
for loops

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

for loop

• Allows you to perform an operation on each
element in a list (or character in a string).

for <element> in <object>:

<statement>

<statement>

...

<statement>

block of code

Variable name
available inside loop

M
u
s
t
b
e

in
d
e
n
te

d

Try it …

>>> for name in ["Andrew", "Teboho", "Xian"]:

... print "Hello", name

...

Hello Andrew

Hello Teboho

Hello Xian

>>>

Multiline blocks

• Each line must have the same indentation.

>>> for integer in [0, 1, 2]:

... print integer

... print integer * integer

...

0

0

1

1

2

4

Looping on a string

>>> DNA = 'AGTCGA'

>>> for base in DNA:

... print "base =", base

...

base = A

base = G

base = T

base = C

base = G

base = A

Indexing
• Use an integer variable to keep track of a numeric index during

looping.

>>> index = 0

>>> for base in DNA:

... index = index + 1

... print "base", index, "is", base

...

base 1 is A

base 2 is G

base 3 is T

base 4 is C

base 5 is G

base 6 is A

>>> print "The sequence has", index, "bases"

The sequence has 6 bases

The range() function

• The range() function returns a list of integers
covering a specified range.

range([start,] stop [,step])

range(5)

[0, 1, 2, 3, 4]

range(2,8)

[2, 3, 4, 5, 6, 7]

>>> range(-1, 2)

[-1, 0, 1]

>>> range(0, 8, 2)

[0, 2, 4, 6]

>>> range(0, 8, 3)

[0, 3, 6]

>>> range(6, 0, -1)

[6, 5, 4, 3, 2, 1]

Using range() in a for loop

>>> for index in range(0,4):

... print index, "squared is", index * index

...

0 squared is 0

1 squared is 1

2 squared is 4

3 squared is 9

Nested loops

>>> for ix1 in [1, 2, 3]:

... for ix2 in [4, 5]:

... print ix1 * ix2

...

4

5

8

10

12

15

shorthand
for index2

Nested loops

>>> matrix = [[0.5, 1.3], [1.7, -3.4], [2.4, 5.4]]

>>> for row in range(0, 3):

... print "row = ", row

... for column in range(0, 2):

... print matrix[row][column]

...

row = 0

0.5

1.3

row = 1

1.7

-3.4

row = 2

2.4

5.4

>>>

[[0.5, 1.3],

[1.7, -3.4],

[2.4, 5.4]]

Row zero

Column

one

Terminating a loop

• Break: Jumps out of the closest enclosing loop

>>> for index in range(0,3):

... if (index == 1):

... break

... print index

...

0

Terminating a loop

• Continue: Jumps to the top of the closest enclosing loop

>>> for index in range(0, 3):

... if (index == 1):

... continue

... print index

...

0

2

for <element> in <object>:

<block>

range(<start>, <stop>, <increment>)

break – Jump out of a loop

continue – Jump to the top of the loop

Perform <block> for each

element in <object>.

Define a list of numbers.
<start> and <increment>

are optional.

Sample problem #1

• Write a program add-arguments.py that reads any
number of integers from the command line and prints
the cumulative total for each successive argument.

> python add-arguments.py 1 2 3

1

3

6

> python add-arguments.py 1 4 -1

1

5

4

Solution #1

import sys

total = 0

for argument in sys.argv[1:]:

integer = int(argument)

total = total + integer

print total

Sample problem #2

• Write a program word-count.py that prints
the number of words on each line of a given
file.

> cat hello.txt

Hello, world!

How ya doin’?

> python count-words.py

2

3

Solution #2

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

for line in myLines:

words = line.split()

print len(words)

myFile.close()

Sample problem #3

• Write a program count-letters.py that
reads a file and prints a count of the number
of letters in each word.

> python count-letters.py hello.txt

6

6

3

2

6

Solution #3

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

for line in myLines:

for word in line.split():

print len(word)

Challenge problem
Write a program seq-len.py that reads a file of
fasta sequences and prints the name and length of
each sequence and their total length.

>seq-len.py seqs.fasta

seq1 432

seq2 237

seq3 231

Total length 900

Here’s what fasta sequences look like:
>foo

gatactgactacagttt

ggatatcg

>bar

agctcacggtatcttag

agctcacaataccatcc

ggatac

>etc…

(‘>’ followed by name, newline, sequence on
any number of lines until next ‘>’)

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = "" # initialize required variables

cur_len = 0

total_len = 0

first_seq = True # special variable to handle the first sequence

for line in myLines:

if (line.startswith(">")): # we reached a new fasta sequence

if (first_seq): # if first sequence, record name and continue

cur_name = line.strip()

first_seq = False

continue

else: # we are past the first sequence

print cur_name, cur_len # write values for previous sequence

total_len = total_len + cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len = cur_len + len(line.strip())

print “Total length", total_len

Challenge problem solution

