Improved Gene Selection for Classification of Microarrays

Jochen Jäger
Rimli Sengupta
Walter L. Ruzzo

MPI Berlin
IIT Kharagpur
University of Washington

WU CSE Computational Biology Group
Overview

- Gene Expression Microarrays
- Classification and Feature Selection
- One Problem & Three Approaches
- Results
- Summary and Conclusions
Gene Expression: The “Central Dogma”

DNA \rightarrow RNA \rightarrow Protein
Gene Expression

- Proteins do most of the work
- They’re dynamically created/destroyed
- So are their mRNA blueprints
- Different mRNAs expressed at different times/places
- Knowing mRNA “expression levels” tells a lot about the state of the cell
Expression Microarrays

• Thousands to hundreds of thousands of spots per square inch
• Each holds millions of copies of a DNA sequence from one gene

• Take mRNA from cells, put it on array
• See where it sticks – mRNA from gene x should stick to spot x
An Expression Array Experiment

cells

mRNA

array

uv
Overview

- Gene Expression Microarrays
- Classification and Feature Selection
- One Problem & Three Approaches
- Results
- Summary and Conclusions
An Example Application

- 72 leukemia patients
 - 47 ALL
 - 25 AML
- 1 chip per patient
- 7132 human genes per chip

Key Issue: What’s Different?

- What genes are behaving differently between ALL & AML (or other disease/normal states)?
- Potential uses:
 - Diagnosis
 - Prognosis
 - Insight into underlying biology/biologies
 - Treatment
A Classification Problem

• Given an array from a new patient: is it ALL or AML?

• Many possible approaches: LDA, logistic regression, NN, SVM, ...

• Problems:
 – Noise
 – Dimensionality
Feature Selection

• Base the classification on only a subset of the genes
 – Reduce dimensionality – for convenience
 – Drop noisy/irrelevant genes – for accuracy

• Perhaps a very small subset
 – For cost
 – For workload
 – For biological insight
Simple Feature Selection

• Rank genes based on their individual predictive ability, e.g. by t-test or other statistic

• Keep only the top k genes
 + simple, easy, commonly used
 – often highly correlated, so little extra info
An Example

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Adenoma</th>
<th>Normal</th>
<th>t-test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>M18000</td>
<td>705.41</td>
<td>1227.27</td>
<td>959.35</td>
</tr>
<tr>
<td>X62691</td>
<td>387.91</td>
<td>577.57</td>
<td>578.45</td>
</tr>
<tr>
<td>M82962</td>
<td>91.85</td>
<td>16.27</td>
<td>12.61</td>
</tr>
<tr>
<td>U37426</td>
<td>0.47</td>
<td>7.05</td>
<td>6.30</td>
</tr>
<tr>
<td>HG2564</td>
<td>2.33</td>
<td>0.54</td>
<td>1.58</td>
</tr>
<tr>
<td>Z50853</td>
<td>35.43</td>
<td>26.03</td>
<td>51.49</td>
</tr>
<tr>
<td>M32373</td>
<td>-48.02</td>
<td>-28.20</td>
<td>-64.62</td>
</tr>
</tbody>
</table>
An Example (cont.)

<table>
<thead>
<tr>
<th></th>
<th>M18000</th>
<th>X62691</th>
<th>M82962</th>
<th>U37426</th>
<th>HG2564</th>
<th>Z50853</th>
<th>M32373</th>
</tr>
</thead>
<tbody>
<tr>
<td>M18000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X62691</td>
<td>0.961</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M82962</td>
<td>-0.944</td>
<td>-0.971</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U37426</td>
<td>0.973</td>
<td>0.975</td>
<td>-0.983</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HG2564</td>
<td>0.592</td>
<td>0.653</td>
<td>-0.553</td>
<td>0.529</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z50853</td>
<td>0.514</td>
<td>0.616</td>
<td>-0.633</td>
<td>0.597</td>
<td>0.614</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>M32373</td>
<td>-0.509</td>
<td>-0.590</td>
<td>0.602</td>
<td>-0.580</td>
<td>-0.619</td>
<td>-0.874</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Example

![Graph with two lines: M18000 and X62691. The lines show different trends across categories A1 to A4 and N1 to N4.](image-url)
Problem with the simple solution

- Each gene independently scored
- Top k ranking genes might be very similar and therefore no additional information gain
- Reason: genes in similar pathways probably all have very similar score
- What happens if several pathways involved in perturbation but one has main influence
- Possible to describe this pathway with fewer genes
Overview

• Gene Expression Microarrays
• Classification and Feature Selection
• One Problem & Three Approaches
• Results
• Summary and Conclusions
Three Approaches

A: A greedy algorithm picks low p-values and not too high correlation

B: Cluster genes; pick representatives from each cluster

C: Like B, but “mask out” (omit) clusters having poor p-values

Goal of all 3: broader representation of informative genes & pathways
A: “Correlation”

- First gene picked is the one with best p-value.
- kth gene picked is the one with best p-value among genes having correlation less than threshold t to previous $k-1$.
B: “Clustering”

• Cluster genes into g groups
• From each cluster, select one or more genes, choosing those with lowest p-values
• Take more from clusters with broad dispersion, fewer from tight clusters (which are likely to be highly correlated)
C: “Masked out Clustering”

- Just like B, but don’t take any genes from clusters whose average p-value is poor (> 0.2).
Clustering Algorithms

- K-means
- “Fuzzy” k-means
Hard clustering – k-means

1. Randomly assign cluster to each point
2. Find centroids
3. Reassign points to nearest center
4. Iterate until convergence

Diagram showing the process of hard clustering with k-means.
Soft - Fuzzy Clustering

instead of hard assignment, probability for each cluster

Very similar to k-means but fuzzy softness factor m (between 1 and infinity) determines how hard the assignment has to be
Fuzzy examples

Nottermans carcinoma dataset:
18 colon adenocarcinoma and 18 normal tissues
data from 7457 genes and ESTs

cluster all 36 tissues
Fuzzy softness 1.3

18 tumors, 18 normals, 5 fuzzy clusters, $m = 1.3$
Fuzzy softness 1.25

18 tumors, 18 normals, 5 fuzzy clusters, m = 1.25
Fuzzy softness 1.2

18 tumors, 18 normals, 5 fuzzy clusters, m = 1.2

○ tumor
× normal
Fuzzy softness 1.15

18 tumors, 18 normals, 5 fuzzy clusters, m = 1.15
Fuzzy softness 1.05

18 tumors, 18 normals, 5 fuzzy clusters, m = 1.05
Selecting genes from clusters

- Two way filter: exclude redundant genes, select informative genes
- Get as many pathways as possible
- Consider cluster size and quality as well as discriminative power
How many genes per cluster?

• Constraints:
 – minimum one gene per cluster
 – maximum as many as possible
• Take genes proportionally to cluster quality and size of cluster
• Take more genes from bad clusters
• Smaller quality value indicates tighter cluster

• Quality for k-means: sum of intra cluster distance
Which genes to pick?

• Choices:
 – Genes closest to center
 – Genes farthest away
 – Sample according to probability function
 – Genes with best discriminative power
Overview

• Gene Expression Microarrays
• Classification and Feature Selection
• One Problem & Three Approaches
• Results
• Summary and Conclusions
Experimental setup

• Datasets:
 – Golub, et al.: Leukemia (47 ALL, 25 AML)
 – Alon, et al.: Colon (40 tumor and 22 normal colon adenocarcinoma tissue samples)
 – Notterman, et al.: Carcinoma and Adenoma (18 adenocarcinoma, 4 adenomas and paired normal tissue)

• Experimental setup:
 – calculate LOOCV using SVM on feature subsets
 – do this for feature size 10-100 (in steps of 10) and 1-30 clusters
Comparison Evaluation

Repeat for each of the n examples: leave out one sample test data

apply same feature extraction to left out sample

classify held-out sample

microarray data: n examples with g expression levels each

train data

extract features

train learner
Support Vector Machines

• Find separating hyperplane with maximal distance to closest training example

 – avoids overfitting
 – can handle higher order interactions and noise using kernel functions and soft margin

SVM with linear kernel, decision boundary (black) plus Support Vectors (red)

SVM with RBF kernel, width γ, decision boundary (black) plus Support Vectors (red)
Results: Alon, Fuzzy, t-test
Alon, Fuzzy, Other Stats

Alon Fisher

Alon Wilcoxon

Alon t-test

Alon Golub

Alon TNoM
ROC Scores: Alon, t-test
More ROC Scores

Golub t-test

Number of features

ROC score

Normal
Clustering
Masked out Clustering
Correlation
More ROC Scores

Golub TNoM

- Normal
- Clustering
- Masked out Clustering
- Correlation

ROC score vs Number features
More ROC Scores

![Golub Wilcoxon ROC Scores Graph]

- **Normal**
- **Clustering**
- **Masked out Clustering**
- **Correlation**

Number of features on the x-axis, ROC score on the y-axis.
More ROC Scores

![Graph showing ROC scores for different methods. The x-axis represents the number of features, while the y-axis represents the ROC score. The graph compares Normal, Clustering, Masked out Clustering, and Correlation methods.]
More ROC Scores

Alon Wilcoxon

ROC score

Number of features

- Normal
- Clustering
- Masked out Clustering
- Correlation
Overview

• Gene Expression Microarrays
• Classification and Feature Selection
• One Problem & Three Approaches
• Results
• Summary and Conclusions
Summary I: Problem

- Sample classification is an important application of microarrays
 - For better diagnostics, prognostics, etc.
- Finding small feature sets with high classification accuracy is important
 - For cost, for biological insight
- “Standard” method (top k genes by your favorite statistical test) is not bad
 - But very often picks highly correlated subset
Summary II: Our Idea

• Explicitly pick subsets to emphasize diversity (reduced correlation) while retaining good individual statistics, hopefully will improve joint accuracy

• Three methods:
 – Greedy selection
 – Selection from clusters
 – Selection from clusters with masking
Summary III: Results

- It works
- Details vary a bit depending on data set and test statistic, but all 3 methods generally better than “standard”
- Improvement most significant for small feature set sizes
- Improvement greater for parametric tests than non-parametric tests
More Information

• Appeared in Pacific Symposium on Biocomputing, 2003
• Preprint, supplementary data
 – http://www.molgen.mpg.de/~jaeger/psb
Acknowledgements

- My coauthors
- Bill Noble
- Ranier Spang

- NIH
- NSF