
One-minute responses

� I think more problems would be OK as long as we could �nish two in
class time, and the others are for practice on our own

� It was nice that you pointed out that peculiarity with sort(). More of

those today!

� Only improvement I could think of would be to somehow integrate the
topics from the non-Python portion of lecture into the practice problems.

� I feel like I miss a lot in class, but that I can �gure it out with more time
at home.

One-minute responses

� I think I can understand the idea of dictionaries, but probably today
unearthed some confusion in regards to lists and strings. I couldn't �gure
out how to make Python \read" the text �le so that word 1 (and not
character 1) is my dictionary key, and that word 2 is my item for word 1
(key). Any suggestions? The easiest way to do this is to use split to

turn your string into a list of words. You could examine each letter

yourself, piling them up until you reach a space which would signal

the end of a word, but split does this for you automatically. Writing

your own version of split can be a valuable exercise.

What is a function?

� Reusable piece of code

{ Write and test once, use many times

� Takes de�ned inputs and may return a de�ned output

� Helps organize your program

Parts of a function

� def myname(myarg1, myarg2) :

� The def statements creates a function

� The function name allows us to call it

� The argument list tells us what arguments it will receive

� The names in the argument list will be variables in the function

Parts of a function

return myanswer

� The return statement de�nes the value that the function returns

� If no return is executed, the function returns None

� It's legal to have more than one return:

if value <= 1.0 :

return value

else :

return 1.0

Jukes-Cantor distance correction

import sys

import math

rawdist = float(sys.argv[1])

if rawdist < 0.75 and rawdist > 0.0 :

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

print newdist

elif rawdist >= 0.75 :

print 1000.0

else :

print 0.0

Jukes-Cantor function step 1

import sys

import math

add a function definition

def jc_dist(rawdist) :

rawdist = float(sys.argv[1])

if rawdist < 0.75 and rawdist > 0.0 :

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

print newdist

elif rawdist >= 0.75 :

print 1000.0

else :

print 0.0

Jukes-Cantor function step 2

import sys

import math

add a function definition

def jc_dist(rawdist) :

use the function argument instead of argv

if rawdist < 0.75 and rawdist > 0.0 :

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

print newdist

elif rawdist >= 0.75 :

print 1000.0

else :

print 0.0

Jukes-Cantor function step 3

import sys

import math

add a function definition

def jc_dist(rawdist) :

use the function argument instead of argv

if rawdist < 0.75 and rawdist > 0.0 :

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

return the value rather than printing it

return newdist

elif rawdist >= 0.75 :

return the value rather than printing it

return 1000.0

else :

return the value rather than printing it

return 0.0

Jukes-Cantor function: �nal version

import sys

import math

def jc_dist(rawdist) :

if rawdist < 0.75 and rawdist > 0.0 :

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

return newdist

elif rawdist >= 0.75 :

return 1000.0

else :

return 0.0

Using the function

>>> raw = 0.23

>>> corrected = jc_dist(raw)

>>> print corrected

0.274683296216

Using the function

mydata = [0.2, 0.22, 0.34, 0.18]

for index in range(0,len(mydata)) :

mydata[index] = jc_dist(mydata[index])

print mydata

[0.2326, 0.2604, 0.4529, 0.2058]

or a different approach

newdata = []

for entry in mydata :

newdata.append(jc_dist(entry))

print newdata

We have seen several functions already

� log()

� readline(), readlines(), read()

� sort()

� split(), replace(), lower()

Most of these are attached to objects rather than stand-alone functions;
this will be covered in an upcoming lecture.

Practice problem 1

Write a function which:

� Takes a DNA sequence (a string) as input

� Makes a new string in which all T or t have been replaced by U or u
(DNA to RNA)

� Returns the new string

� In the same �le, create a DNA sequence and call this function on it

� Print the value that the function returns

Solution and discussion

def dna_to_rna(seq) :

seq = seq.replace("T","U")

seq = seq.replace("t","u")

return seq

myDNA = "ATCGTCGATCG"

print dna_to_rna(myDNA)

AUCGUCGAUCG

Why doesn't this work?

warning: bad program!

def dna_to_rna(seq) :

seq.replace("T","U")

seq.replace("t","u")

return seq

myDNA = "ATCGTCGATCG"

print dna_to_rna(myDNA)

ATCGTCGATCG

Why doesn't this work?

warning: bad program!

def dna_to_rna(seq) :

seq.replace("T","U")

seq.replace("t","u")

return seq

myDNA = "ATCGTCGATCG"

print dna_to_rna(myDNA)

ATCGTCGATCG

� String functions never change the string they are called on (strings are
immutable, so they can't)

� seq.replace("T","U") does not change seq

� Strings and lists seem similar, but this is a major di�erence

� mylist.append(myDNA) DOES change mylist

Another failed attempt

warning: bad program!

def dna_to_rna(seq) :

seq = seq.replace("T","U")

seq = seq.replace("t","u")

myDNA = "ATCGTCGATCG"

print dna_to_rna(myDNA)

None

Why doesn't this work?

def dna_to_rna(seq) :

seq = seq.replace("T","U")

seq = seq.replace("t","u")

myDNA = "ATCGTCGATCG"

print dna_to_rna(myDNA)

None

� The string argument is a copy of the one in the main program

� Changes in the function do not change the original

Watch out for lists!

warning: surprising program!

def dna_to_rna(seq) :

for index in range(0,len(seq)) :

if seq[index] == "T" :

seq[index] = "U"

if seq[index] == "t" :

seq[index] = "u"

myDNAlist = ["A", "C", "T", "T", "T", "C", "G"]

dna_to_rna(myDNAlist)

print myDNAlist

['A','C','U','U','U','C','G']

Why did that happen??

� Immutable objects:

{ string
{ tuple
{ number

� When immutables are passed to a function, the function cannot change
them (it can only assign a new object to its local name)

� Mutable objects:

{ list
{ dictionary

� When mutables are passed to a function, the function can change the
internal parts

One more di�culty!

warning: bad program!

mydata = [0.2, 0.22, 0.34, 0.18]

for entry in mydata :

entry = jc_dist(entry)

print mydata

[0.2, 0.22, 0.34, 0.18]

Why not??

warning: bad program!

mydata = [0.2, 0.22, 0.34, 0.18]

for entry in mydata :

entry = jc_dist(entry)

print mydata

[0.2, 0.22, 0.34, 0.18]

� The problem is that \entry" is a copy of the item in the list

� We re-assign the copy, but that doesn't change the list

Why not??

wrong way

mydata = [0.2, 0.22, 0.34, 0.18]

for entry in mydata :

entry = jc_dist(entry)

print mydata

[0.2, 0.22, 0.34, 0.18]

right way

for index in range(0,len(mydata)) :

mydata[index] = jc_dist(entry)

print mydata

[0.2326, 0.2604, 0.4529, 0.2058]

Summary

� Functions allow a section of code to be re-used

� The def statement creates a function

� The return statement causes it to return a value

� If there is no return the function returns None

� A function cannot change a passed-in immutable

� It can change the internal elements of a mutable (list or dictionary)

Summary

Things to beware of:

� To change items in a list, use an index, not for element in list

� Because strings are immutable, string functions do not change their
strings

� Because lists are mutable, many list functions do change their list

� Such functions often return None

Modules

� Most Python programs are one main �le and several modules

� Modules are additional �les containing things your program can use

� We have already used the sys module

sys

� import sys

� progname = sys.argv[0]

� firstarg = sys.argv[1]

import

� import allows your program to use a module

� names in the module can be referred to as modulename.variablename

� module sys has a variable named argv

� when you import it, this becomes sys.argv

Practice problem 2

� Write a function which reads a string and either returns the string
unchanged, or if it is "Jan" returns "January"

� Write a program which applies this function to every word in a �le

� Print out the changed text

� Test it on a short �le which contains the words "Jan", "Trojan", and
"Janet" as well as some other words

Solution

def jan_expand(word) :

if word == "Jan" :

return "January"

else :

return word

import sys

filename = sys.argv[1]

filehandle = open(filename,"r")

linelist = filehandle.readlines()

for line in linelist :

wordlist = line.split()

for word in wordlist :

print jan_expand(word),

print "\n",

Practice problem 3

� Put your "january" function in a separate �le

� Import it into your main program and use it there

� The import command does NOT use the ".py" part of the �le name

� import mymodule not import mymodule.py

� Don't forget to add the module name to the function name when you
call it

� Recommendation: Give the module a di�erent name than the function

Problem 3 solution

in file "month_routines.py"

def jan_expand(word) :

if word == "Jan" :

return "January"

else :

return word

Problem 3 solution

in file "expander.py"

import sys

import month_routines

filename = sys.argv[1]

filehandle = open(filename,"r")

linelist = filehandle.readlines()

for line in linelist :

wordlist = line.split()

for word in wordlist :

print month_routines.jan_expand(word),

print "\n",

Summary

Command Meaning

def de�ne a function
return return a value from a function
import make functions and variables in a module available for use

