Introduction to Python

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas



If you have your own PC, download and install a
syntax-highlighting text editor and Python 2.6.4:

nttp://www.flos-freeware.ch/notepad2.html

nttp://www.python.org/download/releases/2.6.4/

If you have your own Mac, download Python
(same site) and TextWrangler:

http://www.barebones.com/products/TextWrangler/download.html



Why Python?

* Python is
- easy to learn
- relatively fast
- object-oriented
- strongly typed
- widely used
- portable

- C is much faster but

much harder to use.

- Java is somewhat

faster and harder to
use.

- Perl is slower, is as

easy to use, but is
not strongly typed.



Getting started on the Mac

- Start a terminal session
- Type "python”

» This should start the Python interpreter
(often called "IDLE")

> python

Python 2.6.4 (something something)

details something something

Type "help", "copyright", "credits" or "license"
for more information.

>>> print “Hello, world!”

Hello, world!



The interpreter

» Try printing various things

- Leave off the quotation marks.

- Print numbers, letters and combinations.
- Print two things, with a comma between.
- Enter a mathematical formula.

- Leave of f the word "print”.

» The interpreter allows you to try things out
interactively and quickly.

* Use the interpreter to test syntax, or to try
commands that you're not sure will work when
you run your program.



Your first program

* Inyour terminal, Ctrl-D out of python.
Type "pwd"” to find your present working directory.
Open TextWrangler.
Create a file containing one line:
print “hello, world!”
Be sure that you end the Iine with a carriage return.

Save the file as “hello.py” in your pr'eéen‘r working
directory.

+ Inyour terminal, type “python hello. py@

Notice that, once you
save the file with
“.py” as the
extension,
WordWrangler
automatically colors
the text according to
he syntax.

> python hello.py
hello, world!



Objects and types

We use the term object to refer to any entity in a python program.

Every object has an associated type, which determines the properties
of the object.

Python defines six types of built-in objects:

Number 10 or 2.71828

String “hello”

List [1, 17, 44] or [*pickle”, “apple”, “scallop”]

Tuple (4, 5) or (*homework”, “exam”)

Dictionary {*food” : “something you eat”, “lobster” : “an edible arthropod”}
File more later...

Each type of obfec‘r has its own properties, which we will learn about in
the next several weeks.

It is also possible to define your own types, comprised of combinations
of the six base types.



Literals and variables

* A variable is simply a hame for an object.

* For example, we can assign the name "pi” to the
Number object 3.14159, as follows:

>>> pi = 3.14159
>>> print p1i
3.14159

* When we write out the object directly, it is a literal,
as opposed to when we refer to it by its variable
name.



Assignment operator

>>> pi = 3.14159

This means assign the value 3.14159 to the variable pi.
(it does NOT assert that pi equals 3.14159)

>>> pi = 3.14159
>>> pi = -7.2
>>> print pi
-7.2



The "import" command

. ManK python functions are available only via

"packages” that must be imported.

>>> print log(10)
Traceback (most recent call last):

foo and bar mean
something-or-
other-goes-here

File foo, line 1, in bar—””—————’

NameError: name 'log' 1is not defined
>>> import math
>>> print math.log(10)
2.30258509299
>>> print log(10)
Traceback (most recent call last):
File foo, line 1, in bar
print log(10)
NameError: name 'log' is not defined




The command line

To get information into a program, we can use the
command line.

*+ The command line is the text you enter after the
word "python" when you run a program.

python my-program.py 17

The zeroth/argument is The name of the program file.

Arguments/larger than zero are subsequent elements
of the command line.

zeroth first
argument argument




Reading command line arguments

Access in your program like this:

import sys | zeroth

print sys.argv[0]— argument

print sys.argv[l]— N first
argument

> python my-program.py 17
my-program.py
17

There can be any number of arguments, accessed
by sequential numbers (sys.argv[2] etc).



Sample problem #1

Write a program called "print-two-args.py” that reads
the first two command line arguments after the
program name, stores their values as variables, and
then prints them on the same line with a colon
between.

Remember to use the python interpreter for quick
syntax tests.

> python print-two-args.py hello world
hello : world

Hint - to print multiple things on one line, separate by commas:
>>> print 7, “pickles™
7 pickles



Solution #1

import sys

argl = sys.argv[l]
arg2 = sys.argv[2]
print argl, ":", arg2



Sample problem #2

*+ Write a program called "add-two-args.py”
that reads the first two command line
arguments after the program name, stores
their values as variables, and then prints their
sum.

> python add-two-args.py 1 2

3.0

Hint - Yo read an argument as a number, use the syntax
numl = float(sys.argv[1l])



Solution #2

import sys

argl = float(sys.argv[l])
arg2 = float(sys.argv[2])
print argl + arg2



Challenge problems

Write a program called “circle-area.py” that reads the
first command line argument as the radius of a circle
and prints the area of the circle.

> python circle-area.py 15.7
774.371173183

Do the same thing but read a second argument as the
unit type and include the units in your output.

> python circle-area2.py 3.721 cm
43.4979923683 square cm



Reading

+ Chapters 1-2 of
Python for Software
Design by Downey.




One-minute feedback

Take an index card, write one
thing that you liked or want more
explanation for, hand in.



