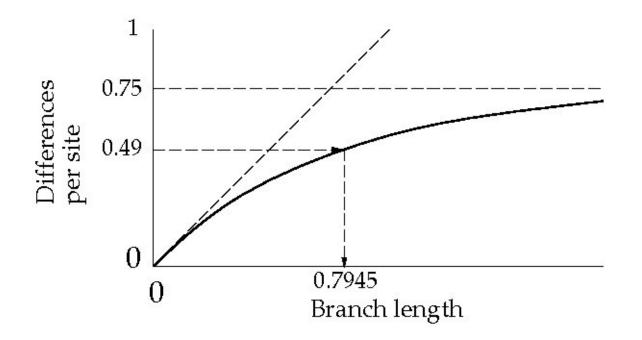
Introduction to Phylogenies: Distance Methods

- Distance matrixes
- Mutational models
- Distance phylogeny methods

Distance Matrix


Human	aactc
Chimp	aagtc
Orang	tagtt

becomes

	Н	С	0
Η	_	1	3
С	1	_	2
0	3	2	_

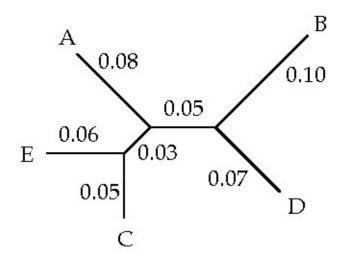
- Tree is built using distances rather than original data
- Only possible method if data were originally distances:
 - immunological cross-reactivity
 - DNA annealing temperature
- Can also be used on DNA, protein sequences, etc.

Large distances are underestimated by raw counts

A mutational model allows corrected distances

Jukes-Cantor model:

$$D = -\frac{3}{4}ln(1 - \frac{4}{3}D_s)$$


- *D* is the corrected distance (what we want)
- D_s is the raw count (what we have)
- ln is the natural log

- Jukes-Cantor (JC): all mutations equally likely
- Kimura 2-parameter (K2P): transitions more likely than transversions
- Felsenstein 84 (F84): K2P plus unequal base frequencies
- Generalized Time Reversible (GTR): most general usable model

Models more complex than GTR would be useful but are very hard to work with.

- We have already seen these in alignment (BLOSUM etc.)
- Protein models are usually built from empirical data

Distances into trees

	Α	В	С	D	Е
A	0	0.23	0.16	0.20	0.17
В	0.23	0	0.23	0.17	0.24
С	0.16	0.23	0	0.15	0.11
D	0.20	0.17	0.15	0	0.21
Ε	0.17	0.24	0.11	0.21	0

- Not all sets of distances fit a tree perfectly
- For those that do, finding the tree is simple
- If no tree fits perfectly, which one is best?

• Least squares rule: prefer the tree for which the sum of

$$(observed - expected)^2$$

is minimized.

- This means that getting a long branch wrong is penalized much more heavily than getting a short branch wrong
- Some least-squares methods add weights to this calculation to allow for long distances being less accurately measured than short ones

Minimum evolution and neighbor-joining

- Minimum evolution rule: for each topology, find the best branch lengths by least-squares
- Then, choose the topology with the lowest total branch lengths
- The popular neighbor-joining algorithm is a very fast approximation to ME
- Neighbor-joining gains its speed by considering very few trees
- It uses a clustering approach rather than a tree search
- Surprisingly, it works quite well

- The molecular clock is the hypothesis that the rate of evolution is constant over time and across species
- This is almost never true
- It is most nearly true:
 - among closely related species
 - among species with similar generation time and life history
 - for genetic regions with the same function in all species, or no function

- Even when the clock is doubtful, it is often assumed in order to:
 - put a root on the tree
 - infer the times at which species arose
 - estimate the rate of mutation
- When the data are not really clocklike, assuming a clock will often result in inferring the wrong tree
 - Branch lengths will certainly be wrong
 - Topology will often be wrong
- Statistical tests for clock violation are available and should be used

- UPGMA is a clock-requiring algorithm similar to neighbor-joining
- Algorithm:
 - Connect the two most similar sequences
 - Assign the distance between them evenly to the two branches
 - Rewrite the distance matrix replacing those two sequences with their average
 - Break ties at random
 - Continue until all sequences are connected
- This is too vulnerable to unequal rates to be reliable
- However, it is easy to learn and understand, so used in teaching

В Α С D Ε 5 1 8 9 Α _ В 5 - 4 10 11 1 С 4 - 9 9 D 8 10 9 - 2 Ε 9 2 9 11 _

	А	В	С	D	Ε
А	-	5	1	8	9
В	5	_	4	10	11
С	1	4	_	9	9
D	8	10	9	_	2
Е	9	11	9	2	_

Group A and C to form AC, with branches of length 0.5

	AC	В	D	Е
AC	-	4.5	8.5	9
В	4.5	-	10	11
D	8.5	10	-	2
Е	9	11	2	-

	AC	В	D	Ε
AC	-	4.5	8.5	9
В	4.5	-	10	11
D	8.5	10	-	2
Е	9	11	2	_

Group D and E to form DE, with branches of length 1.0

	AC	В	DE
AC	-	4.5	8.75
В	4.5	_	10.5
DE	8.75	10.5	_

	AC	В	DE
AC	-	4.5	8.75
В	4.5	-	10.5
DE	8.75	10.5	_

Group B with AC to form ABC, with branches of length 2.25

	ABC	DE
ABC	-	9.625
DE	9.625	-

ABC DE ABC - 9.625 DE 9.625 -

Group ABC with DE, with branches of length 4.80

- All distance methods lose some information in making the distances
- Which algorithm you use is much less important than a good distance correction
- The more you know about the evolutionary process, the better you can correct the distances
- Distance methods are popular because they are fast and can be used with a variety of models

Points to consider:

- Consistency: would it get the right answer with infinite data and a correct model?
 - Parsimony is not consistent
 - Distance methods with properly corrected distances are
- Robustness: how much is it hurt by a wrong model?
 - Distance methods can be highly vulnerable
 - Parsimony is more robust
- Power: how well can it do with limited data?
- Speed: can I stand to run it?
 - Methods that are consistent, robust and powerful tend to be slow

Points to consider:

- Availability: can I find a program to do this?
 - The PHYLIP package is a good free source of phylogeny programs
 - http://evolution.gs.washington.edu/phylip.html
 - Links to huge list of other available programs
- Intended use: what do I need from my phylogenies?