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ABSTRACT

Motivation: Non-coding RNAs (ncRNAs)—functional RNA
molecules not coding for proteins—are grouped into hundreds
of families of homologs. To find new members of an ncRNA
gene family in a large genome database, Covariance Models
(CMs) are a useful statistical tool, as they use both sequence
and RNA secondary structure information. Unfortunately, CM
searches are slow. Previously, we introduced “rigorous filters,”
which provably sacrifice none of CMs’ accuracy, while often
scanning much faster. A rigorous filter, using a profile hidden
Markov model (HMM), is built based on the CM, and filters the
genome database, eliminating sequences that provably could
not be annotated as homologs. The CM is run only on the
remainder. Some biologically important ncRNA families could
not be scanned efficiently with this technique, largely due to the
significance of conserved secondary structure relative to pri-
mary sequence in identifying these families. Current heuristic
filters are also expected to perform poorly on such families.
Results: By augmenting profile HMMs with limited secondary
structure information, we obtain rigorous filters that acce-
lerate CM searches for virtually all known ncRNA families
from the Rfam Database and tRNA models in tRNAscan-SE.
These filters scan an 8-gigabase database in weeks instead of
years, and uncover homologs missed by heuristic techniques
to speed CM searches.

Availability: software in development; contact the authors.
Supplementary information: http://bio.cs.washington.edu/
supplements/zasha-ISMB-2004 (Additional technical details
on the method; predicted homologs.)

Keywords: non-coding RNA, covariance model, gene family,
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1 INTRODUCTION

Non-coding RNAs (ncRNAs) are functional RNA molecu-
les that do not code for proteins. Well-known examples ar
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tRNAs and spliceosomal RNAs, but recent discoveries reveal
ncRNASs to be much more numerous and significant than pre-
viously thought (Storz, 2002; Hittenhofetral., 2002; Eddy,
2002), e.g., with microRNAs and analogous bacterial RNAs
that regulate other genes (Kennedy, 2002; Gottesman, 2002;
Wagner & Flardh, 2002), and regulatory mRNA structural
elements (Grilloet al,, 2003; Lai, 2003) that are essentially
NcRNAs.

To exploit prior work on the over 100 known ncRNA
families, it is useful to annotate genomes with family homo-
logs. Since secondary structure is often functionally important
to RNAs, this task requires modeling both sequence and
secondary structure. Techniques for finding ncRNA family
members include searching for patterns that can include base
pairing (Mackeet al,, 2001; Dsouzat al,, 1997; Grilloet al,,
2003), and searchingfor specifictypes of ncRNA, e.g., tRNAs
(Lowe & Eddy, 1997; Fichant & Burks, 1991; Pavetial.,
1994), microRNAs (Limet al, 2003) and small nucleolar
RNAs (Lowe & Eddy, 1999; Edvardssat al., 2003). These
methods require significant expert input, making them hard
to extend to new ncRNA families.

Two methods requiring modest manual work per family
are covariance models (CMs) (Eddy & Durbin, 1994; Durbin
et al, 1998) and ERPIN (Gautheret & Lambert, 2001). Both
require only a multiple alignment of family members annota-
ted with a secondary structure. From this a statistical model
is built and used to search a genome database. In tests, both
technigues exhibit high sensitivity and specificity on, e.g.,
tRNAs (Gautheret & Lambert, 2001; Lowe & Eddy, 1997).

A limitation of ERPIN is that it cannot accommodate non-
consensus bulges in helices (which CMs can). Additionally,
to prune its search, ERPIN sometimes requires the user to spe-
cify score thresholds for each helix, thus requiring more expert
input and/or compromising accuracy. A limitation of CMs is
that they cannot represent pseudoknots (which ERPIN can).

dt is not clear which limitation is more significant, but studies

suggest that pseudoknots contain little information (Eddy &
Durbin, 1994), whereas indels are common in many contexts.

© Oxford University Press 2004.



Z. Weinberg and W.L. Ruzzo

In addition to these theoretical issues, one serious pragmatgituations such as these. First, we present two techniques that
issue affects CMs: scans are very slow. deviate from the usual profile HMM architecture to include

This paper seeks to address the impractical speed of CManited structure information to improve filtering at the cost of
without sacrificing their accuracy. CMs are used in the Rfamincreased CPU time, while still being rigorous. Téeh-CM
Database (Griffiths-Jonest al, 2003) to annotate an 8- technique mixes CMs and profile HMMs, using CMs for key
gigabase genome database called RFAMSEQ for over 10€tructural elements. Thatore-pairtechnique uses additional
ncRNA families. CMs are too slow to be used directly; e.g.,HMM states to store information to better model key base
searching RFAMSEQ to find tRNAs would take about 1 yearpairs.
ona 2.8 GHz Intel Pentium 4 PC. Obviously, thisisimproving By varying parameters, both techniques can generate many
as computers get faster, but both the number of ncRNA famifilters; some run very quickly, but may not filter selectively,
lies (currently well over 100) and the quantity of sequencewhile others are more selective but slower. Our third innova-
data are rapidly expanding. To improve speed, Rfam useon, to minimize overall scan time, is to run several filters
a BLAST-based heuristic (Altschudt al, 1997). For each in series, starting with the quickest, and ending with the most
ncRNA family, the known members are BLASTed againstselective. We solve the problem of selecting the optimal series
RFAMSEQ); the full CM is run only on matches returned by of filters as a classic shortest path problem.

BLAST. These searches are acceptably fast, but the BLAST We applied these techniques to the 13 ncRNA families
heuristic may miss family members that would be found withthat were not practical with our previous technique, inclu-
a regular (slower) CM search (Griffiths-Joresal, 2003), a  ding biologically important ncRNAs such as the tRNAs,

particular concern for families with low sequence conservasignal recognition particle (SRP), RNase P, two snRNAs
tion, where tuning BLAST to be as sensitive as CMs may beand three riboswitches (Winkler & Breaker, 2003; Vitreschak
difficult or impossible. et al, 2004)—mRNA structural elements that regulate thia-

CMs are also used by tRNAscan-SE (Lowe & Eddy, 1997)min, lysine and vitamin B12 genes. Itis practical to rigorously
the leading tool for annotation of tRNAs. To improve speed,scan an 8-gigabase nucleotide database for all but 2 of these
tRNAscan-SE uses two programs previously created speciffamilies. In all 11 successful families, these scans find new
cally for tRNA searches; if either of these programs, usinghits (putative homologs) missed by the BLAST heuristic; in
permissive settings, reports a possible tRNA, the CM is runmany cases the new hits are supported by annotations or are
Again, the heuristics may miss tRNAs that CMs would find. otherwise biologically plausible.

We develop aigorous filter. Unlike heuristics, rigorous When applied to tRNAscan-SE, our techniques permit a
filters guarantee that all sequences classified as homologs Ibigorous scan of three of its four CMs (archaeal, eubacte-
the CM will be found; a rigorous filter will never increase the rial and nuclear eukaryotic), finding several hits missed by
false negative rate over that of the CM. Previously, we createtRNAscan-SE’s heuristics. We are unable to improve speed
rigorous filters based on profile HMMs (Weinberg & Ruzzo, for its fourth model (organellar), although tRNAscan-SE by
2004). A profile HMM is built from the CM, and run against default runs the raw CM for these small genomes.
the database. Based on the output, much of the database cahe next section gives results. Section 3 reviews salient
be eliminated as provably not containing any family memberdeatures of CMs, and section 4 summarizes profile HMM-
that would be detected by the CM. The CM is run only onbased rigorous filters. Section 5 describes the sub-CM, store-
what remains. pair and filter selection techniques. Section 6 concludes.

Surprisingly, although based on sequence conservation
alone, thesg .filte_rs enabled rigorou; scans for 126 of thg 139 RESULTS
NcRNA families in Rfam 5.0 (ignoring those families using
the Rfam local alignment feature; see section 6). Rigoroug-1 Summary
filtering remained impractical for the other 13 families. TheseTable 1 lists results on 11 Rfam ncRNA families and 3
13 families tend to exhibit relatively low sequence consertRNAscan-SE models. Rigorous filtering is practical on these
vation, but strong conservation of secondary structure. Notamilies, averaging about 100 times faster than a raw CM,
only are these families difficult for our previous rigorous fil- and for all families uncovers family members missed by
ters, but one would expect that the BLAST filtering heuristic Rfam/tRNAscan-SE heuristics.
would miss many homologs in these families, since compen- The rigorous filters run slower than tRNAscan-SE, by a fac-
satory mutations preserving base pairing in helical regions, foror of 10 for prokaryotes and 100 for eukaryotes, for which
example, can easily destroy the short exact matches that atlRNAscan-SE was chiefly designed. However, our scans are
central to BLAST alignments. Thus, incorporation of secon-rigorous, and, unlike tRNAscan-SE, not specific to tRNAs. It
dary structure information is essential for successful filteringmay be possible to tune tRNAscan-SE to find the new homo-
of increasingly diverged ncRNA families. logs, but for BLAST, this is not straightforward. For example,

In this paper, we introduce three innovations aimed atve ran a BLAST filter for RFO0168. Finding even 9 of the 11
extending practical rigorous filtering to biologically important new hits required an E-value threshold of 10000, degrading
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NcRNA family avg | % # # | filters est. | data-
len | id | known | new | +CM CM | base

time time size

(days) | (days) | (Mb)

RF00001 5S rRNA 115| 61 5460 14 14.0 651 | 8295
RF00004 U2 snRNA 171 | 60 466 1 9.1| 2110| 8295
RF00005 tRNA 71| 43| 58609| 5158| 31.0 335| 8295
RF00009 nuclear RNase P 290 41 69 3 14.2| 6240| 8295
RF00010 bacterial RNase P 317 | 62 413 1 31.9| 9029| 8295
RF00017 SRP 299 | 49 128 13 14.9| 5493| 8295
RF00023 tmRNA 345 46 226 21 18.7| 9587| 8295
RF00029 Group Il intron 75| 55 5708 | 331 6.9 666 | 8295
RF00059 thiamin element 104 | 52 276 7 10.7| 2485| 8295
RF00168 lysine riboswitch 181 49 60 11| 21.2| 1724| 8295
RF00174 cobalamin riboswitch | 202 | 47 170 7 38.1| 5081 | 8295
tRNAscan-SE archaea - - 1016 15 0.1 5 47
tRNAscan-SE eubacteria -| -] 13624 87 1.8 80| 640
tRNAscan-SEDrosophilanuclear - - 296 1 0.7 21| 117
tRNAscan-SEC. elegansiuclear - - 822 16 2.7 18| 100
tRNAscan-SE human nuclear - - 608 | 121 26.2 562 | 3070

Table 1. Results of rigorous filtering experiments. Each row in this table is one Rfam or tRNAscan-SE ncRNA family, described in the first column, with
Rfam Id if applicable. Next is its average length in nucleotides and % identity (sequence conservation) as reported in Rfam (not available for tRNAscan-SE
models). # known is the number of members in RFAMSEQ reported by Rfam, or by running tRNAscan-SE on the appropriate subset of RFAMSEQ. # new is
the number ofidditionalmatches in RFAMSEQ that our technique found. The CPU time taken to scan RFAMSEQ or subset on a 2.8 GHz Pentium 4 is next,
then the estimated time for a pure CM scan (extrapolated from a 10 Kbase scan). The RFAMSEQ or subset size is given in megabases. tRNAscan-SE was rul
with default parameters, with the domain of life specified with appropriate flags; for raw CM and rigorous scans, its default window length of 250 was used.
Note: RFO0005's scan covered more sequence data, including organellar DNA, so has many more hits than tRNAscan-SE model scans.

BLAST's selectivity so that searching takes 3 times longerof 5S rRNA. Eukaryotic nuclear RNase P RNA (RF00009)

than our rigorous scan. has 3 hits inDrosophilg one of which is a partial RNase P
sequence identified in a study of eukaryotic RNase P. Bac-
2.2 Impractical ncRNAs terial RNase P RNA (RF00010) has one archaeal hit in an

Our technique did not improve scan time significantly for two annotated partial RNase P sequence. The thiamin element
Rfam families. The SECIS element (RF00031) is a single londRF00059) has three new hits upstream of predicted thiamin
hairpin structure. This paper’s techniques work best on RNA®Iosynthesis genes. The cobalamin riboswitch (RF00174) has
with many hairpins, where spending more time on one hairpiff€W hits in the cbiA and cbiX genes, both required for coba-
does not inflate the overall ncRNA run time so significantly.lamin synthesis. Of 11 new hits for the lysine riboswitch
We have no clear reason why RF00177, the 5’ domain of théRF00168), all are upstream of genes: 6 to lysine-specific
small subunit ribosomal RNA, proved impractical. permeases, 3 to more general amino acid transporters, 1 to

The technique was also unsuccessful on tRNAscan-SEYSA (lysine biosynthesis), and 1 with no annotated function.
organellar tRNA model. The organellar model is based orf’reliminary inspection of new group Il intron (RF00029) and
training sequence from all three domains of life, which maytRNA (RFO0005 and tRNAscan-SE) hits, identified several
dilute primary sequence features exploited by profile HMMs With supporting annotation. Thus, rigorous filters have unco-
Also, organellar tRNASs’ score threshold is set lower than nor-vered homologs missed by heuristics, and will potentially lead
mal, so it is harder to prove that a sequence must score belot & better understanding of ncRNA families.
the threshold.

3 SIMPLIFIED CMS

2.3 Buried treasures Covariance Models (CMs) are statistical models that can
All families scanned in this paper revealed hits missed bydetect when positional sequence and secondary structure
Rfam/tRNAscan-SE. Many new hits found with rigorous filte- resembles a given multiple RNA alignment. To simplify
ring are supported by an annotation. 5S rRNA (RF00001) hathe presentation, as in (Weinberg & Ruzzo, 2004), we sim-
8 hits annotated as such, atleast 4 based on studies specificglijffy CMs, e.g., ignoring unusual inserted nucleotides, and
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describe them unconventionally in terms of stochastic contextGiven a CM, we create a profile HMM whose Viterbi score
free grammars (SCFGs). This paper’s techniques extend timr any sequence is always an upper bound on that of the CM.
fully general CMs analogously to the profile HMM technique Although profile HMMs are less powerful than CMs, their
(Weinberg & Ruzzo, 2004). Readers unfamiliar with context-Viterbi algorithm is much faster, which makes them an attrac-
free grammars may find chapter 9 of (Durlghal, 1998) tive filter. First, we describe how we will filter with a profile
helpful. or augmented HMM, then explain how to convert CMs into
profile HMMs, modeled as stochastic regular grammars. To
3.1 CMgrammar rules guarantee rigorous filtering, the HMM rules’ logarithmic sco-
Consider RNA molecules with sequence CAG or GAC withres are constrained such that the HMM's score for a database
the C,G bases paired. A context-free grammar (CFG) for thisubsequence is an upper bound on the CM's score, a property

is S, — ¢S9|gS;cand $ — a. (By convention nucleotides maintained in augmented HMMs.
inthe CFG are lowercase.) 8nd S are callecstatesand §

thestart state The first rule says that;Smay be replaced by 4.1 Filtering
eithercS, g or gS;c. So, we can produce the string CAG by the Using the HMM, we compute CM score upper bounds for

following steps, beginning with the start statg: S ¢S,9 — g psequences ending at each nucleotide position in the data-
cag. The series of steps from start state to RNA sequence i§,qe sequence. When an upper bound exceeds the threshold,
called aparse ) a CM scan is applied to a window of sizéndow length If

CMs have states;SS,, .. ., S, for each of (possibly base- o Hivim-generated upper bound is below the threshold, the

paired) alignment positions. CFG rules of a restricted formc,vI cannot report a homolog at that location, so it is safely
codify sequence and structure characteristics, although thﬁtered out

paper does not explain how to select these rules. All rules
are of the form § — x.S;;1zr, Wherez,, (left nucleo- 4 2  profile HMM grammar

tide) andzr (right) may either be a nucleotide (a,c,g,u) or . .
the empty charactet, which produces no nucleotide. df, Regular grammars are less powgrful than .SCFGS in that their
rules cannot emit paired nucleotides. Their rules must be of

andz g are both nucleotides, the rule emits paired nucleoti-the form S s,
des. Ifz;, = e or z = € or both, the rule emits an unpaired Cons'derﬂaxéMﬂl ih two states. and rules S
nucleotide or no nucleotide; such rules can accommodate mis- ! wi W ’ ules

sing consensus positions. Spetidilircation statefiave rules 65u/cSg; S, — e A profile HMM cannot represent the
like S, — S,S, for j,k > i, which allow for n"cRNAS with fact that the bases are paired, but can reflect the sequence

multi-loops. Figure 1 demonstrates these concepts. information by breaking Sinto two HMM states:sf hand-

. les the left nucleotide an@f the right. (HMM states will be
3.2 CM genome annotation written with a bar to differentiate them from CM states.) Here
Each rule has a probability. Rules more consistent with ang aregulargrammaéf _ a§2L|c§2L; gzL . éf; §f .
NcRNA family have higher probabilities than less plausible ;,, Thjs profile HMM grammar encodes the fact that the first
rules. A parse’s probability is the product of the pr_obabilitiesnudeotide is A or C, and the second G or U, but it sacrifices
ofthe rules usedin that parse, e.g., parse probabilit®, —  the information that only A-U or C-G pairs are permitted; e.g.,
¢S9 — cag) = Pr(Sy — ¢S9) x Pr(S; — a). Instead it gllows AG. This sacrifice is a limitation of profile HMMs.

of probabilities, CMs usually employ odds_ratios, relatiye o |n general, a CM state;9s expanded into deft HMM
a simple packground model._qucomp.utatlonal’convenlgnceStategL and aright HMM stateS® All CM rules s —
the logarithm of the odds ratio is used; a parse’s score is the t ) v _I L
sum of the logarithmic scores for the rules used in the parse?LSi+17r areé converted into HMM rule§; — z..S;,, and

For each genome database subsequence, the highegﬁ — a:RSR_l. (The subscript o is decremented since
scoring, orViterbi, parse is computed by dynamic program- right nucleotides are emitted in reverse orders) # 1, then
ming (Eddy & Durbin, 1994; Durbiret al, 1998). If a we om|t§il See Table 2 for an examp|e_
subsequence’s Viterbi score exceeds a user-supplied, family-

specific threshold, the subsequence is considered a famiy.3 Constraints on scores

m.ember. The CM \,"terb' algorithm requires a user-supp'lled-l-o ensure rigorous filtering, we define constraints ensuring
window length which is an upper bound on the family o4 the HMM's Viterbi parse score for any database sub-
member’s length, and a factor in CM scan time complexity. sequence upper bounds the CM's Viterbi score. Any CM
parse consists of a sequence of rules, which can be map-
4 PROFILE HMM FILTERS ped to HMM rules (according to our construction), yielding
This section recaps background from (Weinberg & Ruzzoa corresponding HMM parse. A parse score is the sum of
2004) on rigorous profile HMM filters relevant mugmen- its rules’ logarithmic scores. We enumerate all CM rules
tedrigorous HMM filters, the main contribution of this paper. S; — x5 S; 11z for all i. For each rule, we require the sum
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(A) 123431 (B)
smurf CCUGGG
unicom GCUCAC
centaur G-UCAC

Fig. 1. RNA multiple alignment, structure and CM. (A) A hypothetical multiple RNA alignment. Dashes (-) indicate missing nucleotides. (B)
The structure. Thick lines are conserved base-pairs. Numbers refer to alignment positions; positions 1 and 3 are base paired, so appear twice. |
CM encoding these sequences and structures i93S,9|gS:c; Sz — €Sse|cSze; Sz — uSsaluSig; Si — ¢Ss€lgSse; S5 — e

(Note: normally CMs use less rigid grammars, allowing anomalous nucleotides with lower probability.) A parse of the unicorn sequence is
S — ¢S — gcSzec — geuSsaec — geucSseaec — geuceeaee = geucac. (C) This structure has two loops like in (B), implemented

with bifurcation state § — $;Ss.

CM state rules | left HMM state rules | right HMM state rules
S| — cSuglgSec | S) — 19S5, S —clg

S — €Sz¢|cSze §2L — egi\cég gf — eé?

S; — uSsaluS,g §3L — ugi Sf — aég|g§§

Sy — ¢Ss€|gSse gf — cgf\ggé gf — Sy

S — e s -5/

Table 2. Example of converting a CM to a profile HMM. The CM grammar of Figure 1 is converted to a profile HMM grammar, rule by rule. The HMM can
be read in sequential order by going down the middle column, then up the right column.

of the corresponding HMM rules’ logarithmic scores to befractionis the fraction of the original database remaining after
greater or equal to the CM rule’s score. filtering, which the next filter or CM must be run on. Fractions
For example, CM rule § — uS,a corresponds to HMM  range from O (perfect) to 1 (worst). Run time is CPU time per
rulesS, — uS; andS, — oSy (see Table 2); $— uSyg nucleotide. As an example, Figure 2 shows inputfilters created
corresponds tég . qu (again) ancEf - gﬁf. Letl; be }/i\:ltt:r;hsilsggtr:épaw and sub-CM techniques, and the series of
. —L =L =R =R .
thel%garltflrglc score fob; — uSy, [> for S; — oS, andiy We wish to select a series of filters, preceding the CM,
forS; — ¢S, . Letthe score of CMruleS— uS,abe-1and  to minimize expected total run time. For example, suppose
S; — uSyg be -2. Then each CM rule yields one inequality: filter f, has filtering fraction 0.25 and run time 1 second per
hi+ly>—landh +13 > 2,80, = -1l =13 =0. kilobase, and\, has fraction 0.01 at 10 s/Kb. If the CM takes
Any assignment of HMM scores (likk, l2, [3) satisfying 200 s/Kb, runningf, beforehand takes0 + 0.01 x 200 =
allinequalities ensures the upper bound. Amethod to optimizg9 s/Kb. Better is runningf;, then f», and then the CM, at
the scores for filtering is given in (Weinberg & Ruzzo, 2004); 1 1+ 0.25 x 10 + 0.01 x 200 = 5.5 s/Kb.

in this paper, we assume scores are given. To formalize this, we make two assumptions: (1) the esti-
mated fractions and run times are accurate and constant, even
5 AUGMENTED FILTERS though in reality they vary by sequence scanned, and (2) a

We present two techniques that augment profile HMMs forilter's fraction is unaffected by which filters were applied pre-

more selective filtering. We first describe how to select an/iously. In the above examplg; followed by f, may filter

efficient series of filters from many potential filters. Then we PEtter thanf’s fraction of 0.01, but we have never observed
describe how to create candidate filters with each techniqudlis effect to be significant. If these assumptions are signifi-

The complete process of filter creation and selection has takeiNtly violated, scanning time may be unnecessarily increa-
from 1 to 50 CPU hours per family. sed, but rigorous filtering is still guaranteed. Our supplemen-

tal paper, at http://bio.cs.washington.edu/supplements/zasha-
5.1 Selecting a series of filters ISMB-2004, discusses these assumptions in more detail.

Given a set of filters, we wish to select an optimal series ofBriefly, test sequences must be sufficient large to obtain

filters to apply. First, each filter is run on a training sequencetcceptably robust estimates, particularly for low filtering frac-
to estimate itdiltering fraction and run time The filtering  tions. To reduce test scan time for filters with low fractions,
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Store-pair Sub-CM Selected
3 3 3
CD%\ + LT +
ES?T 27 . ' 27
X b ' ’
a s Lt
gg 1) . 1y Pl Lt .
&2 Ty + %
%W% +
0 1 1 O 1 1 0 1 1
0.0001 0.01 1 0.0001 0.01 1 0.0001 0.01 1
Filtering fraction Filtering fraction Filtering fraction

Fig. 2. Filter creation & selection. Filters for Rfam tRNA (RF00005) generated by the store-pair and sub-CM techniques and those selected
for actual filtering are plotted by filtering fraction and run time. The CM runs at 3.5 secs/Kbase. The four selected filters are run one after
another, from highest to lowest fraction.

large test sequences are prefiltered with less selective filtermaximum possible score for any sequence of that length is
The G+C content of the test sequence is also an importamirecomputed once and used.Wf’ is high enough, these
consideration.) maximum scores will be low, and sub-CM filtering will still
Given the above assumptions, selection of the best filtebe selective.
sequence can be cast as a shortest path graph problem (Cormefio create candidate sub-CM filters, for each CM hairpin, a
et al, 1999). Nodes represent both filters and the CM, and aub-CM is created at its first paired position, withh = W.
special INPUT node has fraction 1, taking time 0. The weightA test sequence is then scanned, and binary search used to find
of the edge from filterf; to f is the time it would take to the smallestV’ for the hairpin such that the filtering fraction is
run filter fo immediately afterf;: fo's time multiplied byf;'s ~ the same aswhéi’ = W. Then, asub-CMis created at each
filtering fraction. The shortest path from INPUT to CM yields subsequent paired position. After this, augmented HMMs

the optimal series of filters. are created manually that combine promising sub-CMs for
yet more selective (if slower) filters. We plan to automate this
5.2 Sub-CM technique process in a manner similar to the creation of store-pair filters

Sub-CMs exploit information in hairpins, which are base-(s_ee pelow), estimating the run time apd reduction ir_‘ average

paired helices (including bulges and internal loops) that end iry'terb_I score of combined Su,b'CMS using 'th.e properties Of the

asingle-stranded loop. In many ncRNA families, much secon€onstituent sub-CMs, allowing fast prediction of promising

dary structure information is carried in short hairpins that us¢©mPinéd sub-CMs.

only a fraction of the CM'’s states. This motivates representing

these hairpins using the appropriate part of the original C . .

(sub-CM), while using a profile HMM for the remainder ofM5'3 Store-pair technique

the ncRNA. Although the resulting hybrid grammar will take Earlier we noted that profile HMMs cannot reflect which base

longer to scan than an HMM, it will often filter much more Pairwas used, butonly which nucleotides were used in the left

selectively, and still be faster than a full CM. and right positions. For example, the profile HMM of Table 2
For a sub-CM rooted at staiethe CM Viterbi algorithm  could remember that each side of position 1 is C or G, but not

computes the maximum score fr@fi to'S, . In the augmen- thato?;g/;'ir?rj\h& F\’/a'trﬁ 2;3:'2‘;";‘1' can allow onlv C.G
ted HMM algorithm, the Viterbi score téf’ is the highest ' y

or G-C pairs. For each sta@L andS. ,, we create four
S i - : .5 5.1
f%m of sub-CM score&L t0'S;) plus HMM score for state states, one for each possible nucleotide that could be emitted

Si . . . i by §1L. If §1L(C) is the state for the emission of a C, then
Typical hairpins are much smaller than the window length

=L =L . .
parameteilV’ of the overall family. Sub-CM scan time could 1€ S1 (€) — ¢S, (C) has score- oo, since the emission of
be saved by using a hairpin-specific window length < W. G is an inconsistency. The rulg (C') — ¢S, (C) has the
The lengthsiW’ ... W must still be considered, or ncRNAs Same score as in the original profile HMM. Using this extra
with unusually long hairpins but otherwise strong homologyinformation on the right side, the ruEf(C’) — ¢ has score
may be missed. To consider lengths W' efficiently, the  —oo, since the rule is specific to the non-canonical C-C pair.
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By contrast,éf(c) — ¢ corresponds to a C-G pair, and so The base case, state has just the rule S — ¢. There is
maintains a high score. no room to apply store-pair, so the table has only one entry,
containing the original profile HMM. For the recursion, we

5.3.1 Degrees of freedomThe store-pair strategy can be first enumerate all store-pair modifications of statéor each

generalized in three ways. First, any combination of states thapdification, we run the resulting HMM on a short training
represent base pairs in the CM can be multiplied, at the coSequence, to calculate its average Viterbi score reduction. We

of a larger HMM. Note that applying the strategy to base-pait"€n consider each entry in state- 1's table. The combined
states nearer a loop will result in fewer total states. score reduction is the sum of the score reduction just estimated

To get maximal information, it is desirable to multiply the O the training example plus the score reduction inithel

number of states by 5, which covers the four nucleotides plulPl€ entry. The resulting number of states can be computed
the absent nucleotide case, i.e. the 5 symbals:, g, u, }. with simple arithmetic. The table for statés then updated

However, multiplying by 5 is not necessary. For example, inwith the new HMM, unless there is already a better HMM with

the above example, it suffices to store only 3 possible eventéhe same number of states. Bifurcation child states’ tables are
{c}, {g} or{a,u, e} —inthe last case (not C or G), the scores c0Mbined analogously.

are the same. More generally, we can choose any partition of Finally, we obtain a table for the first state giving, for each
{a,¢,9,u,¢) (i.e., place each of the 5 events into exactly onenumber of states up tou, the (heuristically) optimal store-pair

subset), thus making a trade-off between the improved filte®tMM. To prune away the large number of similar-performing

ring achieved by having more information versus the increasefMMS, we run through the table, beginning with the fewest
scanning time of extra states. states, looking for the first HMM that predicts a Viterbi score

Iiigally, the right nucleotide can be “stored” (iﬁ?3 instead ' ;?grueciﬁ'; cli:‘l\aﬂl':vlle;sgoﬁ?efaat:;elros(z)ipg Leisi:ras;nﬁthell?/i zvvﬁht hen
of S;'), and used for the left HMM state’s scores. Mathemati-predicted score reduction of an additional 0.5, until the table
cally, this is simply the reverse of what was done above. Whefy exhausted, and a set of HMMs is saved.
fewerthan 5 events are stored, storing the right nucleotide may \yie note that, as an alternative to calculating the average
yield more information than the left. Viterbi score on a test sequence, we have been using the loga-
rithm of the infinite-length forward algorithm score (Weinberg
5.3.2 Creating filters Exploiting these degrees of freedom & Ruzzo, 2004), which was previously proposed as an appro-
in the store-pair technique, we now show how to create ximation to the expected Viterbi score. On Rfam 5.0 tRNA
useful set of filters, obtaining a time versus filtering curve agRF00005), we found that the two statistics correlated (corre-
in Figure 2 from which to select a series. Noting that the runlation coefficient 0.999), and produced substantially the same
time of a store-pair filter is roughly proportional to the numberfilters, but the infinite-length forward algorithm score can be
of states in the resulting HMM, we propose to find, for eachcomputed more quickly.
possible number of states, the filter with the lowest filtering
fraction.

To efficiently solve this problem, we make three simplifying
assumptions. First, instead of trying to minimize the ﬁltering6 CONCLUSIONS
fraction, we attempt to minimize the average Viterbi score;in terms of future work, it would be desirable to have more
if the Viterbi score is reduced, then fewer scores should béroadly applicable rigorous filters, particularly for the SECIS
above the threshold, and the filtering fraction reduced. Thelement. Our work also provides a benchmark against which
second assumption is one of independence: the reduction io test the sensitivity of heuristic filters that may run faster.
Viterbi scores versus the original profile HMM caused by app- We also expect that CMs will be extended to improve their
lying store-pair to a set of base pairs is the sum of the Viterbaccuracy and versatility. One recent extension to CMs is the
score reductions for each individual base pair. Finally, thdocal alignmentfeature (Eddy, 2003), which allows a match
user selects a constantif the profile HMM hasn states, the to a part of the ncRNA, and is intended to detect homologs
store-pair HMMs should have fewer than statesc = 250  of ncRNA domains. Our techniques could, in principle, be
is a generous bound, since empirically the HMM is faster tharapplied to local alignments, although the sub-CM technique
the CM by a factor of approximately” (the window length);  will require a larger window length in hairpins, which may
if ¢ > W, the filter will be slower than the CM. degrade its speed.

These assumptions permit a dynamic programming algo- In conclusion, covariance models are useful in annotating
rithm. For theith CM state, while restricting store-pair to genomes with homologs of known ncRNA gene families, but
statesi ...n, we recursively compute the optimal store-pair their slow speed is a practical problem. We have designed
HMM of each possible number of states from 1¢ta The  a methodology that significantly speeds up scanning for vir-
optimal HMM and its estimated score reduction are stored byually all ncRNA families in Rfam 5.0 and three tRNAscan-SE
number of HMM states. models, with guarantees that no additional homologs will be
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missed. By speeding CMs without loss of accuracy, our tech- 31, 439-441. http://rfam.wustl.edu.
nique improves our ability to refine CM-based models to bettefrillo, G., Licciulli, F., Liuni, S., Sbisa, E. & Pesole, G. (2003)
characterize each ncRNA family, and reveals biologically PatSearch: a program for the detection of patterns and structural

3612.
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