
while loops

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Hints on variable names

• Pick names that are descriptive

• Change a name if you decide there‟s a better choice

• Give names to intermediate values for clarity

• Use the name to describe the type of object

• Very locally used names can be short and arbitrary

listOfLines = myFile.readlines()

seqString = “GATCTCTATCT”

myDPMatrix = [[0,0,0],[0,0,0],[0,0,0]]

intSum = 0

for i in range(5000):

intSum = intSum + listOfInts[i]

(more code)

Comment your code if it is complex

• Any place a # sign appears, the rest of the line is a comment
(ignored by program).

• Blank lines are also ignored – use them to visually group code.

import sys

query = sys.argv[1]

myFile = open(sys.argv[2], "r")

lineList = myFile.readlines() # put all the lines from a file into a list

now I want to process each line to remove the \n character,

then search the line for query and record all the results

in a list of ints

intList = []

for line in lineList:

position = line.find(query)

intList.append(position)

etc.

for loop review

block of code

for <element> in <object>:

<statement>

<statement>

. . .

<last statement>

• <element> can be a newly created variable. You can access the
variable only INSIDE the loop.

• <object> is a container of 1 or more <element> objects and it
must already exist.

• range() will make a container of ints “on the fly”

for index in range(0,100):

<statement>

Python for loops don't naturally provide a counter

for student in gs559:

What number student are we currently processing? We
don't know. If we want to know, we can count them as
we go:

counter = 0

for student in gs559:

counter = counter + 1

print counter, student

while loop

while (conditional test):

<statement1>

<statement2>

. . .

<last statement>

While something is True keep running the loop,
exit as soon as the test is False

Similar to a for loop

What does this program do?

sum = 0

count = 1

while (count < 10):

sum = sum + count

count = count + 1

print count # should be 10

print sum # should be 45

for vs. while

• you will probably use for loops more

• for is used to loop through a list, a range of int
values, or characters in a string

• while loops run an indeterminate number of times
until some condition is met

for base in sequence:

for sequence in database:

for base in ["a","c","g","t"]:

for index in range(5,200):

Examples of for loops

Examples of while loops

while (error > 0.05):

<do something that will reduce error>

while (score > 0):

<traceback through a DP matrix>

Reminder - comparison operators

• Boolean: and, or, not

• Numeric: < , > , ==, !=, >=, <=

• String: in, not in

< is less than

> is greater than

== is equal to

!= is NOT equal to

<= is less than or equal to

>= is greater than or equal to

Comparisons evaluate to True or False

Terminating a loop

• continue : jumps to the top of the enclosing loop

• break : breaks completely out of the enclosing loop

while loops use continue and break in the same
way as for loops:

x += 1

is the same as

x = x + 1

A common idiom in Python (and other languages). It's never necessary, but
people use it frequently. Also works with other math operators.

x += y # adds y to the value of x

x *= y # multiplies x by the value y

the increment operator

program exit

In addition to accessing command-line arguments, the
sys module has many other useful functions (look
them up in the Python docs).

import sys

Make sure we got one argument on the command line.

if (len(sys.argv) != 2):

print("USAGE: <user feedback>")

sys.exit()

<continue program>

sys.exit() # exit program immediately

In use:

Sample problem #1

• Write a program add-arguments.py that reads any
number of integers from the command line and prints
the cumulative total for each successive argument.

> python add-arguments.py 1 2 3

1

3

6

> python add-arguments.py 1 4 -1

1

5

4

Solution #1

import sys

total = 0

for argument in sys.argv[1:]:

integer = int(argument)

total = total + integer

print total

Sample problem #2

• Write a program word-count.py that prints
the number of words on each line of a given
file.

> cat hello.txt

Hello, world!

How ya doin’?

> python count-words.py

2

3

Solution #2
import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

for line in myLines:

words = line.split()

print len(words)

myFile.close()

Sample problem #3

Write a program count-fasta.py that counts the
number of fasta sequences in a file specified on the
command line.

>identifier1 comment comment comment

AAOSIUBOASIUETOAISOBUAOSIDUGOAIBUOABOIUAS

AOSIUDTOAISUETOIGLKBJLZXCOITLJLBIULEIJLIJ

>identifier2 comment comment

TXDIGSIDJOIJEOITJOSIJOIGJSOIEJTSOE

>identifier3

Etc.

Fasta format:

sequence on any number
of lines until next “>”

Two files are linked in News on the course web page – run your
program on both: small.txt and large.txt

Solution #3
import sys

Make sure we got an argument on the command line.

if (len(sys.argv) < 2):

print "USAGE: count-fasta.py file argument required"

sys.exit()

Open the file for reading.

fasta_file = open(sys.argv[1], "r")

lineList = fastaFile.readlines()

num_seqs = 0

for line in lineList:

Increment if this is the start of a sequence.

if (line[0] == ">"):

num_seqs += 1

print num_seqs

fasta_file.close()

Not required, but a
good habit to get into

Challenge problem
Write a program seq-len.py that reads a file of
fasta sequences and prints the name and length of
each sequence and their total length.

>seq-len.py seqs.fasta

seq1 432

seq2 237

seq3 231

Total length 900

Here‟s what fasta sequences look like:
>foo

gatactgactacagttt

ggatatcg

>bar

agctcacggtatcttag

agctcacaataccatcc

ggatac

>etc…

(„>‟ followed by name, newline, sequence on
any number of lines until next „>‟)

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = "" # initialize required variables

cur_len = 0

total_len = 0

first_seq = True # special variable to handle the first sequence

for line in myLines:

if (line.startswith(">")): # we reached a new fasta sequence

if (first_seq): # if first sequence, record name and continue

cur_name = line.strip()

first_seq = False # mark that we are done with the first sequence

continue

else: # we are past the first sequence

print cur_name, cur_len # write values for previous sequence

total_len += cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len += len(line.strip())

print cur_name, cur_len # we need to write the last values

print “Total length", total_len

Challenge problem solution

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = myLines[0] # initialize required variables

cur_len = 0

total_len = 0

index = 1

for index in range(len(myLines)):

line = myLines[index]

if (line.startswith(">")): # we reached a new fasta sequence

print cur_name, cur_len # write values for previous sequence

total_len += cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len += len(line.strip())

index += 1

print cur_name, cur_len # we need to write the last values

print "Total length", total_len

Another solution (more compact but has the disadvantage
that it assumes the first line has a fasta name)

An alert student (Lea) came up with a more elegant solution!
Here is my version using Lea‟s method:

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

whole_string = myFile.read()

seqList = whole_string.split(">")

total_len = 0

for seq in seqList:

lineList = seq.split("\n")

length = len("".join(lineList[1:]))

total_len += length

print lineList[0], length

print "Total length", total_len

What this does is split the text of the entire file on “>”, which gives a list of
strings (each containing the sequence with its name). Each of these strings is
split at “\n” characters, which gives a list of lines. The 0th line in this list is the
name, and the rest of the lines are sequence. The funky looking join statement
just merges all the sequence lines into one long string and gets its length.

One of the arts of programming is seeing how
to write elegant loops that do complex things.

It takes time and practice.

import sys

from Bio import Seq

from Bio import SeqIO

filename = sys.argv[1]

myFile = open(filename, "r")

seqRecords = SeqIO.parse(myFile, "fasta")

total_len = 0

for record in seqRecords:

print record.name, len(record.seq)

total_len += len(record.seq)

print "Total length", total_len

myFile.close()

By the way, here is the challenge problem solution
done using BioPython (which you will learn about later)

shorter and much easier to write and understand

