Complete Pushdown Languages
(Preliminary)
W. L. Ruzzo
circa 5/15/79

The attached notes were never finished, published, refereed, or even very carefully
proofread, so please lower your expectations appropriately before reading. Technical
notation is probably most similar to

Harrison, Michael A
Introduction to formal language theory / Michael A. Harrison
Reading, Mass. : Addison-Wesley Pub. Co., c1978

The omitted references are (probably) to:
The hardest context-free language

Greibach, S.A. (Univ. California, Los Angeles, CA, USA) Source: SIAM Journal on
Computing, v 2, n 4, Dec. 1973, p 304-10

On the tape complexity of deterministic context-free languages
Sudborough, I.H. (Northwestern Univ., Evanston, IL, USA) Source: Journal of the
Association for Computing Machinery, v 25, n 3, July 1978, p 405-14

R. E. Ladner, R. J. Lipton, L. J. Stockmeyer, Alternating Pushdown Automata. Proceedings
of Nineteenth Annual Symposium on Foundations of Computer Science, 1978, 92-106.

I hope you find it useful.

Larry Ruzzo
3/30/2006

5/15/79

COMPLETE PUSHDOWN LANGUAGES

(Preliminary)

W.L. Ruzzo

In this note, we give a simple techinque for constructing languages
which are complete for various classes of pushdown automaton languages.
In particular, this technique gives a "hardest context-free language"
similar to Griebach's [Gr] and a "hardest deterministic cfl"
similar to Sudborough's [Su 1. Other applications include
complete sets for two-way deterministic- and non-deterministic PDA's
and log-space auxiliary PDA's. These 3 languages are log-space complete
in P by well-known results. A similar construction gives a complete
language for alternating - PDA's, which is complete in exponential time
[LL s78].

The basic idea of these constructions is as follows. Let Zn =
{ay, ay, «vs A, ;l’ ... @,} and let D, be the Dyck setover I, i.e.,
the set generated by the cfg {S ~ a; 8 EiS! 1 < i < n}. Consider the
set of directed graphs with one designated start vertex, one or more
designated final vertices, and with all edges labeled by strings in
Zn*' The desired complete languages will be the set of (encodings of)
such graphs having the property that there is a path from the start
vertex to some final vertex such that the concatenation of the edge
labels along the path is a word in D,. Call this set of graphs Gn'
The characteristics of the different PDA classes are reflected in
different restrictions on the set of graphs considered. For example,

a
l-way PDA's correspond to G, , the subset of G, consisting of acyclic

Page 2

graphs with vertices listed in topological order.

For definiteness, we'll discuss the construction for l-way non-
deterministic PDA's (henceforth INDPA). It isn't hard to see how a
1NPDA could recognize Gg . The PDA guesses which edge to follow at
each step, using its stack in the obvious way to process the edge label.
The top of the stack is also used temporarily while "following an edge"
to record the "name" of the "distination" vertex. Details are left
to the reader.

An arbitrary INPDA language L may be reduced to G: as follows.
Let M= (Q, £, T, 8, q4, 245, F) be a 1NPDA accepting L ; wlog M is
realtime (A-free), and accepts by empty store. For x = ajay ... ag €L,
construct the graph &, x (see fig. 1) having vertices Q x {1, ..., &}
with edges (q, i) :§I+ (p, i+1) iff M has a move from state q with input
a; and top of stack z which pushes Y and enters state q; 1i.e., (P,Y)€E
8(q, aj, z). It's easy to show by induction that (qg, aj ...a5, %) Hﬁ
(p, A, Y) iff there is a path in 8, % from (qo,l) to (p, i+1) whose
label after cancellation is Y.

The set of edges from vertices {(q, i)[qs Q} depends only on aj,
so with a suitable choice of coding, the mapping x > 8, x can be a homo-
morphism. The resulting language is very similar to Griebach's [Gr 1.

Let 24

N be the set of acyclic graphs with the property that

every edge label leaving a given vertex begins with a "bared" letter z,
and no two begin with the same letter. Then the construction given
above can reduce (via homomorphism) every realtime 1DPDA language to

a,d a,d
Gy . Further, we can log-space reduce any 1DPDA language to Gn’ s

i ay ag
h(ap) h(a,)
q, «
Y ¢ -

(ql s Y) €8(qg, ag, z)

Figure 1

Page 3

since we know there can't be more than a linear number of comsecutive
A-moves in any accepting computation.

Similarly, we can log-space reduce any polynomial time bounded
log-space auxiliary PDA (DPDA) to Gg (Gi’d), the major difference being
(1) vertices correspond to state and work. tape contents and (2) the
basic graph 1is copied a polynomial number of times, with left moves
of the input head being represented by edges into the next copy to the
right (in order to preserve the topologically sorted requirement.) This
gives a simpler proof of Sudborough's chracterization of these languages

as {L|L < CFL (DCFL)}.

log
The results for 2-way PDA's and auxiliary PDA's are similar, but we
don't have the "acyclic, topologically sorted” constraint.
We can generalize the above techniques to cover alternating PDA's
by treating the graphs as and-or graphs; i.e., the vertices are partitioned
into and-nodes and or-nodes. The condition on the set of graphs to be
accepted is changed so that if a path reaches an and-node (or-node) then

all continuations (one continuation) must lead (recursively) to final

vertices with path labels in Dn.

s
[t 5
Fived o P DA coretr

o F < el fp Fog — Fo o
i B =
aik ot g [R
_—
’.&\«m & hary
e Ao
4 e 2
@‘F?'L = peed Ay Mo Fnal
e teas ¢ Artue W@
Mf%; n"LM/OL 4//1%;&_«7@
e
Pk .‘b,g.bkc /w;;ﬂﬁ:
@ W J-a«;f)(”e " in Dw
I e . CM‘{ Az =7 “(‘")

_—

" - (4:) q'

@

