
More Regular
Expressions

Lecture 12b
Larry Ruzzo

(w/ thanks to Mary Kuhner for many slides)

1

grep
Not part of Python (predates it by 20 years)

A useful utility in its own right, & a quick way
to test some reg exp basics (but syntax is
slightly different)

Just run it from the command line

% grep “re\.compile” *.py

2

Strings Again

’abc’

”abc”

’’’abc’’’

r’abc’

a b c

3

Strings Again

’abc\n’

”abc\n”

’’’abc

’’’

r’abc\n’

a b c newline

a b c \ n

}

4

Why so many?

’ vs ” lets you put the other kind inside

’’’ lets you run across many lines

all 3 let you include “invisible” characters

r’...’ (raw strings) can’t do invisible stuff, but avoid problems
with backslash

open(’C:\new\text.dat’) vs

open(’C:\\new\\text.dat’) vs

open(r’C:\new\text.dat’)

5

Regular Expressions

• Regular expressions (regexp) are a text-matching tool embedded in
Python

• They are useful in creating string searches and string modifications

• You can always use regular Python instead, but regexps are often much
easier

• Documentation: http://docs.python.org/library/re.html

3

6

Basics of regexp construction

• Letters and numbers match themselves

• Normally case sensitive

• Watch out for punctuation–most of it has special meanings!

7

7

Matching one of several alternatives

• Square brackets mean that any of the listed characters will do

• [ab] means either ”a” or ”b”

• You can also give a range:

• [a-d] means ”a” ”b” ”c” or ”d”

• Negation: caret means ”not”

[^a-d] # anything but a, b, c or d

8

8

Wild cards

• ”.” means ”any character”

• If you really mean ”.” you must use a backslash

• WARNING:

– backslash is special in Python strings
– It’s special again in regexps
– This means you need too many backslashes
– We will use ”raw strings” instead
– Raw strings look like r"ATCGGC"

9

9

Using . and backslash

• To match file names like ”hw3.pdf” and ”hw5.txt”:

hw.\....

10

10

Zero or more copies

• The asterisk repeats the previous character 0 or more times

• ”ca*t” matches ”ct”, ”cat”, ”caat”, ”caaat” etc.

• The plus sign repeats the previous character 1 or more times

• ”ca+t” matches ”cat”, ”caat” etc. but not ”ct”

11

11

Repeats

• Braces are a more detailed way to indicate repeats

• A{1,3} means at least one and no more than three A’s

• A{4,4} means exactly four A’s

12

12

simple testing

>>> import re

>>> string = 'what foot or hand fell fastest'

>>> re.findall(r'f[a-z]*', string)
['foot', 'fell', 'fastest']

13

Practice problem 1

• Write a regexp that will match any string that starts with ”hum” and
ends with ”001” with any number of characters, including none, in
between

• (Hint: consider both ”.” and ”*”)

13

14

Practice problem 2

• Write a regexp that will match any Python (.py) file.

• There must be at least one character before the ”.”

• ”.py” is not a legal Python file name

• (Imagine the problems if you imported it!)

14

15

Using the regexp

First, compile it:

import re
myrule = re.compile(r".+\.py")
print myrule
<_sre.SRE_Pattern object at 0xb7e3e5c0>

The result of compile is a Pattern object which represents your regexp

15

16

Using the regexp

Next, use it:

mymatch = myrule.search(myDNA)
print mymatch
None
mymatch = myrule.search(someotherDNA)
print mymatch
<_sre.SRE_Match object at 0xb7df9170>

The result of match is a Match object which represents the result.

16

17

All of these objects! What can they do?

Functions offered by a Pattern object:

• match()–does it match the beginning of my string? Returns None or a
match object

• search()–does it match anywhere in my string? Returns None or a
match object

• findall()–does it match anywhere in my string? Returns a list of
strings (or an empty list)

• Note that findall() does NOT return a Match object!

17

18

All of these objects! What can they do?

Functions offered by a Match object:

• group()–return the string that matched
group()–the whole string
group(1)–the substring matching 1st parenthesized sub-pattern
group(1,3)–tuple of substrings matching 1st and 3rd parenthesized
sub-patterns

• start()–return the starting position of the match

• end()–return the ending position of the match

• span()–return (start,end) as a tuple

18

19

A practical example

Does this string contain a legal Python filename?

import re
myrule = re.compile(r".+\.py")
mystring = "This contains two files, hw3.py and uppercase.py."
mymatch = myrule.search(mystring)
print mymatch.group()
This contains two files, hw3.py and uppercase.py
not what I expected! Why?

19

20

Matching is greedy

• My regexp matches ”hw3.py”

• Unfortunately it also matches ”This contains two files, hw3.py”

• And it even matches ”This contains two files, hw3.py and uppercase.py”

• Python will choose the longest match

• I could break my file into words first

• Or I could specify that no spaces are allowed in my match

20

21

A practical example

Does this string contain a legal Python filename?

import re
myrule = re.compile(r"[^]+\.py")
mystring = "This contains two files, hw3.py and uppercase.py."
mymatch = myrule.search(mystring)
print mymatch.group()
hw3.py
allmymatches = myrule.findall(mystring)
print allmymatches
[’hw3.py’,’uppercase.py’]

21

22

Practice problem 3

• Create a regexp which detects legal Microsoft Word file names

• The file name must end with ”.doc” or ”.DOC”

• There must be at least one character before the dot.

• We will assume there are no spaces in the names

• Print out a list of all the legal file names you find

• Test it on testre.txt (on the web site)

22

23

Practice problem 4

• Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

• Print out the start location of the first such filename you encounter

• Test it on testre.txt

23

24

Practice problem

• Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

• Print out the “base name”, i.e., the file name after stripping of the .doc
extension, of each such filename you encounter. Hint: use parenthesized
sub patterns.

• Test it on testre.txt

24

25

Practice problem 1 solution

Write a regexp that will match any string that starts with ”hum” and ends
with ”001” with any number of characters, including none, in between

9E>A81�>1�/;9<581�>�4A9�����

25

26

Practice problem 2 solution

Write a regexp that will match any Python (.py) file.

myrule = re.compile(r".+\.py")

if you want to find filenames embedded in a bigger
string, better is:
myrule = re.compile(r"[^]+\.py")
this version does not allow whitespace in file names

26

27

Practice problem 3 solution

Create a regexp which detects legal Microsoft Word file names, and use it
to make a list of them

import sys
import re
filename = sys.argv[1]
filehandle = open(filename,"r")
filecontents = filehandle.read()
myrule = re.compile(r"[^]+\.[dD][oO][cC]")
matchlist = myrule.findall(filecontents)
print matchlist

27

28

Practice problem 4 solution

Create a regexp which detects legal Microsoft Word file names which do
not contain any numerals, and print the location of the first such filename
you encounter

import sys
import re
filename = sys.argv[1]
filehandle = open(filename,"r")
filecontents = filehandle.read()
myrule = re.compile(r"[^ 0-9]+\.[dD][oO][cC]")
match = myrule.search(filecontents)
print match.start()

28

29

Regular expressions summary

• The re module lets us use regular expressions

• These are fast ways to search for complicated strings

• They are not essential to using Python, but are very useful

• File format conversion uses them a lot

• Compiling a regexp produces a Pattern object which can then be used
to search

• Searching produces a Match object which can then be asked for
information about the match

29

30

