# GS 559 <br> Winter 2009 

## Lecture II Sequence Motifs

## Larry Ruzzo

New Web (but old links should redirect): http://www.cs.washington.edu/homes/ruzzo/courses/gs559/09wi

## Who Am I?

Prof. Computer Science \& Engineering
Adjunct Prof., Genome Sciences
Joint Member, FHCRC
Main research interest: noncoding RNA
http://www.cs.washington.edu/homes/ruzzo
ruzzo@cs.washington.edu
554 CSE, 543-6298
Office Hours:Wednesdays II:00-I:00, or by appt

## 2 Minute Responses from 2/5

- good lecture today (3)
- really appreciate your straightforward teaching style
- bootstrapping method portion was very informative
- useful to go over which phylogeny method to use (8)
- I like that the problems start easy then get more complex; nice to work up gradually (2)
- slowly getting the function aspect
- I was pretty lost - felt like we jumped into "sort functions" with little explanation
- If I wanted to continue learning about programming \& computational biology (building on this course), what should I take? (but I have no comp sci background)
- CSE 427/527 for comp bio; I42/I43/373/4 I 7 for general cs
- GS 540/54I, pop gen, phylo
- Biostat Statgen sequence
- BioE
- BHI
- Talk to Bill, Mary or me


## Outline

Bioinformatics:
Sequence Motifs
Review - hypothesis testing \& maximum likelihood Sequence Logos
Weight Matrix Models (WMMs)
aka Position Specific Scoring Matrices (PSSMs, possums)
aka Oth order Markov models
Construction, statistics, uses
Programming:
Grep and regular expressions

## Hypothesis Testing: A Very Simple Example

Given: A coin, either fair $(p(H)=I / 2)$ or biased $(p(H)=2 / 3)$
Decide: which
How? Flip it 5 times. Suppose outcome D = HHHTH
Null Model/Null Hypothesis $M_{0}: p(H)=I / 2$
Alternative Model/Alt Hypothesis $M_{1}: p(H)=2 / 3$
Likelihoods:

$$
\begin{aligned}
& P\left(D \mid M_{0}\right)=(I / 2)(I / 2)(I / 2)(I / 2)(I / 2)=1 / 32 \\
& P\left(D \mid M_{1}\right)=(2 / 3)(2 / 3)(2 / 3)(1 / 3)(2 / 3)=16 / 243
\end{aligned}
$$

Likelihood Ratio: $\frac{p\left(D \mid M_{1}\right)}{p\left(D \mid M_{0}\right)}=\frac{16 / 243}{1 / 32}=\frac{512}{243} \approx 2.1$
l.e., alt model is $\approx 2$. $1 \times$ more likely than null model, given data

## Hypothesis Testing, II

Log of likelihood ratio is equivalent, often more convenient
add logs instead of multiplying...
"Likelihood Ratio Tests": reject null if LLR > threshold
LLR > 0 disfavors null, but higher threshold gives stronger evidence against, i.e., shifts false positive/false negative rates

Neyman-Pearson Theorem: For a given error rate, LRT is as good a test as any (subject to some fine print).

## Related Problem: <br> Parameter Estimation

Assuming sample $x_{1}, x_{2}, \ldots, x_{n}$ is from a parametric distribution $f(x \mid \theta)$, estimate $\theta$.
E.g.:
$x_{1}, x_{2}, \ldots, x_{5}$ is HHHTH, estimate $\theta=\operatorname{prob}(\mathrm{H})$

## Likelihood

$P(x \mid \theta)$ : Probability of event $x$ given model $\theta$
Viewed as a function of $x$ (fixed $\theta$ ), it's a probability

$$
\text { E.g., } \Sigma_{x} P(x \mid \theta)=1
$$

Viewed as a function of $\theta$ (fixed $x$ ), it's a likelihood
E.g., $\Sigma_{\theta} \mathrm{P}(\mathrm{x} \mid \theta)$ can be anything; relative values of interest.
E.g., if $\theta=$ prob of heads in a sequence of coin flips then P(HHHTH | .6) > P(HHHTH | .5),
I.e., event HHHTH is more likely when $\theta=.6$ than $\theta=.5$

And what $\theta$ make HHHTH most likely?

## Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observations $x_{n}, x_{2}, \ldots, x_{n}$

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1} f\left(x_{i} \mid \theta\right)
$$

As a function of $\theta$, what $\theta$ maximizes the likelihood of the data actually observed. Typical approaches:

Numerical
MCMC
Analytical - $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta)=0$
etc.


## Example I


$n$ coin flips, $x_{l}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, $n_{l}$ heads, $n_{0}+n_{l}=n$; $\theta=$ probability of heads

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=(1-\theta)^{n_{0}} \theta^{n_{1}} \\
& \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=n_{0} \log (1-\theta)+n_{1} \log \theta \\
& \frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta} \\
& \text { Setting to zero and solving: } \\
& \qquad \begin{array}{l}
\hat{\theta}
\end{array} \begin{array}{l}
\text { Observed fraction of } \\
\text { successes in sample is }
\end{array} \\
& \text { MLE of success } \\
& \text { probability in population }
\end{aligned}
$$

(Also verify it's max, not min, \& not better on boundary)

## Sequence Motifs

Motif: "a recurring salient thematic element"
E.g., structural motifs in proteins (zinc finger, H-T-H, leucine zipper, ... are various DNA binding motifs)
E.g., the DNA sequence motifs to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to 10 s or 100s or 1000s of similar sequences

## E. coli Promoters

"TATA Box" ~ IObp upstream of transcription start How to define it? TACGAT

Consensus is TATAAT BUT all differ from it Allow k mismatches?
Equally weighted?

TAAAAT

TATACT
GATAAT
TATGAT
TATGTT
Wildcards like $\mathrm{R}, \mathrm{Y}$ ? ( $\{\mathrm{A}, \mathrm{G}\},\{\mathrm{C}, \mathrm{T}\}$, resp.)

## E. coli Promoters

"TATA Box" - consensus TATAAT
~IObp upstream of transcription start
Not exact: of 168 studied (mid 80's)

- nearly all had $2 / 3$ of TAxyzT
- 80-90\% had all 3
$-50 \%$ agreed in each of $x, y, z$
- no perfect match
(Other common features at -35, etc.)


## TATA Box Frequencies

| ¢ $\begin{gathered}\text { pos } \\ \text { base }\end{gathered}$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 2 | 94 | 26 | 59 | 50 | 1 |
| C | 9 | 2 | 14 | 13 | 20 | 3 |
| G | 10 | 1 | 16 | 15 | 13 | 0 |
| T | 79 | 3 | 44 | 13 | 17 | 96 |
| Sequence Logo |  |  |  | $\underline{ }$ |  |  |

## TATA Box Scores

A "Weight Matrix Model" or "WMM"

| pos <br> base | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A | -36 | 19 | 1 | 12 | 10 | -46 |
| C | -15 | -36 | -8 | -9 | -3 | -31 |
| G | -13 | -46 | -6 | -7 | -9 | $-46_{0}$ |
| T | 17 | -31 | 8 | -9 | -6 | 19 |

## Scanning for TATA



Stormo, Ann. Rev. Biophys. Biophys Chem, 17, 1988, 241-263

## Scanning for TATA



## TATA Scan at 2 genes



## Score Distribution

(Simulated)


## Weight Matrices: Statistics

Assume:

$$
\begin{aligned}
& f_{b, i}=\text { frequency of base } b \text { in position } i \text { in TATA } \\
& f_{b}=\text { frequency of base } b \text { in all sequences }
\end{aligned}
$$

Log likelihood ratio, given $S=B_{1} B_{2} \ldots B_{6}$ :

$$
\log \left(\frac{P(S \mid \text { "tata" })}{P(S \mid \text { "non-tata" })}\right)=\log \frac{\prod_{i=1}^{6} f_{B_{i}, i}}{\prod_{i=1}^{6} f_{B_{i}}}=\sum_{i=1}^{6} \log \frac{f_{B_{i}, i}}{f_{B_{i}}}
$$

Assumes independence

## What's best WMM?

Given, say, 168 sequences $s_{1}, s_{2}, \ldots, s_{k}$ of length 6 , assumed to be generated at random according to a WMM defined by $6 \times(4-I)$ parameters $\theta$, what's the best $\theta$ ?
E.g., what's MLE for $\theta$ given data $s_{1}, s_{2}, \ldots, s_{k}$ ?

Answer: like coin flips or dice rolls, count frequencies per position.

## Weight Matrices: Thermodynamics

Experiments show $\sim 80 \%$ correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus
[Stormo \& Fields]

## Pseudocounts

Freq/count of $0 \Rightarrow-\infty$ score; a problem?
Certain that a given residue never occurs in a given position? Then $-\infty$ just right.
Else, it may be a small-sample artifact
Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
Sounds ad hoc; there is a Bayesian justification

## How-to Questions

Given aligned motif instances, build model?
Frequency counts (above, maybe w/ pseudocounts)
Given a model, find (probable) instances
Scanning, as above
Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions of coexpressed genes)

Hard ... maybe another lecture.

## WMM Summary

Weight Matrix Model (aka Position Specific Scoring Matrix, PSSM,"possum", Oth order Markov models)
Simple statistical model assuming independence between adjacent positions
To build: align, count (+ pseudocount) letter frequency per position, log likelihood ratio to background
To scan: add per position scores, compare to threshold, slide
Databases \& tools: Transfac, Jaspar, MEME/MAST, ...

