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Figure 1: Results of the proposed network. Reconstructed geometries are shown next to the corresponding input images.

Abstract

Reconstructing the detailed geometric structure of a face
from a given image is a key to many computer vision and
graphics applications, such as motion capture and reen-
actment. The reconstruction task is challenging as human
faces vary extensively when considering expressions, poses,
textures, and intrinsic geometry. While many approaches
tackle this complexity by using additional data to recon-
struct the face of a single subject, extracting facial surface
from a single image remains a difficult problem. As a re-
sult, single-image based methods can usually provide only
a rough estimate of the facial geometry. In contrast, we pro-
pose to leverage the power of convolutional neural networks
to produce a highly detailed face reconstruction from a sin-
gle image. For this purpose, we introduce an end-to-end
CNN framework which derives the shape in a coarse-to-fine
fashion. The proposed architecture is composed of two main
blocks, a network that recovers the coarse facial geometry
(CoarseNet), followed by a CNN that refines the facial fea-
tures of that geometry (FineNet). The proposed networks
are connected by a novel layer which renders a depth image
given a mesh in 3D. Unlike object recognition and detection
problems, there are no suitable datasets for training CNNs
to perform face geometry reconstruction. Therefore, our
training regime begins with a supervised phase, based on
synthetic images, followed by an unsupervised phase that
uses only unconstrained facial images. The accuracy and
robustness of the proposed model is demonstrated by both
qualitative and quantitative evaluation tests.

1. Introduction

Faces, with all their complexities and vast number of
degrees of freedom, allow us to communicate and express
ourselves through expressions, mimics, and gestures. Fa-
cial muscles enable us to express our emotions and feel-
ings, while facial geometric features determine one’s iden-
tity. However, the flexibility of these qualities make the re-
covery of facial geometry from a flat image a challenge.
Moreover, additional ambiguities arise as the projection of
a face onto an image depends also on its texture and mate-
rial properties, lighting conditions, and viewing direction.

Various methods mitigate this uncertainty by using addi-
tional data such as a large photo collection of the same sub-
ject [36, 35, 21, 28, 33], continuous video frames [43, 39,
5, 11] or a rough depth map [43, 18]. In many cases, how-
ever, we only have access to a single facial image. In this
setup, common schemes can be divided to 3D morphable
model (3DMM) techniques [3, 4], template-based methods
[20, 15] and data-driven approaches [26, 40, 34].

Here, we propose an end-to-end neural network for re-
constructing a detailed facial surface in 3D from a single
image. At the core of our method is the idea of breaking
the reconstruction problem into two phases, each solved by
a dedicated neural network architecture. First, we introduce
CoarseNet, a network for recovering the coarse facial ge-
ometry as well as the pose of the face directly from the im-
age. To train CoarseNet, a synthetic dataset of facial images
with their matching face geometry and pose is synthetically
generated. The rough facial geometries are modeled using
a 3DMM [3], which provides a compact representation that
can be recovered using the proposed network. However,
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this representation can only capture coarse geometry recon-
struction. Next, in order to capture fine details, we introduce
FineNet, a network that operates on depth maps and thus
is not constrained by the morphable model representation.
FineNet receives a coarse depth map, alongside the original
input images and applies a shape-from-shading like refine-
ment, capturing the fine facial details. To train FineNet, we
use an unlabeled set of facial images, where a dedicated loss
criterion is introduced, to allow unsupervised training. Fi-
nally, to connect between the CoarseNet 3DMM output and
the FineNet depth map input, we introduce a novel layer
which takes the 3DMM representation and pose parame-
ters from CoarseNet, and produces a depth map that can be
fed into FineNet. This layer supports back-propagation to
the 3DMM representation allowing joint training of the two
networks, possibly refining the weights of CoarseNet.

The usage of an end-to-end network here is exciting as
it connects the problem of face reconstruction to the rapidly
expanding applications solved by CNNs, potentially allow-
ing us to further improve our results following new ad-
vances in CNN architectures. Moreover, it allows fast re-
constructions without the need for external initialization or
post-processing algorithms. The potential of using a CNN
for reconstructing face geometries was recently demon-
strated in [34]. However, their network can only produce
the coarse geometry, and must be given an aligned template
model as initialization. These limitations force their solu-
tion to depend on external algorithms for pose alignment
and detail refinement.

The main contributions of the proposed method include:

• An end-to-end network-based solution for facial sur-
face reconstruction from a single image, capable of
producing detailed geometric structures.

• A novel rendering layer, allowing back-propagation
from a rendered depth map to the 3DMM model.

• A network for data refinement, using a dedicated loss
criterion, motivated by axiomatic shape-from-shading
objectives.

• A training scheme that bypasses the need for manually
labeled data by utilizing only synthetic data and unla-
beled facial images.

2. Related Work

Automatic face reconstruction attracts a lot of atten-
tion in the computer vision and computer graphics research
communities. The available solutions differ in their as-
sumptions about the input data, the priors and the tech-
niques they use. When dealing with geometry reconstruc-
tion from a single image, the problem is ill-posed. Still,

there are ways for handling the intrinsic ambiguities in ge-
ometry reconstruction from one image. These solutions can
be roughly divided into the following categories:

3DMM Methods. In [3], Vetter and Blantz introduced
the 3D Morphable Model (3DMM), a principal components
analysis (PCA) basis for representing faces. One of the ad-
vantages of using the 3DMM is that the solution space is
constrained to represent only likely solutions, thereby sim-
plifying the problem. While the original paper assumes
manual initialization, more recent efforts propose an auto-
matic reconstruction process [4, 47]. Still, the automated
initialization pipelines usually do not produce the same
quality of reconstructions when only one image is used, as
noted in [33]. In addition, the 3DMM solutions cannot ex-
tract fine details since they are not spanned by the principal
components.

Template-Based Methods. An alternative approach is
to solve the problem by deforming a template to match the
input image. One notable paper is that of Kemelmacher-
Shlizerman and Basri [20]. There, a reference model is
aligned with the face image and a shape-from-shading (SfS)
process is applied to mold the reference model to bet-
ter match the image. Similarly, Hassner [15] proposed to
jointly maximize the appearance and depth similarities be-
tween the input image and a template face using SIFT-
flow [24]. While these methods do a better job in recovering
the fine facial features, their capability to capture the global
face structure is limited by the provided template initializa-
tion.

Data-Driven Methods. A different approach to the
problem uses some form of regression to connect be-
tween the input image and the reconstruction representa-
tion. Some methods apply a regression model from a set
of sparse landmarks [1, 10, 25], while others apply a re-
gression on features derived from the image [22, 7]. [26]
applies a joint optimization process that ties the sparse land-
marks with the face geometry, recovering both. Recently, a
network was proposed to directly reconstruct the geometry
from the image [34], without using sparse information or
explicit features. That paper demonstrated the potential of
using a network for face reconstruction. Still, it required ex-
ternal procedures for fine details extraction as well as initial
guess of the face location, size, and pose.

In a sense, the proposed solution combines all of these
different procedures. Specifically, a 3DMM is used to de-
fine the input for a Template-Based refinement step, where
both parts are learned using a Data-Driven model.

3. Coarse Geometry Reconstruction
The first step in our framework is to extract the coarse fa-

cial geometry and pose from the given image. Our solution
is motivated by two recent efforts, [34] which proposed to
train a network for face reconstruction using synthetic data,



and [46] which solved the face alignment problem using a
network. Although the methods focus on different prob-
lems, they both use an iterative framework which utilizes a
3D morphable model. The proposed method integrates both
concepts into a holistic alignment and geometry reconstruc-
tion solution.

3.1. Modeling The Solution Space

In order to solve the reconstruction problem using a
CNN, a representation of the solution space is required. To
model the facial geometries we use a 3D morphable model
[3], where an additional blendshape basis is used to model
expressions, as suggested in [8]. This results in the follow-
ing linear representation

S = µS +Aidαid +Aexpαexp. (1)

Where µS is the average 3D face, Aid is the principal com-
ponent basis, Aexp is the blendshape basis, and αid and
αexp are the corresponding coefficient vectors. Aid and
Aexp are collected from the Bosphorus dataset [37] as in
[34], where the identity is modeled using 200 coefficients,
and the expression using 84.

For projecting the 3D model to the image plane, we as-
sume a parallel weak perspective projection.

[
px
py

]
=

[
f 0 0
0 f 0

]
[R|t]


Px
Py
Pz
1

 , (2)

where p, P are the pixel location in the image plane and
in the world coordinate system, respectively, f is the fo-
cal length, and [R|t] is the extrinsic matrix of the camera.
Hence, the face alignment is modeled using only 6 parame-
ters: 3 Euler angles, a 2D translation vector and a scale. The
pose parameters are normalized so that a zero vector would
correspond to a centralized front facing face. Overall, we
have a representation of 290 parameters for both geometry
and pose. We will denote this representation as r.

3.2. The CoarseNet Training Framework

The realization that the power of single-pass systems is
limited, has made the application of iterative networks pop-
ular. While some methods [38, 23] use a cascade of net-
works to refine their results, it has been shown that a single
network can also be trained to iteratively correct its predic-
tion. This is done by adding feedback channels to the net-
work that represent the previous output of the network as a
set of feature maps. The network is then trained to refine
its prediction based on both the original input and the feed-
back channels. This idea was first proposed by Carreira et
al. in [6].

(a) (b) (c) (d) (e) (f)

Figure 2: Feedback Representation. (a,d) are masked input
images, (b,e) are the corresponding PNCCs of the network’s
output and (c,f) are the resulting normal maps.

3.2.1 Feedback Representation

Defining the feedback channels of the previous output of
the network is crucial, as it would affect the overall per-
formance of our iterative framework. Roughly speaking,
we would like the feedback channels to properly represent
the current state of the coarse facial geometry. In practice,
different types of feedback channels would emphasize dif-
ferent features of the current state. For instance, in [46]
the Projected Normalized Coordinate Code (PNCC) was in-
troduced. This feature map is computed by first normal-
izing the average face and painting the RGB channels of
the current vertices with the x, y and z coordinates of the
corresponding vertex on the average model, see Figures 2b
and 2e.

Next, we propose to use the normal map as an additional
channel, where each vertex is associated with its normal co-
ordinates. These normal values are then rendered as RGB
values. The purpose of the normal map is to represent more
local features of the coarse geometry, which are not empha-
sized by the PNCC. The proposed solution uses both feed-
backs, creating a richer representation of the shape. Exam-
ples of these representations are shown in Figure 2.

3.2.2 Acquiring the Data

In order to train the proposed framework, a large dataset of
3D faces is required. However, due to the complexity in ac-
quiring accurate 3D scans for a large group of people, no
such dataset is currently available. Note that unlike differ-
ent annotations, such as landmark positions, which can be
manually collected for an existing set of unlabeled images,
the 3D geometry has to be captured jointly with the photo-
metric data. A possible solution would be to apply exist-
ing reconstruction methods to 2D images, and use these re-
constructions as labels. However, such an approach would
limit the reconstruction quality to that of the reconstruction
method we use.

Here, we choose to follow the line of thought proposed in
[34] and create a synthetic dataset by drawing random rep-
resentations of geometry and pose, rgt, which are then ren-
dered using random texture, lighting and reflectance. This
process provides a dataset of 2D images, for which the pose
and corresponding geometry are known by construction.
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Figure 3: The End-to-End network, composed of CoarseNet, FineNet and the rendering layer.

The iterative refinement process is then simulated by draw-
ing another set of parameters, rt, which is sampled between
rgt and a random set of parameters, rrnd.

rt = β · rgt + (1− β) · rrnd, 0 ≤ β ≤ 1, (3)

rt represents the current estimation of the solution, and is
used to generate the PNCC and normal map. The network
is then trained to predict the ground-truth, rgt, representa-
tion from the current one, rt. Note, that unlike [34] our
representation r captures not only the geometry, but also
the pose. Hence rgt and rrnd can vary also in their position
and orientation.

3.3. The CoarseNet Architecture and Criterion

CoarseNet is based on the ResNet architecture [17], and
is detailed in Figure 3. Note that the input layer includes the
feedback channel, and that a gray-scale image is used. The
last element in the proposed architecture is the training cri-
terion. As our representation is composed of both geometry
and pose parameters, we choose to apply a different training
criterion for each part of the representation. For the geom-
etry we apply the Geometry Mean Square Error (GMSE)
suggested in [34],

L (α̂, α) =
∥∥[Aid|Aexp

]
α̂−

[
Aid|Aexp

]
α
∥∥2
2
, (4)

where α̂ is the geometry received from the network, and
α is the known geometry. The idea behind GMSE is to
take into account how the different coefficients affect the
resulting geometry. For the pose parameters we found that
a simple MSE loss over the 6 parameters is sufficient. We
weigh the two loss criteria so that we get approximately the
same initial error for both.

3.4. Using CoarseNet

We feed CoarseNet it with a 200× 200 image of a face.
Such an image can be automatically acquired using a stan-
dard face detector, such as the Viola-Jones detector [41].
The initial parameters vector, r0, is set to zeros, correspond-
ing to a centered mean face µS . In addition, the input image
is always masked in accordance with the visible vertices in

the feedback channel. The masking is applied in order to
improve our generalization capability from synthetic data
to real-world images, as our synthetic data is more accurate
for the head region. Although the mask is inaccurate in the
first iteration, it is gradually refined. The network is then ap-
plied iteratively, producing the updated geometry rt, which
is used to create the new feedback input. This process is
repeated until convergence, as shown in Figure 4.

4. The Coarse to Fine Approach

For many tasks, such as face frontalization [47, 16], re-
constructing the coarse geometry is sufficient. However,
reconstructing fine geometric structures such as wrinkles
could be useful for other applications. It is clear that while
working in the moprhable model domain, we cannot cap-
ture such details. To solve that, we transfer the problem to
the unconstrained image plane, representing the geometry
as a depth map. The role of the proposed FineNet would
then be to modify the given coarse depth map, based on the
original image, for capturing the fine details.

4.1. The Rendering Layer

To connect CoarseNet with FineNet we propose a novel
rendering layer. The layer receives the geometry and pose
representation vector as the input and outputs a 200 × 200

Figure 4: Progress through iterations. For each iteration the
following are shown from top to bottom: The cropped input
image, the PNCC and the normal map.
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3DMM Representation Triangular Mesh Depth Map

Figure 5: Gradient Flow. Gradients from FineNet are first
propagated to the depth map, and then propagated from
each pixel to the matching vertices. The gradients on the
triangular mesh are then propagated back to the morphable
model representation.

depth map of the geometry in the corresponding pose. This
is done in two steps, first the 3D mesh is calculated from the
geometry parameters and positioned above the image plane, px

py
pz

 =

 f 0 0
0 f 0
0 0 1

R [Aid|Aexp
]
α̂+

 tx
ty
0

 .
(5)

The 3D mesh is then rendered using a z-buffer renderer,
where each pixel is associated with a single triangular face
from the mesh. In order to handle potential occlusions,
When a single pixel resides in more than one triangle, the
one that is closest to the image plane is chosen. The value
of each pixel is determined by interpolating the z-values of
the mesh face using barycentric coordinates

z̃ = λ0z0 + λ1z1 + λ2z2, (6)

where zi is the z-value of the ith vertex in the respective tri-
angle and λi is the corresponding coordinate. During back-
propagation the gradients are passed from each pixel to the
matching vertex, weighted by the corresponding coordinate,

dE

dzi
=
dE

dz̃

dz̃

dzi
=
dE

dz̃
λi, (7)

where E is the loss criterion. Note that we assume that the
barycentric coordinates are fixed. Alternatively, one could
derive the coordinates with respect to xi and yi. In addition,
no gradients are propagated to hidden vertices. A similar
approach was applied for example in [48]. Finally, the gra-
dients are propagated from each vertex back to the geometry
basis, by taking the derivative of Equation 5 with respect to
α̂. The gradients transfer is visualized in Figure 5.

4.2. FineNet Framework

Delicate facial features such as wrinkles and dimples are
difficult to represent by a 3DMM low dimensional space,
mainly due to their high diversity. Hence, in contrast to
CoarseNet, we need to use a pixel-based framework to

recover the fine details. Recently, several notable pixel-
based CNN architectures [12, 27, 14] were used for vari-
ous fine grained tasks like semantic and instance segmen-
tation [27, 14], optical flow [9], and human pose estima-
tion [42]. First successful attempts to reconstruct surface
normals using these architectures [2, 44] have motivated our
FineNet architecture. The proposed framework differs from
both these networks in its output (depth map vs. normal
map) and training regime (unsupervised vs. supervised).

The FineNet is based on the hypercolumn architecture
suggested in [14]. The main idea behind this architecture is
to generate a per-pixel feature map which incorporates both
structural and semantic data. This is achieved by concate-
nating the output responses from several convolution layers
along the path of the network. Due to pooling layers, the
output maps size of inner layers does not match the size of
the input image, therefore, they are interpolated back to the
original size, to create a dense per-pixel volume of features.
This volume is then processed by several 1× 1 convolution
layers to create the final prediction.

We choose the VGG-Face [31] as a base for our hy-
percolumn network since it was fine tuned on a domain
of faces. For interpolating, we apply a slightly different
scheme than that of [14]. Instead of directly up-sampling
each feature map to the original size using bilinear inter-
polation, we use cascaded 2-strided 2 × 2 up-convolution
layers to up-sample the feature maps. This is done in order
to improve the quality of the features, as the interpolation is
now also part of the learning process. In contrast to recogni-
tion problems, refining the facial features is a relatively lo-
cal problem. Therefore, we truncate the VGG-Face network
before the third pooling layer and form a 200×200×450 hy-
percolumn feature volume. This volume is then processed
by a set of 1×1 convolutional layers used as a linear regres-
sor. Note, that this fully convolutional framework allows
us to use any size of input images. Figure 3 describes the
FineNet architecture.

4.3. FineNet Unsupervised Criterion

To train FineNet some form of loss function is required.
One possible solution would be to simply use an MSE crite-
rion between the network output and a high-quality ground-
truth depth map. This would allow the network to implicitly
learn how to reconstruct detailed faces from a single image.
Unfortunately, as mentioned in Section 3.2.2, a large dataset
of detailed facial geometries with their corresponding 2D
images, is currently unavailable. Furthermore, a synthetic
dataset for this task cannot be generated using morphable
models as there is no known model that captures the diver-
sity of fine facial details. Instead, we propose an unsuper-
vised learning process where the loss criterion is determined
by an axiomatic model. To achieve that, we need to find a
measure that relates the output depth map to the 2D image.



To that end, we resort to Shape from Shading (SfS).
Recent results in SfS [20, 45, 13, 30, 29] have shown that

when given an initial rough surface, subtle geometry details
can be accurately recovered under various lighting condi-
tions and multiple surface albedos. This is achieved by op-
timizing some objective function which ties the geometry to
the input image. In our case, an initial surface is produced
by CoarseNet and its depth map representation is fed into
FineNet along with the input image. We then formulate an
unsupervised loss criterion based on the SfS objective func-
tion, transforming the problem from an online optimization
problem to a regression one.

4.3.1 From SfS Objective to Unsupervised Loss

Our unsupervised loss criterion was formulated in the spirit
of [30, 29]. The core of our loss function is an image for-
mation term, which describes the connection between the
network’s output depth map and its input image. This term
drives the network to learn fine detail recovery and is de-
fined as

Esh =
∥∥∥ρ〈~l, ~Y (ẑ)

〉
− I
∥∥∥2
2
. (8)

Here, ẑ is the reconstructed depth map, I is the input in-
tensity image, ρ is the albedo image, and ~l are the first-
order spherical harmonics coefficients. Y (ẑ) represents the
matching spherical harmonics basis,

Y (ẑ) = (1, nx(ẑ), ny(ẑ), nz(ẑ)) , (9)

where (nx(ẑ), ny(ẑ), nz(ẑ)) is the normal expressed as a
function of the depth. Notice that while I is an input to
FineNet, the scene lighting ~l and albedo map ρ are un-
knowns. Generally, the need to recover both lighting and
albedo is part of the ambiguity in SfS problems. However,
here we can utilize the fact we do not solve a general SfS
problem, but one constrained to human faces. This is done
by limiting the space of possible albedos to a low dimen-
sional 3DMM texture subspace.

ρ ≈ T = µT +ATαT . (10)

where µT is the average face texture,AT is a principal com-
ponent basis and αT is the corresponding coefficients vec-
tor. In our implementation, 10 coefficients were used.

Now, as shown in [20], the global lighting can be cor-
rectly recovered by assuming the average facial albedo,
ρ̂ = µT , using the coarse depth map, z0, as follows

~l∗ = argmin
~l

∥∥∥ρ̂〈~l, ~Y (z0)
〉
− I
∥∥∥2
2
. (11)

Note that this is an overdetermined linear problem that can
be easily solved using least squares. Given the lighting co-
efficients, the albedo can also be easily recovered as

α∗
T = argmin

αT

∥∥∥(µT +ATαT )
〈
~l∗, ~Y (z0)

〉
− I
∥∥∥2
2
. (12)

Figure 6: Light and albedo recovery. Images are presented
next to the recovered albedo, rendered with the recovered
lighting.

As in Equation 11, this is an overdetermined linear problem
that can be solved directly. Based on the resulting albedo
and lighting coefficients we can calculate Esh and its gra-
dient with respect to ẑ. A few recovery samples are pre-
sented in Figure 6. To regularize the solution, a fidelity and
smoothness terms are added to the criterion of FineNet.

Ef = ‖ẑ − z0‖22,
Esm = ‖∆ẑ‖1, (13)

where ∆ is the discrete Laplacian operator. These terms
guarantee that the solution would be smooth and won’t stray
from the prediction of CoarseNet. The final per-pixel loss
function is then defined as

L(ẑ, z0, I) = λshEsh(ẑ, I) + λfEf (ẑ, z0) + λsmEsm(ẑ).
(14)

Where the λs determine the balance between the terms and
were set as λsh = 1, λf = 5e−3, λsm = 1. The gradi-
ent of L with respect to ẑ is then calculated and used for
backpropagation.

4.3.2 Unsupervised Loss - A Discussion

The usage of unsupervised criterion has some desired traits.
First, it eliminates the need for an annotated dataset. Sec-
ond, it ensures that the network is not limited by the perfor-
mance of any algorithm or the quality of the dataset. This
results from the fact that the loss function is entirely de-
pendent on the input, in contrast to supervised learning SfS
schemes such as [44] and [2], where the data is generated
by either photometric stereo or raw Kinect scans, respec-
tively. In addition, unlike traditional SfS algorithms, the
fact that the albedo and lighting coefficients are calculated
only as part of the loss function means that at test time the
network can produce accurate results directly from the in-
tensity and depth inputs, without explicitly calculating the
albedo and lighting information. Although the CoarseNet
can be trained to generate the lighting and albedo parame-
ters, we chose not to include them in the pipeline for two
reasons. First, the lighting and albedo are only needed for
the training stage and have no use during testing. Second,
both (11) and (12) are over-determined systems which can
be solved efficiently with least squares, thus, using a CNN
for this task would be an overkill.
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are propagated back to CoarseNet.

4.4. End-to-End Network Training

Finally, in order to train FineNet we connect it to
CoarseNet using the proposed rendering layer which is
added between the two networks. Thus, a single end-to-end
network is created. We then use images from the VGG face
dataset [31], and propagate them to the framework. The for-
ward pass can be divided into three main steps. First, each
such image is propagated through CoarseNet for four itera-
tions, creating the coarse geometry representation, this can
be done similarly to the forward pass in a Recurrent Neural
Network. Then, the rendering layer transforms the 3DMM
representation to a depth map. Finally, the depth map,
alongside the original input image, is propagated through
FineNet resulting in the dense updated depth map. The cri-
terion presented in 4.3 is then used to calculate the loss gra-
dient. The gradient is backpropagated through the network
allowing us to train FineNet and fine-tune CoarseNet. Note
that the fact that CoarseNet was already trained is crucial
for a successful training. This stems from the fact that the
unsupervised loss function depends on the coarse initializa-
tion, which cannot be achieved without the synthetic data.

In a sense, this is similar to the training process of trans-
fer learning in Neural Networks, where a new network is
concatenated to a pre-trained network in order to learn a
new domain. This scheme fine tunes the pre-trained net-
work to give the optimal inputs to the new network in order
to learn the new task. In order to prevent CoarseNet from
deviating too much from the original coarse solution, a fi-
delity criterion is added to CoarseNet’s output. This crite-
rion is the MSE between the current CoarseNet solution and
the original one. Gradients from both FineNet and the fi-
delity loss are then weighted and passed through CoarseNet,
fine-tuning it, as presented in Figure 7.

5. Experiments
In order to evaluate the proposed framework we per-

formed several experiments to test its accuracy on both 3D
facial datasets and in the wild inputs. Both qualitative and
quantitative evaluations are used to demonstrate the strength
of the proposed solution. Our method is compared to the
template based method of [20], to the 3DMM based method
introduced as part of [47] and to the data driven method
of [34]. Note that unlike our method, all of the above re-
quire alignment information. We use the state-of-the-art

alignment method of [19] to provide input for these algo-
rithms.

For a qualitative analysis we show our results on 400 ×
400 in-the-wild images of faces. As can be seen in Fig-
ure 10, our method exposes the fine facial details as opposed
to [47, 34] and is more robust to expressions and different
poses than [20]. In addition, we compare our reconstruc-
tions with a state of the art method for reconstruction from
multiple images [36]. The results are shown in Figure 8,
one can see that our method is able to produce a compara-
ble high quality geometry from only a single image. Finally,
Figure 9 shows our method robustness to different poses,
while Figure 1 shows some more reconstruction results.

For a quantitative analysis of our results we used the
Face Recognition Grand Challenge dataset V2 [32]. This
dataset consists of roughly two thousand color facial images
aligned with ground truth depth of each pixel. Each method
provided an estimated depth image and a binary mask rep-
resenting the valid pixels. For the purpose of fair judgment,
we evaluated the accuracy of each method on pixels which
were denoted as valid by all the methods. As shown in Ta-
ble 1, our method produce the lowest depth error among the
tested methods.

Finally, as noted in Section 4.2 the fully convolutional
FineNet can receive inputs with varying sizes. This size in-
variance is a vital property for our detail extraction network,
as it allows the network to extract more details when a high
quality input image is available. Figure 11 shows that al-
though our network was trained only on 200x200 images it
gracefully scales up for 400x400 inputs.

(a) (b) (c) (d) (e)

Figure 8: (a) and (c) are two input images, (b) and (d) are
their 3D reconstruction via the proposed method. (e) is a
reconstruction of the same subject, based on 100 different
images recovered with the method proposed in [36].

Figure 9: Method Robustness. Our method shows robust-
ness to different orientations, even in nearly 90◦ angles.



Input Ours [20] [34] [47] Ours [20] [34] [47]

Figure 10: Qualitative Results. Input images are presented alongside the reconstruction results of different methods from two
different viewpoints. Note that unlike the other methods, the proposed approach is robust to pose and expression variations,
while still capturing subtle facial details.

(a) (b) (c) (d)

Figure 11: Input Scaling. (a) is the input image and (b)
is the coarse depth map from CoarseNet. In (c) the output
of FineNet for a 200x200 input is presented, while in (d) a
400x400 input is used.

Method Ave. Depth Err. [mm] 90% Depth Err. [mm]

Ours 3.22 6.69
[20] 3.33 7.02
[34] 4.11 8.70
[47] 3.46 7.36

Table 1: Quantitative Comparison. Depth estimation errors
of the different methods are presented.

6. Conclusions
We proposed an end-to-end approach for detailed face

reconstruction from a single image. The method is com-
prised of two main blocks, a network for recovering a rough
estimation of the face geometry followed by a fine details
reconstruction network. While the former is trained with
synthetic images, the latter is trained with real facial im-
ages in an unsupervised training scheme. To allow unsu-
pervised training, we introduced a rendering layer which
enables the gradients to back-propagate through the en-
tire network. As demonstrated by our comparisons, the
proposed framework outperforms recent state-of-the-art ap-
proaches.
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[28] F. Maninchedda, C. Häne, M. R. Oswald, and M. Pollefeys.
Face reconstruction on mobile devices using a height map
shape model and fast regularization. In 3D Vision (3DV),
2016 International Conference on, pages 489–498. IEEE,
2016. 1

[29] R. Or-El, R. Hershkovitz, A. Wetzler, G. Rosman, A. M.
Bruckstein, and R. Kimmel. Real-time depth refinement
for specular objects. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4378–4386,
2016. 6

[30] R. Or-El, G. Rosman, A. Wetzler, R. Kimmel, and A. M.
Bruckstein. RGBD-Fusion: Real-time high precision depth
recovery. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5407–5416,
2015. 6

[31] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face
recognition. In British Machine Vision Conference, pages
41.1–41.12, 2015. 5, 7

[32] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview



of the face recognition grand challenge. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 947–954. IEEE,
2005. 7

[33] M. Piotraschke and V. Blanz. Automated 3D face reconstruc-
tion from multiple images using quality measures. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3418–3427, 2016. 1, 2

[34] E. Richardson, M. Sela, and R. Kimmel. 3D face reconstruc-
tion by learning from synthetic data. In 3D Vision (3DV),
2016 International Conference on, pages 460–469. IEEE,
2016. 1, 2, 3, 4, 7, 8

[35] J. Roth, Y. Tong, and X. Liu. Unconstrained 3D face recon-
struction. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2606–2615,
2015. 1

[36] J. Roth, Y. Tong, and X. Liu. Adaptive 3D face reconstruc-
tion from unconstrained photo collections. CVPR, 2016. 1,
7
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