
Introduction to Python

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Use python interpreter for quick syntax tests.

Write your program with a syntax-highlighting text
editor.

Save your program in a known location and using “.py”
extension.

Use the command window (or terminal session) to run
your program (make sure you are in the same
directory as your program).

Getting started on the Mac

• Start a terminal session

• Type “python”

• This should start the Python interpreter
(often called “IDLE”)

> python

Python 2.6.4 (something something)

details something something

Type "help", "copyright", "credits" or "license"

for more information.

>>> print “Hello, world!”

Hello, world!

Run your program
• In your terminal, Ctrl-D out of the python interpreter

(or start a new terminal).

• Type “pwd” to find your present working directory.

• Open TextWrangler.

• Create a file with your program text.

• Be sure that you end the line with a carriage return.

• Save the file as “prog.py” in your present working
directory.

• In your terminal, type “python prog.py”

> python hello.py

hello, world!

Objects and types

• An object refers to any entity in a python program.
• Every object has an associated type, which determines the properties

of the object.
• Python defines six types of built-in objects:

Number 10 or 2.71828

String “hello”

List [1, 17, 44] or [“pickle”, “apple”, “scallop”]

Tuple (4, 5) or (“homework”, “exam”)

Dictionary {“food” : “something you eat”, “lobster” : “an edible arthropod”}

File more later…

• It is also possible to define your own types, comprised of combinations
of the six base types.

Literals and variables

• A variable is simply a name for an object.

• For example, we can assign the name “pi” to the
Number object 3.14159, as follows:

>>> pi = 3.14159

>>> print pi

3.14159

• When we write out the object directly, it is a literal,
as opposed to when we refer to it by its variable
name.

The command line

• The command line is the text you enter after the
word “python” when you run a program.

python my-program.py GATTCTAC 5

• The zeroth argument is the name of the program file.
• Arguments larger than zero are subsequent elements

of the command line.

zeroth

argument

first

argument

second

argument

Reading command line arguments

Access in your program like this:

import sys

print sys.argv[0]

print sys.argv[1]

> python my-program.py 17

my-program.py

17

zeroth

argument

first

argument

There can be any number of arguments, accessed
by sequential numbers (sys.argv[2] etc).

Assigning variables
In order to retain program access to a value,
you have to assign it to a variable name.

import sys

sys.argv[0]

import sys

s = sys.argv[0]

import sys

print sys.argv[0]

this says “give me access to all
the stuff in the sys module”

this says “get the string that is stored at
index 0 in the list sys.argv and print it”
(but it doesn’t do anything else)

this doesn’t do anything – it says “get the
string that is stored at index 0 in the list
sys.argv and do nothing with it”

this says “get the string that is stored at
index 0 in the list sys.argv and assign it
to the variable s”

Basic string operations:

s = "AATTGG" # assignment - or use single quotes ' '

s1 + s2 # concatenate

s2 * 3 # repeat string

s2[i] # get character at position 'i'

s2[x:y] # get a substring from x to y (not including y)

len(s) # get length of string

int(s) # turn a string into an integer

float(s) # turn a string into a floating point decimal number

len(s[x:y]) # the length of s[x:y] is always y - x

Methods:

S.upper()

S.lower()

S.count(substring)

S.replace(old,new)

S.find(substring)

S.startswith(substring)

S. endswith(substring)

Printing:

print var1,var2,var3 # print multiple variables

print "text",var1,"text" # print a combination of explicit text and variables

Basic list operations:
L = ['dna','rna','protein'] # list assignment

L2 = [1,2,'dogma',L] # list can hold different object types

L2[2] = 'central' # change an element (mutable)

L2[0:2] = 'ACGT' # replace a slice

del L[0:1] = 'nucs' # delete a slice

L2 + L # concatenate

L2*3 # repeat list

L[x:y] # define the range of a list

len(L) # length of list

''.join(L) # convert a list to string

S.split(x) # convert string to list- x delimited

list(S) # convert string to list - explode

list(T) # converts a tuple to list

Methods:
L.append(x) # add to the end

L.extend(x) # append each element from x to list

L.count(x) # count the occurrences of x

L.index(x) # give element location of x

L.insert(i,x) # insert at element x at element i

L.remove(x) # delete first occurrence of x

L.pop(i) # extract element I

L.reverse() # reverse list in place

L.sort() # sort list in place

File reading and writing
The open() command returns a file object:

<file_object> = open(<filename>, <access type>)

Access types: 'r' = read
'w' = write
'a' = append

myFile = open("data.txt", "r") – open for reading

myString = myFile.read() – read the entire text as a string

myFile = open("new_data.txt", "w") – open for writing

myStringList = myFile.readlines() – read all the lines as a list of strings

myString = myFile.readline() – read the next line as a string

myFile.close() – always close a file after done

myFile.write(“foo”) – write a string (does not append a newline)

if <test1>:

<block1>

elif <test2>:

<block2>

elif <test3>:

<block3>

else:

<block4>

• Only one of the blocks is ever executed.
• A block is all code with the same indentation.

if – elif - else

Comparison operators

• Boolean: and, or, not

• Numeric: < , > , ==, !=, >=, <=

• String: in, not in

< is less than

> is greater than

== is equal to

!= is NOT equal to

<= is less than or equal to

>= is greater than or equal to

