GS 559

Lecture I2a, 2/I2/09
Larry Ruzzo
A little more about motifs

Reflections from 2/I0

Bioinformatics:
Motif scanning stuff was very cool
Good explanation of max likelihood; good use of examples (2) I was confused/lost/overwhelmed; a lot of equations; (but I think I got the big picture) (3)

Python:

Last python hw was a big step up in difficulty. A scary trend? "After all, we all have other stuff to do besides bang our heads against python" (7)
Do longer, more complex practice problem in class; homework is getting harder, but in-class practice is not... (2)
Going through code slowly was "a breath of fresh air" What is grep? An re? A module we import? compile? etc.
How do we use python files *not* in the user folder? need more practice with reg exps

Both:

Print slides portrait, not landscape.
Post HW solutions online? they are
Lecture was clear, but rushed/class was too short (again). (3) Semesters?
Real-world examples good, do more (but hard to understand) (2)
Do more with online databases \& tools
Pls include summary slides for lecture review, like Mary \& Bill did Appreciate taking time to go over tough stuff slowly, even if we don't finish everything planned

Motifs

Review, plus a bit more

TATA Box Frequencies

TATA Box Scores

A "Weight Matrix Model" or "WMM"

pos base	1	2	3	4	5	6
A	-36	19	1	12	10	-46
C	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
T	17	-31	8	-9	-6	19

Scanning for TATA

Stormo, Ann. Rev. Biophys. Biophys Chem, 17, 1988, 241-263

Scanning for TATA

Score Distribution

(Simulated)

Weight Matrices: Statistics

Assume:
$f_{b, i}=$ frequency of base b in position i in TATA
$f_{b}=$ frequency of base b in all sequences
Log likelihood ratio, given $S=B_{1} B_{2} \ldots B_{6}$:

$$
\log \left(\frac{P\left(\left.S\right|^{\text {"tata" }}\right)}{P(S \mid \text { "non-tata" })}\right)=\log \frac{\prod_{i=1}^{6} f_{B_{i}, i}}{\prod_{i=1}^{6} f_{B_{i}}}=\sum_{i=1}^{6} \log \frac{f_{B_{i}, i}}{f_{B_{i}}}
$$

Assumes independence

${ }_{\text {onse }}^{\text {pase }}$	1	2	3	4	5	6
A	2	94	26	59	50	1
C	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

Frequency \Rightarrow Scores: $\log _{2}$ (freq/background)
(For convenience, scores multiplied by 10 , then rounded)

pos base	1	2	3	4	5	6
A	-36	19	1	12	10	-46
C	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
T	17	-31	8	-9	-6	19

AnotherWMM example

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}
$$

Freq.	Col 1	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	I	0

LLR	Col 1	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform Background

- E. coli - DNA approximately $25 \% \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so ($\log _{2}$) score $=3$ (bits).

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	I
T	0.125	1	0

Uniform

LLR	Col I	Col 2	Col 3
A	I.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \geq 0
$$

Notes:

$$
\begin{aligned}
& \text { Let } P(x) \log \frac{P(x)}{Q(x)}=0 \text { if } P(x)=0\left[\text { since } \lim _{y \rightarrow 0} y \log y=0\right] \\
& \text { Undefined if } 0=Q(x)<P(x)
\end{aligned}
$$

WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence x, let $P(x)=$ Prob. of x according to WMM $Q(x)=$ Prob. of x according to background Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

$H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM; $-H(Q \| P)$ is expected score of Background

WMM Scores vs Relative Entropy

On average, foreground model scores > background by 11.8 bits (score difference of II8 on 10x scale used in examples above).

More questions

Which columns of my motif are most informative/uninformative?

How wide is my motif, really?
Per-column relative entropy gives a quantitative way to look at questions like these

ForWMM, you can show (based on the assumption of independence between columns), that :

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where P_{i} and Q_{i} are the WMM/background distributions for column i.

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	1	0

Uniform

LLR	Col I	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$
RelEnt	0.70	2.00	2.00

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$
RelEnt	0.51	1.42	3.00

Pseudocounts

Freq/count of $0 \Rightarrow-\infty$ score; a problem?
Certain that a given residue never occurs in a given position? Then $-\infty$ just right.
Else, it may be a small-sample artifact
Typical fix: add a pseudocount to each observed count-small constant (e.g.,.5, I)
Sounds ad hoc; there is a Bayesian justification Influence fades with more data

Summary

It's important to account for background
Log likelihood scoring naturally does: \log (freq/background freq)

Relative Entropy measures "dissimilarity" of two distributions;"information content"; average score difference between foreground \& background. Full motif \& per column

