GS 559

Lecture 12a, 2/12/09 Larry Ruzzo

A little more about motifs

Reflections from 2/10

Bioinformatics:

Motif scanning stuff was very cool

Good explanation of max likelihood; good use of examples (2)

I was confused/lost/overwhelmed; a lot of equations; (but I think I got the big picture) (3)

Python:

Last python hw was a big step up in difficulty. A scary trend? "After all, we all have other stuff to do besides bang our heads against python" (7)

Do longer, more complex practice problem in class; homework is getting harder, but in-class practice is not... (2)

Going through code slowly was "a breath of fresh air"

What is grep? An re? A module we import? compile? etc.

How do we use python files *not* in the user folder?

need more practice with reg exps

Both:

- Print slides portrait, not landscape.
- Post HW solutions online? they are
- Lecture was clear, but rushed/class was too short (again). (3) Semesters?
- Real-world examples good, do more (but hard to understand) (2)
- Do more with online databases & tools
- Pls include summary slides for lecture review, like Mary & Bill did
- Appreciate taking time to go over tough stuff slowly, even if we don't finish everything planned

Motifs

Review, plus a bit more

TATA Box Frequencies

TATA Box Scores

A "Weight Matrix Model" or "WMM"

pos base	1	2	3	4	5	6
Α	-36	19	1	12	10	-46
С	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46.
Τ	17	-31	8	-9	-6	19

Stormo, Ann. Rev. Biophys. Biophys Chem, 17, 1988, 241-263

Scanning for TATA

Score Distribution (Simulated)

Weight Matrices: Statistics

Assume:

 $f_{b,i}$ = frequency of base b in position i in TATA

 f_b = frequency of base *b* in all sequences

Log likelihood ratio, given $S = B_1 B_2 \dots B_6$:

$$\log\left(\frac{P(S|\text{``tata''})}{P(S|\text{``non-tata''})}\right) = \log\frac{\prod_{i=1}^{6} f_{B_{i},i}}{\prod_{i=1}^{6} f_{B_{i}}} = \sum_{i=1}^{6} \log\frac{f_{B_{i},i}}{f_{B_{i}}}$$

Assumes independence

pos base	1	2	3	4	5	6
A	2	94	26	59	50	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
Т	79	3	44	13	17	96

Frequency \Rightarrow Scores: log₂ (freq/background)

(For convenience, scores multiplied by 10, then rounded)

pos base	1	2	3	4	5	6
Α	-36	19	1	12	10	-46
С	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
Т	17	-31	8	-9	-6	19

Another WMM example

8 Sequences: ATG ATG ATG ATG ATG GTG GTG GTG TTG

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
С	0	0	0
G	0.250	0	Ι
Т	0.125		0

LLR	Col I	Col 2	Col 3
A	1.32	-∞	-8
С	-∞	-∞	-8
G	0	-∞	2.00
Т	-1.00	2.00	-∞

Log-Likelihood Ratio:

$$\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$$

Non-uniform Background

- E. coli DNA approximately 25% A, C, G, T
- *M. jannaschi* 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLRCol ICol 2Col 3A
$$0.74$$
 $-\infty$ $-\infty$ C $-\infty$ $-\infty$ $-\infty$ G 1.00 $-\infty$ 3.00 T -1.58 1.42 $-\infty$

e.g., G in col 3 is 8 x more likely via WMM than background, so (\log_2) score = 3 (bits).

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
А	0.625	0	0
C	0	0	0
G	0.250	0	Ι
Т	0.125	I	0

Uniform

LLR	Col I	Col 2	Col 3
А	1.32	-8	-8
С	-∞	-∞	-∞
G	0	-∞	2.00
Т	-1.00	2.00	-00

Non-uniform

LLR	Col I	Col 2	Col 3
А	0.74	-8	-8
С	-∞	-∞	-∞
G	1.00	-∞	3.00
Т	-1.58	1.42	-∞

Relative Entropy

AKA Kullback-Liebler Distance/Divergence, **AKA Information Content**

Given distributions P, Q

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \ge \mathbf{0}$$

Notes:

Let
$$P(x)\log \frac{P(x)}{Q(x)} = 0$$
 if $P(x) = 0$ [since $\lim_{y \to 0} y \log y = 0$]
Undefined if $0 = Q(x) < P(x)$

Undermed if $0 = Q(x) \leq I(x)$

WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence x, let P(x) = Prob. of x according to WMM Q(x) = Prob. of x according to background

Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$

-H(Q||P) H(P||Q)

H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM; -H(Q||P) is expected score of Background

WMM Scores vs Relative Entropy

More questions

Which columns of my motif are most informative/uninformative?

How wide is my motif, really?

Per-column relative entropy gives a quantitative way to look at questions like these

For WMM, you can show (based on the assumption of independence between columns), that :

 $H(P||Q) = \sum_{i} H(P_i||Q_i)$

where P_i and Q_i are the WMM/background distributions for column i.

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
А	0.625	0	0
С	0	0	0
G	0.250	0	I
Т	0.125		0

Uniform

LLR	Col I	Col 2	Col 3	
А	1.32	-∞	-∞	
С	-8	-∞	-∞	
G	0	-∞	2.00	
Т	-1.00	2.00	-∞	
RelEnt	0.70	2.00	2.00	4.70

LLR	Col I	Col 2	Col 3	
А	0.74	-8	-8	
С	-8	-∞	-∞	
G	1.00	-∞	3.00	
Т	-1.58	I.42	-∞	
RelEnt	0.51	1.42	3.00	4.93

Pseudocounts

Freq/count of $0 \Rightarrow -\infty$ score; a problem?

Certain that a given residue *never* occurs in a given position? Then $-\infty$ just right.

Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, I)

Sounds *ad hoc*; there is a Bayesian justification Influence fades with more data

Summary

It's important to account for background

Log likelihood scoring naturally does: log(freq/background freq)

Relative Entropy measures "dissimilarity" of two distributions; "information content"; average score difference between foreground & background. Full motif & per column