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Abstract

Non-coding RNAs (ncRNAs) are functional
RNA molecules that do not code for proteins.
Covariance Models (CMs) are a useful statis-
tical tool to find new members of an ncRNA
gene family in a large genome database, us-
ing both sequence and, importantly, RNA sec-
ondary structure information. Unfortunately,
CM searches are slow. This paper shows how
to make CMs faster while provably sacrific-
ing none of their accuracy. Specifically, based
on the CM, our software builds a profile hid-
den Markov model (HMM), which filters the
genome database. This HMM is a rigorous fil-
ter, i.e., its filtering eliminates only sequences
that provably could not be annotated as ho-
mologs. The CM is run only on what re-
mains. Optimizing the HMM for filtering
involves minimizing an exponential objective
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function with linear inequality constraints.
For most known ncRNA families, this allows
an 8-gigabase database to be scanned in 2-20
days instead of years, and yields new family
members missed by other techniques to im-
prove CM speed.
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1 Introduction

Non-coding RNAs (ncRNAs) are functional
RNA molecules that do not code for pro-
teins, e.g., tRNAs and spliceosomal RNAs.
Recent work reveals that ncRNAs are much
more numerous and significant than previ-
ously thought [27, 16, 5], e.g., with small
nucleolar RNAs that process other ncRNAs
[2], and many ncRNAs involved in regulating
other genes such as microRNAs and analogous
bacterial ncRNAs [17, 13, 28, 25]. Some mR-
NAs contain regulatory structural elements
[15, 18] that can be viewed as ncRNAs.

To exploit prior work on the over 100
known ncRNA families, it is useful to anno-
tate genomes with family homologs. Since
secondary structure is often functionally im-
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portant to RNAs, this task requires modeling
both sequence and secondary structure. Tech-
niques for finding ncRNA family members in-
clude searching for patterns that can include
base pairing [24, 3, 15], which was used to find
lentivirus Rev Response Elements [20], and
searching for specific types of ncRNA, such
as tRNAs [22, 11, 26], microRNAs [21] and
small nucleolar RNAs [23, 9]. These methods
require significant expert input, making them
difficult to extend to new ncRNA families.

For the general problem of defining ncRNA
families and finding new members, two meth-
ods exist that require modest manual work
per family: Covariance models [8, 4] and ER-
PIN [12]. Both require only a multiple align-
ment of the family’s members annotated with
a secondary structure. From this input, a sta-
tistical model is built that is used to search a
genome database. In tests, both techniques
exhibit high sensitivity and selectivity on,
e.g., tRNAs [12, 22]. A limitation of ERPIN
is that it cannot accommodate non-consensus
bulges in helices (which CMs can). Addition-
ally, to prune its search, ERPIN sometimes
requires the user to specify score thresholds
for each helix, thus requiring more expert in-
put and/or compromising accuracy. A limi-
tation of CMs is that they cannot represent
pseudoknots (which ERPIN can). It is not
clear which limitation is more significant, but
studies suggest that pseudoknots contain lit-
tle information [8], whereas indels are com-
mon in many contexts. This raises a serious
limitation of CMs: scans are very slow.

This paper seeks to address the impractical
speed of CMs without sacrificing their accu-
racy. CMs are used in the Rfam Database [14]
to annotate an 8-gigabase genome database
called RFAMSEQ for over 100 ncRNA fam-
ilies. CMs are too slow to be used di-
rectly: e.g., searching RFAMSEQ to find

tRNAs would take about 1 year on a 2.8
GHz Intel Pentium 4 PC. Obviously, this
is improving as computers get faster, but
there are over 100 families. Moreover, new
families continue to be found and sequence
data expands rapidly. To improve speed,
Rfam uses a BLAST-based heuristic [1]. For
each ncRNA family, the known members are
BLASTed against RFAMSEQ, and the full
CM is run only on the matches returned from
BLAST. These searches are acceptably fast,
but the BLAST heuristic—even with permis-
sive settings—may cause family members to
be missed that would be found with a regular
(slower) CM search [14].

We develop a rigorous filter. Unlike a
heuristic filter such as Rfam’s use of BLAST,
a rigorous filter guarantees that all sequences
classified as homologs by the CM will be
found; a rigorous filter will never increase the
false negative rate over that of the CM. For
our rigorous filter, a profile HMM is built
from the CM, and run against the database.
Based on the output, much of the database
can be eliminated as provably not containing
any family members that would be detected
by the CM. The CM is run only on what re-
mains.

Many HMM parameter settings guarantee
rigorous filtering, but some settings eliminate
more of the database than others. Under
the simplifying assumption that genome se-
quences are adequately described by 0th-order
Markov models, we optimize the parameters
to better filter sequences. This requires min-
imizing an exponential function in variables
constrained by linear inequalities, and can
yield orders of magnitude improvements in fil-
tering over less sophisticated strategies.

In our experiments, the profile HMMs
search on average over 200 times faster than
CMs. We tested 139 ncRNA families in Rfam
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version 5.0 (all families except those using the
Rfam local alignment feature; see section 5).
For 110 of the 139, the profile HMM filtered
the database to less than 10−4 of its origi-
nal size. For these families, the total search
time will be dominated by the quicker profile
HMM.

In pilot experiments, for some families, no
new members were found over the BLAST
heuristic. Since our filtering is rigorous, this
means that if homologs were missed, finding
them will require going beyond CMs as they
are now. For other families, we find many ho-
mologs missed by the BLAST heuristic. E.g.,
a small nucleolar RNA of Pyrococcus is found
to have putative homologs in a variety of other
hyperthermophilic archaea.

The next section summarizes the results.
Section 3 describes simplified CMs, with our
technique to build and optimize HMMs in sec-
tion 4. Then, we conclude and discuss future
work. The appendix shows how our algorithm
works on more realistic CMs and on standard
CMs as in the literature.

Refer to http://bio.cs.washington.
edu/supplements/zasha-RECOMB-2004/ for
supplementary information.

2 Results

2.1 Two kinds of profile HMM

Our algorithm can create two related profile
HMM structures based on a given CM: the
“compact”-type HMM and the “expanded”-
type HMM. The expanded-type HMM adds
extra states that improve filtering, at the cost
of scanning the genome database about 30%
slower. The technical distinction between
these types of profile HMM is discussed in ap-
pendix section 2.

2.2 Speed

Our technique’s overall speedup over a CM is
the sum of (1) the HMM scan time divided by
the CM’s, plus (2) the fraction of the sequence
that the CM is run on. This yields a number
less than 1 (or slightly more if HMM filtering
is very poor).

The fraction of a test sequence that the CM
must be run on, i.e., that is not filtered, is the
filtering efficiency. A fraction of 0 is perfect; 1
is pointless. We tested the filtering efficiency
of 139 Rfam 5.0 families against two genomes:
E. coli K12 and Staphylococcus aureus MW2,
which has a very low G+C content that many
HMMs perform less well on. For each family, 2
HMMs were created, one optimized for a max-
imum likelihood 0th-order Markov model for
E. coli and one for S. aureus. Conservatively,
the E. coli-optimized HMM was run on the
S. aureus genome and vice versa. The filter-
ing fraction used is the maximum (worst) for
the two genomes. The results, summarized
in Table 1, show that most families’ HMMs
eliminate most of the database.

The profile HMM scan itself runs on aver-
age over 200 times faster than the CM scan
(270 times for compact type, 214 times for
expanded type). The average overall speedup
in our experiments was 0.04; i.e., if our tech-
nique were used for all of Rfam, it would be
25 times faster than using CMs. But, taking
only the 127 families with filtering fractions
< 10−2, the speedup factor is 283.

2.3 Buried treasures

We scanned the full RFAMSEQ sequence for
selected Rfam families (Table 2.3). For some
families, no additional homologs were found
compared to the Rfam database; given our
technique’s guarantees, it follows that the
BLAST heuristic is sufficient for these fam-
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x=filtering fraction # of families
compact-type HMM expanded-type HMM

0 ≤ x < 10−4 105 110
10−4 ≤ x < 10−2 8 17
10−2 ≤ x < 10−1 11 3
10−1 ≤ x < 0.25 2 2
0.25 ≤ x < 0.99 6 4

0.99 ≤ x ≤ 1 7 3

Table 1: Filtering efficiency of optimized profile HMMs
The fractions are grouped into qualitatively similar ranges, e.g., fractions less than 10−4 imply
that the time will be dominated by the HMM scan.

ilies. We biased our selection to families that
we expected to challenge BLAST, e.g., short
ncRNAs with low sequence identity, so we ex-
pect that BLAST will work for most other
families, which are presumably easier. How-
ever, we also avoided families with poor fil-
tering efficiency. Since neither BLAST nor
HMMs use secondary structure, we expect
BLAST to do worse for those families.

For many families, new hits (i.e., putative
homologs) were found with the rigorous fil-
ter, as summarized in Table 2.3. Since our
filter makes the CMs more sensitive, some of
these may be false positives biologically, al-
though these false positives may aid in tuning
the CMs.

In fact, most of the new hits are biolog-
ically plausible, and we uncover new hits
in organisms that already have known ho-
mologs, as well as potential homologs in
new organisms. A small nucleolar RNA
(Rfam ID RF00095) known only in Pyrococ-
cus species has new hits in 11 other hyperther-
mophilic archaea, e.g., Archaeoglobus fulgidus
and Methanococcus jannaschii. The retron
msr RNA (RF00170), found in a range of bac-
teria, has two new hits in bacteria outside of
the proteobacteria group that contains all the

training family members. The hammerhead
ribozyme (RF00008, RF00163) is found in
new viral genomes and in repetitive elements,
where it has been found previously [10]. The
histone downstream element (RF00032), usu-
ally in metazoa, is found in various new meta-
zoa and, intriguingly, in three plant species.
The iron response element (RF00037), also
usually in metazoa, is found in two fungi,
various invertebrates, chimpanzee, and with
several putative homologs in Arabidopsis and
rice.

Some hits missed by the BLAST heuristic
are supported by an annotation, e.g., the U4
snRNA in green algae and a fungus, the his-
tone downstream element in histone genes in
five fly species, one marine invertebrate and
two crustaceans, and the iron response ele-
ment in ferritin genes in two aquatic inverte-
brates.

To see if BLAST could easily be adjusted to
find all new hits, we tested the Rfam family
RF00095, which has the most new hits. Of
the 110 biologically plausible new hits, i.e.,
within hyperthermophilic archaea, BLAST is
able to find 56 of them if its E-value threshold
is raised to 10000, but then its filtering frac-
tion is 0.014, which makes it slower than the
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Rfam name avg % # # HMM frac. frac. HMM est.
Id len id known new types pred. actual +CM CM

used time time
(days) (days)

RF00008 Hammerhead 35 68 313 278 C,E 1.1e-3 6.1e-4 1.4 97
(Rfam 4.0) ribozyme
RF00008 Hammerhead type 1 54 78 251 13 C,E 2.8e-3 2.4e-3 3.2 343
RF00012 U3 snRNA 227 59 129 0 C 0 8.9e-6 10.1 3808
RF00015 U4 snRNA 136 60 283 7 C,E 1.6e-3 1.3e-3 8.3 1258
RF00019 Y RNA 102 69 1107 0 C 0 1.4e-5 4.4 524
RF00020 U5 snRNA 118 59 199 1 C,E 1.0e-2 5.0e-3 8.9 1081
RF00024 Vertebrate telomerase 436 60 51 0 C 0 3.5e-5 17.6 10349
RF00025 Ciliate telomerase 168 57 17 0 C 0 3.8e-7 6.3 1588
RF00026 U6 snRNA 106 80 1462 2 C 0 2.4e-5 4.0 563
RF00027 let-7 microRNA 80 68 30 0 C,E 1.5e-3 1.5e-3 3.7 500
RF00030 RNase MRP 265 52 39 0 C,E 0 9.5e-6 10.4 6498
RF00032 Histone 3’ element 26 78 1004 102 C 1.9e-5 2.0e-5 1.1 29
RF00037 Iron response element 29 67 201 121 C,E 7.7e-4 7.7e-4 1.0 52
RF00043 Plasmid copy control 73 74 8 0 C 0 8.2e-8 2.5 475
RF00050 RFN element 147 67 107 0 C,E 1.7e-4 5.6e-6 4.5 1666
RF00052 lin-4 microRNA 69 70 14 0 C 0 1.1e-7 2.5 343
RF00053 mir-7 microRNA 87 67 10 0 C 0 6.5e-8 3.4 363
RF00054 U25 snoRNA 80 66 28 0 C 0 2.3e-7 3.8 410
RF00055 snoRNA Z37 92 68 28 0 C 0 2.5e-7 3.2 371
RF00066 U7 snRNA 61 71 312 1 C 1.9e-5 8.4e-6 2.6 231
RF00075 mir-166 microRNA 122 60 14 0 C 0 1.8e-7 4.4 813
RF00093 U18 snoRNA 75 63 43 0 C 0 6.0e-7 3.2 332
RF00095 Pyrococcus snoRNA 56 59 57 123 C 0 2.5e-6 2.8 249
RF00103 mir-1 microRNA 77 69 13 0 C 0 1.1e-7 3.0 373
RF00104 mir-10 microRNA 74 67 34 0 C 0 3.8e-7 2.4 358
RF00151 U58 snoRNA 65 85 12 0 C 0 6.2e-8 2.7 156
RF00162 S box 110 66 128 3 C,E 1.7e-3 1.5e-3 6.7 1042
RF00163 Hammerhead type 3 82 62 167 26 C,E 1.7e-3 1.1e-3 2.8 473
RF00164 Coronavirus s2m 43 80 115 0 C 0 5.8e-7 1.4 118
RF00165 Coronavirus 62 70 60 0 C 0 4.0e-7 2.9 212

3’ UTR pseudoknot
RF00167 Purine element 99 55 69 54 C,E 8.8e-3 4.2e-3 5.5 604
RF00169 Eubacterial SRP 99 52 162 0 C,E 7.2e-4 5.7e-4 4.4 588
RF00170 Retron msr RNA 71 57 11 48 C 3.0e-3 1.1e-3 2.5 289
RF00173 Hairpin ribozyme 51 83 5 0 C 0 3.1e-8 1.7 174

Table 2: Results of rigorous filtering experiments of RFAMSEQ
Each row in this table, except the first, is an Rfam 5.0 family. The first column is its Rfam accession Id. Next is a brief

name, followed by the average length in nucleotides. The % identity (sequence conservation) is as reported in Rfam.

# known is the number of members in Rfam, i.e., members identified from other sources and homologs found using

the BLAST heuristic. # new is the number of additional matches in RFAMSEQ that our technique found. For HMM

types used, C=compact type, E=expanded type. “C,E” means that an compact-type HMM filtered RFAMSEQ, then

an expanded-type HMM further filtered this. The (conservative) predicted filtering fraction on E. coli and S. aureus

is given for the expanded-type HMM, or if no expanded-type HMM was used, for the compact-type HMM; this is the

fraction the CM is predicted to be run on. The notation “1.1e-3” means 1.1·10−3. The next column is the actual fraction

on RFAMSEQ. The CPU time taken to scan the 8-gigabase RFAMSEQ on a 2.8 GHz Pentium 4 is then reported, then

the estimated time for a pure CM scan of RFAMSEQ.
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profile HMM rigorous filter. Thus, the rigor-
ous filter finds putative homologs missed by
BLAST’s heuristic filter, both in organisms
with known homologs, and plausibly in new
organisms. It thus potentially expands our
understanding of these gene families.

3 Simplified Covariance
Models

Covariance Models (CMs) are statistical mod-
els that can detect when positional sequence
and secondary structure resembles a given
multiple RNA alignment. For simplicity, we
discuss multiloops (CM bifurcation states)
and nucleotides inserted into the consensus
alignment in appendix section 1. We explain
CMs somewhat unconventionally in terms of
stochastic context-free grammars (SCFGs);
appendix section 2 ties our explanation to
the conventional view of CMs and corrects
a subtle limitation of our pedagogical model.
Readers unfamiliar with context-free gram-
mars may find [4, chpt. 9] helpful.

3.1 Covariance Models are context-
free grammars

Consider RNA molecules with sequence CAG
or GAC with the C,G bases paired. A
context-free grammar (CFG) for this is S1 →
cS2g|gS2c and S2 → a. (By convention nu-
cleotides in the CFG are lowercase.) S1 and
S2 are called states, and in this case S1 is the
start state. The first rule says that S1 may
be replaced by either cS2g or gS2c. Thus,
we can produce the string CAG by the fol-
lowing steps, beginning with the start state:
S1 → cS2g → cag. The sequence of steps from
the start state to an RNA sequence is called
a parse.

CMs have states S1, S2, . . . , Sn for each of

n (possibly base-paired) alignment positions.
CFG rules of a restricted form codify sequence
and structure characteristics. Methods to
construct these rules from an input multi-
ple alignment have been described previously
[8, 6, 7].

All rules must be of the form Si →
xLSi+1xR, where xL (left nucleotide) and xR

(right) may either be a nucleotide (a,c,g,u) or
the empty character ε, which produces no nu-
cleotide. If xL and xR are both nucleotides,
the rule emits paired nucleotides. If xL = ε
or xR = ε or both, the rule emits an unpaired
nucleotide or no nucleotide; such rules can ac-
commodate missing consensus positions and
single-stranded regions.

Figure 1 gives an example RNA multiple
alignment and structure, and shows how the
rule types above can be combined to create
sequences with that structure.

3.2 Genome annotation with CMs

In an SCFG, each rule has a probability.
Rules more consistent with an ncRNA family
will have higher probabilities than less plausi-
ble rules. A parse’s probability is the product
of the probabilities of the rules used in that
parse. For example, if Pr(S1 → cS2g) = 0.25
and Pr(S2 → a) = 1, then the probability of
the parse S1 → cS2g → cag is 0.25×1 = 0.25.
Instead of probabilities, CMs usually employ
odds ratios, relative to a simple background
model. For computational convenience, the
logarithm of the odds ratio is used; the score
of a parse is the sum of the logarithmic scores
for the rules used in the parse.

For each genome database subsequence, the
highest-scoring, or Viterbi, parse is computed
by dynamic programming [8, 4]. If a subse-
quence’s Viterbi score exceeds a user-supplied
threshold specified for a gene family, that sub-
sequence is considered a member of the family.
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Figure 1: RNA multiple alignment, structure and CFG
(A) A multiple alignment of three hypothetical RNA sequences. Dashes (-) indicate missing
nucleotides. (B) The structure. Thick lines are conserved base-pairs. Numbers refer to
alignment positions; positions 1 and 3 are base paired, so appear twice. Position 1 is missing
a base in unicorn.
A CM-style CFG that encodes these sequences and structures is S1 → aS2ε|aS2u|cS2g; S2 →
εS3ε|cS3ε; S3 → uS4a|uS4g; S4 → cS5ε|gS5ε; S5 → ε. Note that normally CMs use less
rigid grammars that allow anomalous nucleotides (with lower probability). A parse of the
unicorn sequence is S1 → aS2ε → acS3εε → acuS4aεε → acucS5εaεε → acucεεaεε = acuca.

4 Construction of the pro-
file HMM from a simplified
CM

Given a CM, we create a profile HMM whose
Viterbi score for any sequence is always an
upper bound on that of the CM. Although
profile HMMs are less powerful than CMs,
their Viterbi algorithm is much faster, which
makes them an attractive filter. We describe
HMMs in terms of stochastic regular gram-
mars. First, we describe how we will use
the profile HMM as a filter, then we ex-
plain the form of regular grammars allowed,
then show how to covert a CM’s SCFG into
such a grammar. To guarantee rigorous fil-
tering, the HMM rules’ logarithmic scores are
constrained so that the HMM’s score for a
database subsequence is an upper bound on
the CM’s score. After describing these con-
straints, we show how to optimize scores to fil-
ter efficiently, subject to the constraints. The
distinction between compact- and expanded-
type HMMs is relevant only to the CMs

in their full generality, not our pedagogical
model; the distinction is described in the ap-
pendix.

4.1 Filtering with the profile HMM

Using the HMM, we compute a CM score up-
per bound for sequences ending at each nu-
cleotide position in the database sequence. If
one of these upper bounds exceeds the thresh-
old, the CM algorithm is applied to a window
ending at that nucleotide position. The win-
dow’s length is a parameter that is part of
the CM algorithm; a user must specify a win-
dow length for each family that is longer than
any ncRNA family member could plausibly
be. If the HMM-generated upper bound is
lower than the threshold, then the CM will
provably not report a homolog at that loca-
tion, so the location can safely be filtered out.
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4.2 Creation of a stochastic regular
grammar for a profile HMM

Regular grammars are less powerful than
SCFGs in that their rules cannot emit paired
nucleotides. Specifically, rules must be of the
form Si → xLSi+1.

Consider a CM with two states S1, S2 with
S2 → ε and rules S1 → xLS2xR. If xR = ε in
all cases, this CM can be represented directly
by a profile HMM.

The key challenge is when xR 6= ε in some
rules. For example, suppose we have S1 →
aS2u|cS2g. A profile HMM cannot represent
the fact that the bases are paired, but can re-
flect the sequence information by breaking the
pair encoded by S1 into two HMM states: SL

1

handles the left nucleotide and SR
1 the right.

(HMM states will be written with a bar to
differentiate them from CM states.) Here is
a regular grammar: SL

1 → aSL
2 |cSL

2 ; SL
2 →

SR
1 ; SR

1 → g|u. This profile HMM grammar
encodes the fact that the first nucleotide is A
or C, and the second G or U, although it sac-
rifices the information that only A-U or C-G
pairs are permitted; e.g., it allows AG. This
sacrifice is a necessary consequence of using
profile HMMs.

In general, a CM state Si is expanded into
a left HMM state SL

i and a right HMM state
SR

i . All CM rules Si → xLSi+1xR, regard-
less of the value of xL and xR, are con-
verted into HMM rules SL

i → xLSL
i+1 and

SR
i → xRSR

i−1. (Note that the subscript on
SR is decremented, since the right nucleotides
are emitted in reverse order.) If i = 1, then we
omit SR

i−1. The procedure may result in du-
plicate rules being created; duplicates (if any)
are removed. Finally, the last left HMM state
is connected to the last right HMM state. See
Table 3 for an example.

4.3 Constraints on HMM logarith-
mic scores

In the previous subsection, we showed how to
create an HMM grammar corresponding to a
CM grammar. As a first step to assigning
logarithmic scores to HMM rules, we now de-
fine constraints that ensure that the HMM’s
Viterbi parse score for any database subse-
quence is an upper bound on the CM’s Viterbi
score.

We defined HMM rules that correspond to
each CM rule. Any CM parse (Viterbi or
not) consists of a sequence of rules, which can
be mapped to HMM rules, obtaining a corre-
sponding HMM parse. The score of a parse is
the sum of the logarithmic scores of its rules.
We could enumerate all possible CM parses
and require the sum of scores along the corre-
sponding HMM parse to be greater or equal to
that of the CM, thus guaranteeing the upper
bound.

Unfortunately, the number of CM parses is
exponential in the number of states. How-
ever, we can enumerate all CM rules Si →
xLSi+1xR for all i. For each rule, we con-
sider the corresponding HMM rules. The sum
of their logarithmic scores must be greater or
equal to the CM rule’s score. Thus, each CM
rule leads to one linear inequality in terms of
the logarithmic HMM scores.

For example, the grammar in Figure 1 has
the rule S3 → uS4a and corresponding HMM
rules SL

3 → uSL
4 and SR

3 → aSR
2 . Similarly,

S3 → uS4g corresponds to SL
3 → uSL

4 (again)
and SR

3 → gSR
2 . Let l1 be the logarithmic

score for SL
3 → uSL

4 , l2 for SR
3 → aSR

2 and l3

for SR
3 → gSR

2 , and suppose the score of CM
rule S3 → uS4a is -1 and S3 → uS4g is -2.
Then we obtain one inequality per CM rule:
l1 + l2 ≥ −1 and l1 + l3 ≥ −2, where a trivial
solution is l1 = −1, l2 = l3 = 0. Every CM

8



CM state rules left HMM state rules right HMM state rules

S1 → aS2ε|aS2u|cS2g SL
1 → aSL

2 |cSL
2 SR

1 → ε|g|u
S2 → εS3ε|cS3ε SL

2 → εSL
3 |cSL

3 SR
2 → εSR

1

S3 → uS4a|uS4g SL
3 → uSL

4 SR
3 → aSR

2 |gSR
2

S4 → cS5ε|gS5ε SL
4 → cSL

5 |gSL
5 SR

4 → εSR
3

S5 → ε SL
5 → SR

4

Table 3: Example of converting an CM to a profile HMM
The CM grammar of Figure 1 is converted to a profile HMM grammar, rule by rule. The
HMM can be read in sequential order by going down the middle column, then up the right
column.

rule will result in one inequality, and any solu-
tion to the HMM scores (like l1, l2, l3) satisfy-
ing all inequalities ensures the upper bound.

These inequalities constrain our selection
of values of l1, l2, l3, but some solutions to
these inequalities may filter better than oth-
ers. The HMM rule relating to l1 is respon-
sible for emitting left nucleotides. For the
right nucleotide, l2 emits As and l3 emits
Gs. If As and Gs are equally probable in
database sequences, then on average the con-
tribution to the Viterbi score of this base pair
is l1 + 1

2(l2 + l3), since l1 is the only alterna-
tive for the left nucleotide, and either l2 or l3
may apply to the right nucleotide. If l1 = −1,
l2 = l3 = 0, then the average added score
is −1. However, with the solution l1 = 0,
l2 = −1, l3 = −2 (also satisfying l1 + l2 ≥ −1,
l1+ l3 ≥ −2), the average added score is −1.5,
which is lower. Thus, while both solutions
satisfy the inequalities, the latter will likely
lead to lower HMM scores, and therefore re-
quire the CM to be run less often. In the next
subsection, we present an approach to select-
ing scores that uses a more sophisticated anal-
ysis of what the expected score will be than
simply considering each state in isolation.

4.4 Optimizing the profile HMM

The previous subsection defined constraints
on the HMM scores, and noted that some
solutions to the constraints will filter better
than others. In this section, we consider a
heuristic to improve filtering. Regardless of
the heuristic to improve filtering, we still re-
quire that the constraints are satisfied, so that
rigorous filtering is guaranteed.

To improve filtering, we need a method to
estimate an HMM’s likely filtering efficiency.
For example, one could measure the HMM’s
average filtering fraction for a database se-
quence sampled from some probabilistic se-
quence model; the optimal HMM scores would
minimize this expected fraction. This idea
suffers two practical drawbacks. First, it
is slow, because a test database sequence
must be relatively large to be adequately rep-
resentative. Second, the expected fraction
is not differentiable with respect to HMM
scores, eliminating many optimization algo-
rithms, e.g., gradient descent. We need a
more practical heuristic.

9



4.4.1 The infinite-length forward algo-
rithm score

We develop a more practical heuristic to es-
timate filtering efficiency in a series of steps.
First, we assume that the database sequence
is distributed according to a 0th-order Markov
model, i.e., with independent probabilities of
A,C,G,U. Next, instead of the filtering frac-
tion, we measure the expected Viterbi algo-
rithm score when run on a 0th-order sequence
model; reducing the expected score should re-
sult in fewer scores being above the threshold,
and therefore a better filtering fraction.

When the HMM is used for filtering, it cal-
culates a Viterbi score over all subsequences
ending at a given database position, so ob-
tains a score for each database position. We
wish to minimize these scores in the expected
case. The subsequences incorporated into
each Viterbi score are drawn from the 0th-
order model, and could in theory be any
length, limited only by the length of the
database. We now assume that the database
is infinitely long. This assumption is moti-
vated by the fact that it will lead to a more
tractable formula later in our formalization,
since there is no need to explicitly limit the
length of subsequences. The assumption is
reasonable because in practice most database
sequences will be significantly longer than
an ncRNA homolog could plausibly be; se-
quences whose length approaches infinity will
have paths of exceedingly low odds ratio, so
are irrelevant. (Indeed, with our simplified
CMs, which do not allow for inserted nu-
cleotides, sequences beyond a certain length
will have odds ratios of 0.)

Our final modification to the heuristic is, in-
stead of the Viterbi score, to use the forward
algorithm, which will allow for fast evalua-
tion and yield analytic gradients. Where the
Viterbi algorithm finds the highest-scoring

parse, the forward algorithm will compute the
sum of the compound odds ratios of all pos-
sible parses. The forward algorithm is the-
oretically more accurate, since it takes into
account sub-optimal parses. But, the Viterbi
is often used since it is more practical, and
in practice gives similar results. We take the
opposite step, and use the forward algorithm
to approximate the Viterbi in estimating an
HMM’s filtering efficiency.

Thus, our heuristic is to use the expected
HMM forward algorithm result over database
subsequences of unbounded length, generated
from a 0th-order model. We presume that a
lower expected forward algorithm result will
correlate with a lower filtering fraction when
the HMM is run on real genome sequences
using the Viterbi algorithm.

We now formalize this idea mathematically,
and show that the forward algorithm result
can be calculated efficiently and derivatives
taken. Let π represent an HMM parse, where
the parse emits the sequence xπ. Let P (π)
be the product of the odds ratios of rules in
parse π; the forward algorithm will sum P (π)
over all π that are consistent with a given
database sequence. Since we are calculating
an expected sum for 0th-order sequences, our
expected sum E is

E =
∑
π

P (π) Pr(xπ) =
∑
π

P (π)
|xπ|∏

k=1

Pr(xπ
k)

where xπ
k is the kth nucleotide of xπ, Pr(xπ

k)
is its probability according to the 0th-order
model, and |xπ| is the length of xπ.

We can efficiently solve this formula with
dynamic programming, computing

TSi
=

∑

π(Si)

P (π(Si))

∣∣∣xπ(Si)
∣∣∣∏

k=1

Pr(xπ(Si)
k )
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for all (left or right) HMM states Si where
π(Si) is a parse prefix ending at state Si.
Thus, E = TSe

for HMM end state Se. Let
RSi

be the rules with state Si in the right
side, and let P (Si±1 → xLSi) be the odds ra-
tio of a rule in RSi

(±1 in Si±1 because Si

can be left or right). (Note that the forward
algorithm does not use logarithms, so the log-
arithmic score variables must be exponenti-
ated, e.g., P (SL

3 → uSL
4 ) = 2l1 , using l1 from

section 4.3.) Then we obtain the recursion:

TSi
=

∑

(Si±1→xLSi)∈RSi

TSi±1
P (Si±1 → xLSi) Pr(xL)

where Pr(xL) is the 0th-order model’s proba-
bility of nucleotide xL, and Pr(ε) = 1.

Gradients are used by many powerful and
generic optimization algorithms. Gradients of
the expected forward algorithm score can be
calculated by treating the dynamic program-
ming algorithm symbolically, and differenti-
ating the resulting expression with respect to
each of the HMM score variables (e.g., l1, l2, l3
from section 4.3).

Empirically, the forward algorithm heuris-
tic is superior to the simple objective function
sketched earlier (l1 + 1

2(l2 + l3)), at least on
fully general CMs; it is too simplistic to con-
sider each state in isolation in estimating its
effect on the total score.

4.4.2 Optimizing with the infinite-
length forward algorithm

The optimal logarithmic scores for HMM
rules, (1) satisfy the inequalities and (2) min-
imize the expected infinite-length forward al-
gorithm score. For practical reasons, we iter-
ate over each CM state, minimizing the for-
ward algorithm score for HMM score vari-
ables corresponding to that CM state, sub-
ject to the inequalities, keeping other CM

states’ variables fixed. We repeat these it-
erations over CM states until the score can-
not be improved after cycling through all
states. The optimization problems are solved
with CFSQP[19], though other solvers could
be applied. Optimizing both compact- and
expanded-type HMMs for 139 models in Rfam
5.0 on a 2.8 MHz Pentium 4 took about 4.5
CPU days.

4.5 Our algorithm on fully general
CMs

The foregoing ideas can be extended to CMs
in general, i.e., more sophisticated than our
pedagogical model, by creating extra HMM
states and rule types that correspond to the
additional CM features. This allows inequali-
ties to be created, and, with some tweaks, the
infinite-length forward algorithm can handle
the more complex HMMs. These technical
details are left to the appendix.

5 Conclusions and future
work

In terms of future work, one direction is to im-
prove the filtering efficiency further. Work in
progress extends the profile HMM to use lim-
ited secondary structure information to im-
prove filtering, making rigorous filtering prac-
tical on more ncRNA families.

We also expect that CMs will be extended
to improve their accuracy and versatility, and
our approach could likely be extended to han-
dle these improvements. One recent extension
to CMs has been the local alignment feature
[7], which allows a match to a part of the
ncRNA, and is intended to detect homologs
of ncRNA domains. We can model CM states
with local alignments in terms of properties of
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left and right HMM states, with upper bound
guarantees. However, without implementa-
tion, the effect on filtering efficiency is un-
known.

In conclusion, covariance models are use-
ful in annotating genomes with occurrences of
known ncRNA gene families, but their slow
speed has created practical problems. We
have designed an algorithm that significantly
speeds up scanning for a majority of ncRNA
families in Rfam 5.0, with guarantees that
no additional homologs will be missed. Our
technique has revealed homologs missed by a
previous technique, and gives a clearer pic-
ture of how well CMs perform in annotating
genomes.
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APPENDIX

1 Covariance models with
bifurcation and insertion
states

RNA multiloops are handled by CM bifurca-
tion states, which permit rules like Si → SjSk

for j, k > i, where Sj and Sk will each become
a substructure. Bifurcations can be handled
easily. The sub-CMs rooted at Sj and Sk are
converted to HMMs. The HMM grammars
are then concatenated and substituted for the
bifurcation state Si.

Our technique also works with insertions
relative to the consensus alignment. CMs al-
low insertions using extra states ILi and IRi.
Any number of nucleotides can be inserted on
the left with rules like ILi → xLILi, or on
the right with IRi → IRixR (xL, xR 6= ε).
Any state Si may transition to an ILi state
with rule Si → xLILi+1xR. Ending the in-
sertion is permitted by ILi → xLSi+1, transi-
tioning to the next alignment position. Get-
ting into IRi states is allowed directly, by
Si → xLIRi+1xR, or after a series of left
insertions, by ILi → xLIRi. Transitioning
to the next alignment position is allowed by
IRi → Si+1xR.

Each CM state ILi corresponds to HMM
state ILL

i (no right HMM state is needed).
Similarly IRi maps to IRR

i . A rule Si →
xLILixR becomes three HMM rules. The left
rule is SL

i → xLILL
i . The right side is more

difficult, since CM state ILi can transition to
a right insert IRi (if any) or the next posi-
tion Si. So we add two HMM rules: SR

i →

xRIRR
i and SR

i → xRSR
i−1 (xR is from the rule

Si → xLILixR here.). The insert state self
loop rule ILi → xLILi becomes HMM rule
ILL

i → xLILL
i . The exit rule ILi → Si+1 be-

comes ILL
i → SL

i+1. The construction for right
inserts is analogous.

To create the inequalities, we must consider
sub-parses that begin at CM state Si and end
at Si+1, where these sub-parses can contain
multiple rules and transition through an in-
sert state. A problem is that insert states
have self-loops, e.g., ILi → xLILi, so the num-
ber of sub-parses is infinite. Fortunately, we
can set the HMM self-loop scores equal to the
CM self-loop score, e.g., the score of HMM
rule ILL

i → xLILL
i will be equal to CM rule

ILi → xLILi. Since ILi → xLILi always cor-
responds to HMM rule ILL

i → xLILL
i , the two

scores will cancel out on either side of the in-
equalities.

An HMM insert state’s self loop slightly
complicates the infinite-length forward algo-
rithm. Each time the self loop is visited, this
multiplies the odds ratio by some number.
The loop may be visited 0 or more times, so
the total multiple is the sum of an infinite ge-
ometric series. As above, the HMM self loop
score is a constant, equal to the correspond-
ing CM self loop score, and in practice the
logarithmic score is less than 0, so the infinite
sum is finite.

2 Our technique in conven-
tional CM terms

Readers who are familiar with CMs, e.g., from
[4, chpt. 10], will notice that we have ex-
plained them in an unusual way. Moreover,
our pedagogical version of CMs is not quite
as powerful as true CMs. In this section, we
show how our algorithm fully supports CMs
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CM MATP compact-type HMM states expanded-type HMM states
node state left node right node left node right node

MP ML ML ML1 ML1
ML ML D ML2 D
MR D ML D ML2

D D D D D
IL IL - IL -
IR - IR - IR

Table 4: Profile HMM states for a CM MATP node
For each state in a CM MATP node, the corresponding left and right HMM states are shown,
for both compact- and expanded-type HMMs. Each expanded-type HMM node (both left
and right) has 2 ML states, ML1 and ML2.

as they are presented in the literature. In
fact, the computer program we wrote to per-
form our experiments uses the source code of
the Infernal package (infernal.wustl.edu),
which implements CM searches for the Rfam
database.

The form of SCFGs we described are
more restrictive than CMs in that the Si

states would have to take the place of the
MP,ML,MR,D,S and E states of CMs. The
separation of these states in true CMs allows
more flexibility in the scores, since scores can
be conditioned on which of the types of states,
MP, ML, etc., was last visited.

However, our algorithm as presented is
straightforward to extend to CMs. The reader
will note that the CM states Si, ILi and IRi to-
gether correspond to one CM node for each i.
The Si state corresponds to one of the split set
states [6] of the node, usually MP,ML,MR,D.
In the same way that the Si state must be vis-
ited exactly once, exactly one of the CM split
set states must be visited exactly once.

Consider a MATP node. This will corre-
spond to a left HMM node and a right HMM
node — SL

i , SR
i , ILL

i and IRR
i in our earlier ex-

planation. The SL
i state must be split into two

states, corresponding to ML and D types, and
the same for the SR

i state. The use of the MP
state in the CM node corresponds to the use
of the ML state in both left and right HMM
nodes. The ML state in the CM is an ML
state in the left HMM node and a D state in
the right HMM node, etc.

For a MATL node, which has no MP, MR
or D states, the right HMM node can be a
dummy node, with an analogous situation for
MATR nodes. The dummy node consists of
a single state which transitions to the next
node. ROOT, BEGL and BEGR nodes do not
require separate split set states, but can use
HMM nodes of type D (which emits nothing)
in both left and right HMM nodes. Thus, con-
structing the HMM from a conventional CM
is exactly as presented earlier, except that we
need to create ML and D states instead of
simply a SL

i or SR
i state.

Some flexibility exists in how many HMM
left and right states are used to represent a
CM’s MATP node, and this underlies the dif-
ference between compact-type and expanded-
type HMMs. In compact-type HMMs, each
left and right node has 3 states: ML, D and
IL (as described above). In the expanded-type
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HMMs, each left and right node has 4 states:
2 MLs, D and IL. One ML state is specifically
used to handle the CM’s MP state; this sep-
arates penalized (non-consensus) states ML,
MR and D, from the consensus state, MP. Ta-
ble 4 summarizes the HMM states in a CM
MATP node.

In making constraints for the HMM scores,
we considered sub-parses. In terms of a nor-
mal CM, a sub-parse corresponds to a sub-
path starting at a split set state of one node,
and ending at a split set state of the next
node. Although there is more than one split
set state in a typical CM node, it is still easy
to enumerate such sub-paths, find correspond-
ing HMM sub-paths, and create one linear in-
equality for each sub-path.

Finally, our dynamic programming solution
to the infinite-length forward algorithm is suf-
ficient, since it applies as written to any HMM
that has no cycles other than self-loops.

16


