulink C-

code generator toolbox to generate an automated high level 

real time environment for the DM6437 processor.  

3.1 Detection and tracking 

Implementation of target detection and tracking is done by 

MATLAB Simulink blocks, including blocks from Target 

support package specially designated for DM6437 EVM 

board. In addition, Embedded MATLAB code has been 

used. The operation of YCbCr to RGB conversion is 

implemented using MATLAB embedded function. 

Tracking is done by comparing the distances between each 

centroid found in the current frame and the chosen centroid 

from the previous frame. The centroid with the shortest 

distance to the previous frame centroid is chosen as the 

current frame centroid. The chosen centroid is transferred to 

the navigation part of the algorithm, and also saved in 

memory to help determining the next frame centroid.  

3.2 Robot navigation 

The frame was divided into 6 areas: turn left (BL), turn left 

and go forward (TL), turn right (BR), turn right and go 

forward (TR), go forward (TM), and stop (BM) (see Figure 

1). The turning radius is determined and transferred to the 

robot as described in Section 2. For debugging, an external 

monitor was connected to the composite video output of the 

EVM (see Figure 2). 

Rate Transition block is used to synchronize between 

tracking algorithm sample rate, and navigation algorithm 

sample rate. Two unsynchronized sample rates can cause 

timing problems which in turn cause undetermined data 

transfer. The block ensures that data transfer between the 

two algorithms will remain determined while the system is 

running (see Figure 3).  

Truth Table block is used to define the conditions regarding 

the location of the centroid in each frame. The output of the 

block specifies in which area of the frame the centroid is 

located by the following rules: 

 

The State Flow Chart block receives the radius variables, as 

they were calculated according to Section 2, and the output 

of the Truth Table (see Figure 3). Note that the radius is 

represented by two bytes of data.  

The State Flow Chart is the mind of the system. In each 

frame, the chart decides how the robot should act. Each of 

the possible inputs is translated to a binary condition in a 

state flow chart which leads to different state in the chart. In 

each state, a different command vector of five bytes is sent 

to the robot through the UART.   

The state machine structure consists of 26 states, and it is 

built to operate autonomously, therefore, all the optional 

dynamic scenes were considered. Furthermore, the state 

flow chart supports an advanced set of commands which 
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are sent to the robot. Scanning mode and internal timer are 

implemented by creating combination of new states, and 

they enable the system to operate independently. 

The location of the centroid is changing in each frame, and 

as a result the state in the State Flow Chart is updated, and a 

new command is sent to the robot. The camera frame rate 

allows for the update rate of several times per second. 

The extensibility and readability of the state flow chart 

creates a unique simple autonomous control environment 

which can easily be suited to new complicated tasks. 

4.  RESULTS  

The system with the DM6437 EVM board and standard 

video camera, both connected to the iRobot was field tested 

at various real scenarios and different lighting conditions. 

Targets were detected and tracked accurately, and the robot 

reached its target every time. The results of successful 

navigation can be seen in Figure 4. 

 

The robot is able to function for more than two hours with a 

single battery charging. This demonstrates power efficiency 

of the proposed robotic framework. 

 

The demonstration of robot abilities can be seen on the 

internet [8]. The proposed algorithms took less than 4% of 

DSP memory resources, thus they can be expanded easily 

to more sophisticated projects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: System top level block diagram. 

  

Figure 4:  Left – stop command, Right – stop, external 

view. 

5.  CONCLUSIONS 

This paper presents a low cost algorithm for target tracking 

and navigation, and its implementation using DM6437 

EVM board, video camera, and iRobot Create. The system 

operates autonomously, and run in real time. 

The advantage of reevaluating the location of the target 

several times per second, and updating the commands 

which sent to robot from a clearly defined state machine, 

supported the accuracy of the real time embedded system.  

System's implementation main advantage is in its unified 

development environment, which enables very large 

modularity in algorithm's design. Simulink lets the user 

assemble large and complex systems in very short time and 

thus, the proposed robot and DSP platform can be used as a 

base for future development of more complex tracking and 

navigation algorithms. 
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