
Genome 559
Intro to Statistical and

Computational Genomics

Lecture 15b:
Classes and Objects, Part 1I

Larry Ruzzo

Today

More fun with classes
Summary
Motivation
Changing objects vs New objects
Printing

More Practice

Objects and Classes
A class defines the “type” of a variable

ex: “int”, “string”, “list”, “tuple”, “dictionary”

AND defines associated functions relevant to it

ex: string offers functions such as upper(), lower(), split()

ex: ints offer arithmetic operations like division

ex: both string and int offer “+”, but it’s different (Overloaded)

An object is an instance of a class - e.g., many string objects, one
string class.

Why Classes & Objects
Bundles together data and operations on data
Allows special operations appropriate to data

“count” or “split” on a string;
“square root” on numbers

Allows context-specific meaning for common operations
x = “a”; x*2 vs x = 42; x*2
date(Jan,31) + 1

Useful to you?
Biopython (and other tools) use it extensively

More on Classes

Much in modern programming languages is motivated by the
need to write large programs

BioPython is 25 megabytes, ~0.5 million lines. (And that isn’t “large.”)

Large programs aren’t just small programs on steroids

(Not always easy to appreciate until it’s too late)

Python modules are one such feature
Classes/“object oriented programming” are another

A key feature in most modern programming languages

Goal is not to make you instant experts at this, but to acquaint
you with the issues so you can use “object-oriented” tools,
e.g., BioPython, and won’t be intimidated by these features.

Issues in Large Programs?

Management of (many!) names is one issue
myseq = file.readline()
frags = digest(mysequence)

Hmm, did you mean:
EcoR1 + DNA? frag = dna_digest(myseq)
trypsin + protein? frag = tryp_digest(myseq)

Oh, and your pal sent you rev_comp_DNA()
Will you ever forget/use the wrong name/case?

Modules Might Help

Have a module named DNA for your DNA-based tools
import DNA
antisense = DNA.rev_comp(myseq1)
frags = DNA.digest(myseq1)

Have another module named prot for protein tools
import prot
frags = prot.digest(myseq2)

At least you now have consistent spelling
But you might still twitch and call the wrong .digest()

“Classes” might help?

Have separate classes for protein vs DNA sequences,
each with appropriate methods

class SeqDNA:
 def digest(theseq): ...
 def rev_comp(aseq): ...
class SeqProt:
 def digest(someseq): ...
myseq = SeqDNA(file.readline())
frags = SeqDNA.digest(myseq)

A lot like the “module” version: consistent spelling, but
still error-prone, and extra “constructor” step

yes, this really works

Classes help more:
methods & the “self” shorthand

Instead of:

classname.methodname(class_instance)

Do this:

class_instance.methodname()

E.g.:

myseq.digest() SeqDNA.digest(myseq)

How? The class instance knows what class it’s in, and
effectively “inherits” that class’s methods.

Automatically converted

Auto conv

Have separate classes for protein vs DNA sequences,
each with appropriate methods

class SeqDNA:
 def digest(self): ...
 def rev_comp(self): ...
class SeqProt:
 def digest(self): ...
myseq = SeqDNA(file.readline())
frags = myseq.digest()

Better than the “module” version: yes, still the extra
“constructor” step, but since objects know which class
they’re in, you always get the class-specific method

Classes help more

Change or Make a New One?
>>> mybirthday = Date(6,"Jul")
>>> mybirthday.printUS()

Jul 6

>>> party = mybirthday.add(4)
>>> party.printUS()

Jul 10

>>> mybirthday.printUS()

Jul 10 Really?

date.add() changes its argument

Calling mybirthday.add(8) changes mybirthday
Maybe .increment() would be a better name
Perhaps even better: return a new date object:

def addnew(self, numdays) :
 newmon = self.mon
 newday = self.day + numdays
 while newday > daysinmonth[newmon] :
 newday = newday - daysinmonth[newmon]
 newmon = nextmonth(newmon)
 return Date(newday,newmon) Make a new

“Date” object

Using date.addnew()
>>> mybirthday = Date(6,"Jul")
>>> mybirthday.printUS()

Jul 6

>>> party = mybirthday.addnew(4)
>>> party.printUS()

Jul 10

>>> mybirthday.printUS()

Jul 6

Practice (cont.)

Write a function for our date class that adds a number to a date
Algorithm:

add the number to the day; if this goes past the end of a month,
advance to the next month; repeat

Step 1: Set up a dictionary mapping month name (key) to number
of days in month (value)
Step 2: Write a function nextmonth(month_name) returning name
of the next month.
Step 3: Write add(self, numdays). Assume numdays > 0. (Use the
algorithm above, dictionary to find the number of days in a month,
and the nextmonth function to find the next month.)

Practice Problem 4
After using “Date” for a while, you decide that
it was a mistake to keep “mymonth” as a string.
Instead, you now want to keep it as an integer
0..11. Change your class definition to do this,
but leave the interface to users of the class
unchanged. In particular the constructor and
print methods should still take/print the month
as a string.

Practice 4 solution (cont)

 daysinmonth =(31,28,31,30,31,30,31,31,30,31,30,31)
 monthlist = ["Jan", "Feb”, ..., "Dec"]
 def nextmonth(thismonth):
 return (thismonth + 1) % 12
 def month2str(monthnum):
 return monthlist[monthnum]
 def str2month(monthstr):

 return monthlist[monthlist.index(monthstr)+1]
 class Date:
 def __init__(self, day, monthstr) :
 self.day = day
 self.mon = str2month(monthstr)
 def print(self) :
 print month2str(self.mon), self.day
 def add(self, numdays) :
 self.day = self.day + numdays
 while self.day > daysinmonth[self.mon] :
 self.day = self.day - daysinmonth[self.mon]
 self.mon = nextmonth(self.mon)

