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Abstract

Given a sequence of real numbers (“scores’), we present
apractical linear time algorithm to find those nonoverlap-
ping, contiguoussubsequenceshaving greatest total scores.
This improves on the best previously known algorithm,
which requires quadratic time in the worst case. The prob-
lem arisesin biological sequenceanalysis, where the high-
scoring subsequences correspond to regions of unusual
composition in a nucleic acid or protein sequence. For
instance, Altschul, Karlin, and others have used this ap-
proach to identify transmembrane regions, DNA binding
domains, and regions of high chargein proteins.
Keywords: maximal scoring subsequence, locally optimal
subsequence, maximum sum interval, sequenceanalysis.

1 Introduction

When anayzing long nucleic acid or protein sequences, the
identification of unusual subsequences is an important task,
since such features may be biologicaly significant. A com-
mon approach isto assign a score to each residue, and then
look for contiguous subsequences with high total scores.
This natural approach was analyzed by Altschul and Er-
ickson (1986a; 1986b), Karlin and Altschul (1990; 1993),
(Dembo & Karlin 1991; Karlin & Dembo 1992), and (Kar-
lin, Dembo, & Kawabata 1990), and applied to a variety of
protein analyses such as the identification of transmembrane
regions, DNA binding domains, and regions of high charge
(Brendel et al. 1992; Karlin & Brendel 1992; Karlin et al.
1991). The method is a so applicableto long genomic DNA
sequences, where computation timeis of more concern.

As an example of this scoring approach, consider the ap-
plication to identifying transmembrane domains in proteins.
Transmembrane domains are rich in hydrophobic residues,
so Karlin and Brende (1992) adapted the hydropathy index
of Kyteand Doolittle(1982) to assign scoresto the 20 amino
acids ranging from —5 (least hydrophobic) to +3 (most hy-
drophobic). They then looked for those (contiguousand dis-
joint) subsequences of the human [3,-adrenergic receptor se-
guence with the highest total residue scores, and observed

Copyright (©)1999, American Associationfor Artificia Intel-
ligence (www.aaai.org). All rightsreserved.

that they correspond to the known transmembrane domains
of the receptor.

Karlin and Brendel went on to propose a scoring scheme
more specific to identifying transmembrane domains than
the simple hydropathy index. They determined the fre-
guency q; of each residuei among the annotated transmem-
brane domains from 980 entries in a protein database, and
the corresponding background frequency p; of each residue
in the same set of 980 proteins. They then assigned a score
of 5 = In(q;/p;) (resembling alog likelihood ratio) to each
residue i in the protein sequence to be analyzed, in thisin-
stance the human [3,-adrenergic receptor. This scoring func-
tion has the property that subsequences of high total score
have amino acid composition more closely resembling that
of the known transmembrane domains than that of the pro-
tein collection overal, and hence are candidate transmem-
brane domains themselves. In fact, Karlin and Altschul
(1990) demonstrated that such log likelihood ratios form the
optimal scores, assuming that the target and background fre-
guenciesareaccurate. Returningto thehuman (3,-adrenergic
receptor, Karlin and Brendel observed that the highest scor-
ing subsequences were similar to the ones obtai ned with the
hydropathy scores, but were more pronounced.

Karlinand Altschul (1993) applied the same scoring func-
tion to identify transmembrane domains in the Drosophila
virilis sevenless protein, and in the human serotonin recep-
tor. The authors emphasisin that paper was on finding mul-
tiple digoint high scoring subsequences corresponding, for
instance, to multipletransmembrane domainsin asinglepro-
tein. Altschul (1997) provided additional analysis of the sta-
tigtical significance of multiple digoint high scoring subse-
guences. Our emphasisin this paper ison the same problem
of identifying multiple high scoring subsequences.

We present an O(n) timealgorithmfor finding all maximal
scoring subseguences in a given sequence of length n. There
isaclassica O(n) timeagorithmfor finding the single max-
imum scoring subsequence, from which it follows that all
maximal scoring subsequences can befoundinO(n?) timein
the worst case. Worst case behavior israre in practice. Run-
ningtimes of order nlogn are perhaps more representative of
the previoudly best known agorithm’s behavior, and an ex-
pected running time of ©(nlogn) is provable for an unreal-
istic but suggestivemodd. (See Section 2.) Whilethat algo-
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rithm may be fast enough to be useful in practice, oursis an
order of magnitude faster on problems of realistic size. Fur-
thermore, it is not substantially more complex, and presents
someinteresting subtletiesinitsdesignand analysis. Finally,
we hope better understanding of thisproblemwill lead toim-
provements in performance of algorithmsfor more complex
scoring schemes (P. Green (1997)), alternative definitions of
maximal or optimal subsequences (Sellers (1984)), or for
finding certain kinds of maximal subalignments (Altschul
and Erickson (1986a; 1986b), Sellers (1984), Waterman and
Eggert (1987)), for which the best known agorithms are
quadratic or worse. Note that our agorithm immediately
gives a quadratic method quite different from the usual dy-
namic programming methods for finding maximal (gapless)
subalignments; perhaps further improvements are possible.

Section 2 defines the computational problemto be solved,
and describes the best previously known agorithm for it.
Section 3 provides an alternative characterization of the
problem, and gives some basic facts about maximal scor-
ing subseguences. Section 4 presentsour algorithm, and dis-
cusses its correctness and analysis. Section 5 outlines some
experimental results.

2 Problem Definition and Previousy Known
Algorithms

Problem Definition. The input isasequence (X1, X, . . ., Xn)
of (not necessarily positive) real numbers, called “scores.”
The goa isto identify those contiguous subsequences hav-
ing the greatest total scores, where the score § ; of a subse-
quence (X, Xi+1, - - -, Xj) issimply the sum of its elements:

Sj= X

i<k<]

Throughout the paper, the term “subsequence” will be
taken to mean “contiguous subsequence”’, and likewise for
“supersequence’. Contiguous subsequences are sometimes
called substrings, segments, intervals, or regions. Likewise,
maximal scoring subsequences (defined below) are some-
times called locally optimal subsequences or maximum sum
intervals.

There is a subtlety in defining exactly what congtitutes a
maximal scoring subsequence. Temporarily setting aside the
handling of tied scores, the highest scoring subsequence is
simply the subsequence (X, Xi+1, - - -, Xj) that maximizes § ;.
Itisnot so clear, however, what the second best subseguence
should be. The subsequence with the second highest numer-
ical score very likely will overlap the highest scoring subse-
guence except for the addition or deletion of afew scores at
one end. Given the motivating application, this conveys no
useful information. Instead, the k™" best subsequence will be
defined to be the one that maximizes § ; among those sub-
sequences digoint from the k — 1 best subsequences. Ad-
ditionaly, to avoid trividities, we stop the process when
the next best score is nonpositive. Returning to the mat-
ter of tied scores, a zero-scoring subsequence adjacent to a
positive-scoring one creates overlapping subsequences with

tied scores. We resolve these ties by disallowing nonempty,
zero-scoring prefixes or suffixes in maximal scoring subse-
quences.

We define a maximal scoring subsequence (or maximal
subsequence for short) to be any of the (positive scoring)
subsequences found by the process described in the previ-
ous paragraph, and the desired output is a list of al these
subsequences. In practice, of course, scores below a certain
threshold might be discarded. Karlinand Altschul (1993) de-
scribe how such athreshold should be chosen to correspond
to adesired level of statistica significance.

As an example, consider the input sequence
(4,-5,3,-3,1,2,—2,2/—2,1)5). The highest scoring
subsequence isM = (1,2, —2,2,—2,1 5), with a total score
of 7. (There is another subsequence tied for this score by
appending (3, —3) to theleft end of M, but this subsequence
isnot maximal, sinceit has anonempty zero-scoring prefix.)
Thus, the maximal subsequences are (4), (3), and M.

Previoudy Known Algorithm. Although the defini-
tion of the single highest scoring subsequence suggests that
guadratic time would be needed to search over al combi-
nations of i and j, there is a well known linear time ago-
rithm for finding the single maximum scoring subsequence;
cf. Bates and Constable (1985), Bentley (1986, Column 7),
or Manber (1989, Section 5.8). (It can aso be found by a
specialization of the Smith-Waterman algorithm (Smith &
Waterman 1981).) The disjointness property immediately
suggests a simple divide-and-conquer algorithm for finding
all maximal subsequences: find the highest scoring subse-
guence, remove it, and then apply the algorithm recursively
to the remainder of the sequence to the l€eft of the removed
portion, and then to the remainder to the right.

Analysis of this agorithm is similar to that for Quick-
sort. (For an analysis of Quicksort see, for example, Man-
ber (1989).) Intheworst case, it will require quadratic time,
since the next highest scoring subsequence may be a short
subsequence near one end of the remaining sequence in ev-
ery recursive call. However, if the input is appropriately
random, the expected running time will be ©(nlogn), since
the highest scoring subsequence will usually fall nearer to
the middle. This result holds if (i) the residues in the se-
guence are chosen independently at random, and (ii) the ex-
pected score of a single random residue is negative. As
sumption (ii) is a reasonable one (Karlin & Altschul 1990;
1993). Notein particular that if the expected score were pos-
itive, then the highest scoring subsequence would likely in-
cludemost of the sequence, an uninteresting situation. More-
over, if log likelihood ratios are used as scores, as described
in Section 1, then the expected score isthe negative of arel-
ative entropy, and is thus provably nonpositive. However,
assumption (i) is decidedly unreasonablein practice: we are
not interested in regions of unusua composition in random
sequences. Nevertheless, the nlogn result is suggestive, and
in accord with the performance observed in practice. (See
Section 5.)
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3 Alternative Characterization

The procedural definition of maximal scoring subsequences
presented above, while well motivated, is somewhat diffi-
cult to usefor many purposes, and amoredirect definitionis
preferable. Intuitively, the desired subsequences are “max-
imal” in the sense that they cannot be lengthened or short-
ened without reducing their scores. This simple intuition,
however, istoo simple. For example, in the score sequence
(5,-4.9,1,3), both (5) and (1, 3) are maxima: (5) is the
highest scoring subsequence, and (1, 3) is the highest scor-
ing subseguence digoint from (5). Under the naive defini-
tion suggested above, however, (5) would be the only max-
imal scoring subsegquence: athough subsequence (1, 3) has
nearly ashigh ascore, it would be excluded because it can be
extended to form a higher scoring sequence (5,—4.9,1,3),
which in turn can be contracted to form the still higher scor-
ing sequence (5). The following aternative characterization
of the maximal scoring subseguences, due to Green (1997),
corrects this problem.

Proposition 1 Let K be any nonempty score sequence. A
subsequence | ismaximal scoring in K if and only if

P1. all proper subsegquences of | have lower score, and
P2. no proper supersequence of | containedin K satisfiesP1.

For the remainder of the paper, we will take this as the
definition of a maximal scoring subsequence, proving its
equivalence to the origina procedural definition at the end
of this section. We first develop a variety of useful conse-
guences of the new definition. For example, we show that
every nonempty prefix and suffix of a maximal scoring sub-
sequence has positivescore, and that every subsequence sat-
isfying P1 (and henceevery individua positive score) iscon-
tained in some maximal scoring subsequence. Some of these
properties are needed for the proof of Proposition 1, and
some for the correctness of the algorithmin Section 4.

Let |K| denote the length of a sequence K.

Lemma?2 Let K be any nonempty score sequence. For
any subsequence | of K the following are equivalent:

1. | satisfies property P1.

2. For 0<i < |I|, let § denote the cumulative total of all
scores in K up to and including theit score of I. Then §
istheuniqueminimumand S, isthe unique maximumof
the§'s.

3. All nonempty prefixes and all nonempty suffixes of | have
positive total score.

Proof: 1= 2: If forsome0 <i < [I[wehave § > §;,
then the proper prefix of | withlengthi hastotal score at |east
that of I. Similarly, if § < & for some 0 < i < |I|, then the
length (1] — i) suffix of | has total score at least that of |.

2=-3: Thetotal score of thelengthi prefix of 1 is§ — &,
whichispositivesince § isthe uniqueminimum. Similarly,
asuffix will have score §;, — §, which is positive since 5
is the unique maximum.

3= 1: The score of any proper subsequence J of | will be
the total score of | minus the scores of the prefix of | to the
left of J and the suffix of | to theright of J. Since nonempty
prefixes and suffixes all have positive scores, J will have a
strictly lower scorethan I. |

Lemma3 Let K be any nonempty score sequence. The
maximal subsequences of K are pairwise digoint (neither
overlapping nor abutting).

Proof: Supposel and J are maxima and nondigoint, with
I’sleft end at least as far |left as J's. Let L be the union of
theintervalsl and J. By Lemma 2, the minimum cumulative
scores within | and J occur uniquely at their respective left
ends, and the left end of J fallswithin (or at theright end of)
[, so the minimum cumulativescorewithin L occurs uniquely
at itsleft end. Similarly, L's maximum cumul ative score oc-
cursuniquely at itsright end. Thus by Lemma 2, L satisfies
property P1, contradicting the P2 property of either | or J. O

Lemma4 Let K be any nonempty score sequence. Every
subsequence | of K satisfying property P1 is contained in a
maximal subsequence of K. In particular, every positive sin-
gle score is contained in a maximal subsequence.

Proof: Suppose not. Let | be a counterexample of max-
imum length. | satisfies property P1, but is not itself maxi-
mal, so it must be properly contai ned in some supersequence
J satisfying P1. J cannot be contained in any maximal sub-
sequence, for otherwise | would be contained in a maximal
subsequence. ThusJ isa so acounterexampleto thelemma,
contradicting the choice of | asalongest counterexample. O

Corollary 5 Within any subsequence that does not over-
lap any maximal subsequence, the cumulative scores are
monotonically nonincreasing.

Lemma6 Let K be any nonempty score sequence.
Among consecutive occurrences of the minimum (maxi-
mum) cumulative total of all scores in any prefix of K, the
rightmost (leftmost, respectively) is either at the left (right,
respectively) end of one of its maximal subsequences, or at
theright (left, respectively) end of K.

Proof: If aminimum cumulative score occurs in a subse-
guence H that does not overlap any maximal subsequence,
by Corollary 5 the rightmost of consecutive occurrences of
this minimum must occur at the right end of H, which isei-
ther the right end of K or the left end of some maximal sub-
sequence. If the minimum cumulative score occurs within
some maximal subsequence, it must occur at itsleft end, by
Lemma 2. Argumentsfor themaximum cumulativescoreare
dual. O

Suppose J is a subsequence of a score sequence K. The
key issue in our inductive correctness arguments turns out
to be relating the maximal subsequences of J to those of
K. Thefollowing three lemmas give some of these relation-
ships. Lemma 7 establishes the easy direction, and Lem-
mas 8 and 9 give useful partia converses. We sometimes
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say that a sequence is |-maximal as a shorthand for “maxi-
mal scoring subsequence of 1.”

Lemma7 Let K be any nonempty score sequence. If | is
a subseguence of J, which inturnisa subsequence of K, and
| isK-maximal, then | is J-maximal.

Proof: Sincel isK-maximal, it satisfies property P1, and
no proper supersequence of | in K satisfies P1. Then cer-
tainly there is no proper supersequence of | in J satisfying
P1. |

Lemma8 Let K be any nonempty score sequence. Sup-
pose J is a prefix of K, and suppose all scores in the suffix
of K following J are nonpositive. Then the maximal subse-
guences of K are exactly the same as those of J.

Proof: If | is K-maximal, then | is J-maximal by
Lemma 7. Conversely, if | isJ-maximal, then no proper su-
persequence of | satisfying property P1 existsinJ, and every
supersequence extending outsideof J failsto satisfy property
P1 by Lemma 2, since it has a nonempty nonpositive suffix.
Thus, | isK-maximal. O

Lemma9 Let K be any nonempty score sequence. Sup-
pose M isa maximal subsequenceof K, andlet L and Rbethe
two (possibly empty) subsegquences of K formed by deletion
of M. Then a subsequence | of L isL-maximal if and only if
I isK-maximal. Smilarly, a subsequence of R is R-maximal
if and only if it isK-maximal.

Proof: Wewill only givetheargument for L, the argument
for Rbeing identical.

The“if” directionisimmediate from Lemma 7.

For the “only if” direction, suppose | is L-maxima but
not K-maximal. | satisfies property P1, so by Lemma4, | is
contained in some J that is K-maximal. J properly contains
I, sincel isnot K-maximal. Furthermore, J cannot be con-
tained inL, for otherwisel isnot L-maximal. But neither can
J extend past theend of L, because then it would overlap M,
violating digointness of K-maximal sequences (Lemma 3).

O

Finally we prove Proposition 1, establishing the equiva-
lence of the two alternative definitions of “maximal scor-
ing subsequence” considered above. That is, we show that
a subsequence is maximal according to the original proce-
dura definition given in Section 2 if and only if it satisfies
properties P1 and P2 of Proposition 1.

Proof (of Proposition1): Let MAX(K) be the complete
list of subsequences satisfying PLand P2inK. Any positive-
scoring subsequence M having a globally maximum score
and no zero-scoring prefix or suffix clearly satisfies proper-
tiesPland P2. Hence, MAX(K) istheempty listif K consists
only of nonpositive scores (by Lemma 2), and otherwise is
(Max(L),M,MAX(R)) (easily shown by Lemma 9 and in-
ductionon |K|), which is exactly the list produced by the re-
cursive algorithmin Section 2. |

4 New Algorithm

We now present an agorithm that finds all maximal scoring
subseguences in time O(n). We first describe the algorithm,
and then discuss its correctness and performance.

Algorithm. The agorithm reads the scores from left
to right, and maintains the cumulative tota of the scores
read so far. Additionally, it maintains a certain ordered list
I1,15, ..., 11 of digoint subsequences. For each such sub-
sequence |, it records the cumulative total L; of all scores
up to but not including the leftmost score of |}, and the total
R; up to and including the rightmost score of 1;.

The list isinitially empty. Input scores are processed as
follows. A nonpositive score requires no special processing
when read. A positive score isincorporated into a new sub-
sequence |y of length one! that isthen integrated into the list
by the following process.

1. Thelist is searched from right to left for the maximum
valueof j satisfying Lj < Ly.

2. If thereisno such j, then add I to the end of thelist.

3. Ifthereissuchaj, and R; > Ry, then add I, to the end of
thelist.

4. Otherwise (i.e, thereis such a j, but Rj < Ry), extend
the subsequence Iy to the left to encompass everything
up to and including the leftmost score in | ;. Delete sub-
sequences |, lj4q,. .., k-1 from the list (none of them
is maximal) and reconsider the newly extended subse-
quence Iy (now renumbered | ;) asin step 1.

After the end of the input is reached, all subsequences re-
maining on the list are maximal; output them.

As an example of the execution of the algorithm, con-
sider the sample input from Section 2. After reading the
scores (4,—5,3,—3,1,2,—2, 2), suppose the list of digoint
subsequencesisly = (4),12 = (3),13=(1,2),14 = (2), with
(Lla Rl) = (Oa 4)' (LZa RZ) = (_1a 2)' (L3a R3) = (_1a 2)' and
(Lg,Rq) = (0,2). (See Figure 1) At this point, the cumu-
lative score is 2. If the ninth input is —2, the list of sub-
sequences is unchanged, but the cumulative score becomes
0. If thetenthinput is 1, Step 1 produces j = 3, because I3
is the rightmost subsequence with Lz < 0. Now Step 3 ap-
plies, since Rz > 1. Thusls = (1) is added to the list with
(Ls, Rs) = (0, 1), and the cumul ative score becomes 1. If the
eleventh input is 5, Step 1 produces j = 5, and Step 4 ap-
plies, replacing Is by (1,5) with (Ls,Rs) = (0,6). The al-
gorithm returnsto Step 1 without reading further input, this
time producing j = 3. Step 4 again applies, thistime merg-
ing ls, 14, and Is into anew I3 = (1,2, —2,2,-2,1,5) with
(Ls,Rs) = (—1,6). The algorithm again returnsto Step 1,
but this time Step 2 applies. If there are no further input
scores, the complete list of maximal subsequences is then
l1=(4),12=(3),13=(1,2,-2,2,-2,1,5),asin Section 2.

Correctness. The key to proving the correctness of the
algorithm isthe following lemma.

1in practice, one could optimize this slightly by processing a
consecutive series of positive scoresas |-
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Cumulative Score

Sequence Position

Cumulative Score

Sequence Position

Figure 1: Anexample of the agorithm. Bold segments indi cate score sequences currently in the algorithm’slist. Theleft figure
shows the state prior to adding the last three scores, and the right figure shows the state after.

Lemma10 Let Q be a score sequence. Suppose that a
suffix 1y, of Q satisfies property P1. Let P be the prefix of Q
preceding l. Further suppose that |4, ..., l_1 is the com-
plete ordered list of the P-maximal subsequences. Then the
subsequencesly, 15, ... constructed fromly, . . ., I, by Steps1—
4 above form the complete ordered list of the Q-maximal se-
quences.

The correctness of thealgorithmfollowsfrom Lemma 10.
Givenaninput sequence T, let Q;, 0 <i < |T|, bethelength
i prefix of T. We show by induction on i that after process-
ingthei™ score, thelist 4, 15, . . . constructed by thea gorithm
aboveisthe complete ordered list of Q;-maximal sequences.
The basis, i = 0, isimmediate. For the induction step, sup-
posethelist consistsof 14, . . ., I_1 whentheit" scoreisread.
If thei' scoreisnonpositive, then themaximal subsequences
of Q; are exactly the same as the maximal subsequences of
Qi_1, by Lemma 8. If thei'" score is positive, then it com-
prisestheentire subsequence I constructed by thea gorithm,
which clearly satisfies property P1. Furthermore, by the in-
ductionhypothesis, I, . . ., Ix_; isthecomplete ordered list of
the Q;_;-maximal subsequences, and so Lemma 10 implies
that the algorithm correctly constructs the complete ordered
list of Qj-maximal sequences.

We now prove the Lemma.

Proof (of Lemma 10): There are three cases, paraleling
Steps 2—4 of the algorithm.

Caske 1: Suppose Step 1 locates no j such that L < Ly.
ApplyingLemma6toP and Lemma2to Iy, L, isaminimum
cumulative score in Q. Then applying Lemma 6 to Q and
Lemma 2 to Iy, some prefix J of Iy is Q-maximal. In order
for J to have property P2, J = Iy, so Iy is Q-maximal. The
fact that each 1, 0 < j < k, isQ-maximal then followsfrom
Lemma 9, by choosing M = I.

CAsE 2: Suppose thereisa j such that L < Ly, and sup-
pose for the greatest such j that R > R. Weclaimthat | is
Q-maximal. Suppose not. From the definition of maximal-
ity there must be some proper supersequence J of |; satis-
fying property P1. Furthermore, this supersequence cannot

lie totally within P (otherwise I would not be P-maximal).
Consequently, J must overlap I,. The (nonempty) suffix of
J that begins at the right end of |; must have a nonpositive
score (since Ry, and hence by Lemma 2 every cumulativeto-
tal within Iy, is at most R;). But this contradicts Lemma 2,
which means | is Q-maximal.

Let Sbe the suffix of Q that begins at the right end of I;.
Applying Lemma 6 asin Case 1, lx is Smaximal, since Ly
isaminimum cumulative scorein S. By choosingM =1 in
Lemma 9, I isalso Q-maximal. Then one more application
of Lemma9with M = I showsthat I, 15, ..., 1k_; aredl Q-
maximal.

CAsE 3: Suppose thereisa j such that Lj < Ly, and for
the greatest such j we have Rj < R¢. Thisis perhaps the
most interesting case, in which several P-maxima subse-
guences are merged into one sequence having a greater to-
tal score. The merged sequence may not be Q-maximal, but
will be shown to satisfy property P1, and so Lemma 10 may
be applied inductively. Let k' be the least index in the range
j <K <ksuchthat Rj < Ry. (Such ak’ existssince k sat-
isfiesthisproperty.) Let J betheinterval extending from the
left end of |; to the right end of I;. By construction, all in-
tervasly, j < j' <K, havel; < Lj and Ry < Ry, so by
Lemma6 (and Lemma7), L; istheunique minimum and Ry
the unique maximum among the cumulative totalswithin J.
By Lemma 2, then, J satisfies property P1. If k' < k, then J
lies wholly within P, contradicting the P-maximality of I;,
say. Hence we have k' = k, and J is a suffix of Q satisfy-
ing property P1. Let P' be the prefix of P to the |eft of J,
and note that, by choosing K = Pand M = | in Lemma 9,
the completelist of P'-maximal subsequencesisly, ..., lj_1.
Furthermore, j < k, so by inductiononk, returningto Step 1
(as the dgorithm does in Step 4) will correctly compute the
maximal subsequences of Q. (The basisfollowsfrom Cases
land2) |

Analysis. Thereisan important optimization that may be
made to the algorithm. In the case that Step 2 applies, not
only are subsequences Iq,...,lx_1 maximal in Q, they are
maximal in every sequence R of which Q is aprefix, and so
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may be output before reading any more of theinput. (Thisis
truesince Ly isaminimum cumulative scorein Q, so any su-
persequence of 1j, 1 < j < k—1, extending past the left end
of Iy will have anonpositive prefix, hence is hot R-maximal
by Lemma2.) Thus, Step 2 of the algorithm may bereplaced
by thefollowing, which substantially reducesthememory re-
quirements of the agorithm.

2" If thereisno such j, all subsequences |y, ly, ..., lx_1 are
maximal. Output them, delete them from the list, and
reinitialize the list to contain only I, (now renumbered

1).

Thea gorithmas givendoesnot runin linear time, because
severa successive executions of Step 1 might re-examine a
number of list items. This problem is avoided by storing
with each subseguence I added during Step 3 a pointer to
the subsequence I; that was discovered in Step 1. The re-
sulting linked list of subsequences will have monotonically
decreasing L; values, and can be searched in Step 1inlieu
of searching the full list. Once alist element has been by-
passed by thischain, itwill beexamined againonly if itisbe-
ing deleted fromthelist, either in Step 2’ or Step 4. Thework
doneinthe*“reconsider” loop of Step 4 can beamortized over
thelist item(s) being deleted. Hence, in effect, each listitem
is examined a bounded number of times, and the total run-
ning timeislinear.

The worst case space complexity is also linear, although
onewould expect on average that the subsequencelist would
remain fairly short in the optimized version incorporating
Step 2': since the expected value of an individua score is
negative, Step 2' should occur fairly frequently. Empirically,
afew hundred stack entries suffice for processing sequences
of afew millionresidues, for either synthetic or real genomic
data

5 Experimental Results

We haveimplemented both our linear time a gorithm and the
previously known divide and conquer agorithm and com-
pared their performances.

Our linear time agorithm is a factor of five faster even
on sequences as short as 100 residues, and is 15 to 20
times faster on megabase sequences. It can process a one
megabase score sequence in less than 100 milliseconds on
amidrange PC. Obviously, saving afew seconds or tens of
seconds on one analysiswill not be critical in many circum-
stances, but may be moresignificant when analyzing long se-
guences, repeatedly analyzing sequences under varying scor-
ing schemes, searching databases, or when offered on abusy
Web server, for example.

As noted in the introduction, the code for the linear time
algorithmis somewhat more complex than that for the divide
and conguer algorithm, but not substantially more complex.
The core of the algorithmiswell under 100 lines of C code.

Figure2 givescomparative timinginformationfor thetwo
algorithmsin one set of experiments. The figure plots T/n
versusn (onalogarithmicscale), where T istherunningtime

of either agorithm and n is the length of theinput score se-
guence. Asexpected, therunningtimeof thedivideand con-
guer algorithm appearsto begrowing asnlogn, as evidenced
by the linear growth of T/n when plotted against logn in
Figure 2. Also as expected, the running time of our ago-
rithmisgrowing linearly with n, i.e,, T/nisnearly constant
over the full range of lengths considered, from n = 128 to
n= 1,048, 576, with a mean of 80 nanoseconds per score.

The tests plotted in Figure 2 were performed on aMacin-
tosh 9600/300, (300 MHz PowerPC 604e processor, IMB in-
linecache, 64 MB RAM). Theinput length varied by factors
of 2 from 27 to 2%, Ten trialswere run at each length, with
integer scores drawn independently and uniformly from-5to
+4 (expectation -0.5). Each agorithmwas run repeatedly on
each random score sequence to compensate for limited res-
olution of the system clock, but we did not carefully control
for cache effects. Each of the ten trialsfor each agorithmis
plotted in Figure 2. It isinteresting to note that the running
time of our linear time agorithm is much less variable than
that of the divide and conquer algorithm, and in fact most of
itsvariation in these tests may be dueto clock granularity.

The same tests using synthetic data were run on several
platforms(Pentium I1, SPARC, Alpha). Additionally, weran
tests using real genomic sequences (yeast and bacterial) of
up to a few megabases in length. Relative performance of
the two algorithmswas similar for al these data sets on all
platforms. The performance of neither a gorithm appears to
be particularly sensitiveto the source of the data.

In the course of our timing tests, we ran afew simple ex-
perimentssuch asthefollowing. Inthe Haemophilusinfluen-
zae genome, the dinucleotide CpG appears on average once
every 25 bases. Karlin, Mrazek, and Campbell (1997) have
reported that the C,G dinucleotide is rather uniformly dis-
tributed throughout the H. influenzae genome, and its fre-
guency is generally explainable in terms of the underlying
frequencies of the mononucleotides C and G. Specificaly,
they defined the quantity pcg to be fcg/ fc fg, where feg is
the frequency of CpG dinucleotidesin a given region, and
fc, fe are the corresponding mononucl ectide frequenciesin
that region. They observed that pcg is near 1 and nearly
congtant across successive 50kb contigs of the genome, in
contrast to certain other dinucleotides. We ran our maximal
subsequence a gorithm on the compl ete genome, assigning a
score of 20 to each CpG dinucleotideand a score of -1 to all
others. Asexpected, since an “average’ 25 residue sequence
will have a net score of -4, most of the nineteen thousand
maximal subsequences identified by the algorithm are quite
short and have low scores. However, about 20 subsequences
were found with lengths of two to twenty kilobases and (sta-
tigtically significant (Karlin & Altschul 1990)) scores of sev-
eral hundred to several thousand. A third of these are eas-
ily explained away asregionsof unusually high C/G content,
which can be expected to have more C,G dinucleotides(i ..,
these regions also have pcg near 1). However, two thirds
of the subsequences show a substantia enrichment in CpG
dinucleotides as compared to the frequency of C/G mononu-
cleotides in the same subsequence (high pcg). Existence of
these CpG-rich regions does not contradict the observations
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Figure 2: Timing comparison of the divide and conquer and linear time algorithms. See text for details.

of Karlin, Mrazek, and Campbell (1997) since they are only
visible on a variable length scale shorter than 50kb. We do
not claim that identification of theseregionsisnovel, nor that
they are biologically significant, but we do hope that avail-
ability of thefast algorithmfor the very general scoring prob-
lem presented in thispaper will help researchersidentify fea
turesthat are both novel and biologicaly significant.
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