Genome 559

Instructor: Dr. Mary Kuhner (through 2/5)

Office Hours: By appointment

Phone: (206) 543-8751

Introduction to Phylogenies: Parsimony

- How to look at phylogenies
- Finding the best phylogeny
- The parsimony principle
- Calculating the parsimony score

Recommended additional reading

Felsenstein, J (1988) Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics 22: 521-565.

Looking at a phylogeny

Looking at a phylogeny

These two trees are the same!

Rooted and unrooted trees

Number of different rooted topologies

```
Tips Topologies
    3 3
    4 18
    5 180
    6 2700
    7 56700
    8 1587600
    9 57153600
    10 2571912000
    15 6958057668962400000
    20564480989588730591336960000000
    304368466613103069512464680198620763891440640000000000000
    4 0 3 0 2 7 3 3 3 8 2 9 9 4 8 0 0 7 3 5 6 5 4 6 3 0 3 3 6 4 5 5 1 4 5 7 2 0 0 0 4 2 9 3 9 4 3 2 0 5 3 8 6 2 5 0 1 7 0 7 8 8 8 7 2 1 9 2 0 0 0 0 0 0 0 0 0 0 ~
    50 3.28632 \times 10 112
100 1.37416 < 10 284
```


Principle of Parsimony

Prefer the hypothesis (tree) that requires the fewest evolutionary events

- Appears to be a "model-free" method
- Implicit model:
- Evolutionary events are rare
- They occur independently in different lineages

Example data matrix

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Epsilon	0	0	1	1	1	0

Site 1

or

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Epsilon	0	0	1	1	1	0

Site 2

Site 4

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Epsilon	0	0	1	1	1	0

Site 6

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Epsilon	0	0	1	1	1	0

1	23456	
human	a	gtctc
chimp	a	gagtc
gorilla	c	ggcag
orangutan	c	gggac

Fill in the rest yourself on your worksheet.

Tree search

- Exhaustive search
- Branch-and-bound
- Heuristic search

Tree search

- Exhaustive search: up to 8-10 tips, guaranteed results
- Branch-and-bound: up to $15-20$ tips, guaranteed results
- Heuristic search: 100+ tips, but may not find correct solution

Hill-climbing

Nearest neighbor interchange

is rearranged by dissolving the connections to an interior brat

and reforming them in one of the two possible alternative w .

Tree space for unrooted trees of 5 tips

Parsimony assumptions

- Billed as an "assumption-free" method, but....
- In practice it assumes:
- Changes are rare
- Changes are independent among sites
- Ideally, the same site would not change multiple times; the more often this happens, the more trouble it causes

A case in which parsimony fails badly

If the data come from the tree on the left, they will prefer the tree on the right. AKA "long branch attraction".

