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Abstract

This paper addresses the problem of reconstructing the
density of a scene from multiple projection images produced
by modalities such as x-ray, electron microscopy, etc. where
an image value is related to the integral of the scene den-
sity along a 3D line segment between a radiation source
and a point on the image plane. While computed tomogra-
phy (CT) addresses this problem when the absolute orienta-
tion of the image plane and radiation source directions are
known, this paper addresses the problem when the orienta-
tions are unknown – it is akin to the structure-from-motion
(SFM) problem when the extrinsic camera parameters are
unknown. We study the problem within the context of recon-
structing the density of protein macro-molecules in Cryo-
genic Electron Microscopy (cryo-EM), where images are
very noisy and existing techniques use several thousands
of images. In a non-degenerate configuration, the viewing
planes corresponding to two projections, intersect in a line
in 3D. Using the geometry of the imaging setup, it is possi-
ble to determine the projections of this 3D line on the two
image planes. In turn, the problem can be formulated as a
type of orthographic structure from motion from line cor-
respondences where the line correspondences between two
views are unreliable due to image noise. We formulate the
task as the problem of denoising a correspondence matrix
and present a Bayesian solution to it. Subsequently, the ab-
solute orientation of each projection is determined followed
by density reconstruction. We show results on cryo-EM im-
ages of proteins and compare our results to that of Electron
Micrograph Analysis (EMAN)– a widely used reconstruc-
tion tool in cryo-EM.

1. Introduction

While the intensity in a photograph is related to the light
(radiance) reflected from surfaces in a scene, the intensity

Figure 1. The first column shows the top and side views of a
macro-molecule called GroEL produced from a 11.5 Å reconstruc-
tion [17] in a publicly available Molecular Structure Database.
The middle column shows the initial model estimated using
EMAN [16] – A widely used tool in cryo-EM. The right column
shows the initial model estimated using our method. The same
dataset was used to generate the two initial models.

at a point in an image produced by modalities such as x-ray,
electron microscopy, etc. are related to the integral of the
scene density along a 3D line segment between a radiation
source and a point on the detector (image plane). Com-
puted Tomography (CT) is a technique for reconstructing
the 3D density from a collection of 2D images (aka pro-
jections) taken with a known relation between the radiation
source/image plane and the scene. This is akin to 3D re-
construction from multiple photographs when the camera
geometry is known (multi-view stereo).

In this paper, we consider the problem of 3D density re-
construction when the relations between the views areun-
known. This is analogous to the problem of structure and
motion estimation from photographs with unknown view-
points. However the image formation process is differ-
ent, and in turn this leads to different types of features



and constraints than traditionally encountered in SFM prob-
lems. Furthermore, we consider this problem within the
context of cryo-EM reconstruction of macro-molecules, and
at this resolution, images are very noisy compared to pho-
tographs typically used for SFM. Consider the images in
Fig. 2.(a,b) of a protein macro-molecule. Unlike SFM from
photographs, it is clearly not possible to identify points
across these images that correspond to the projection of
a common point in 3D, nor is it possible to extract out
of images more complex features (e.g., lines, conics or
other curves) and establish correspondence between them.
Though not obvious a priori, it is possible to determine be-
tween every pair of 2D images a single line in each image
which is the projection of a 3D line [3]. Hence, the essen-
tial challenge is both to identify these pairs of lines in im-
ages and to use these lines to estimate the absolute 3D ori-
entations of the image planes. Once estimated, computed
tomography is used for 3D density reconstruction. In ad-
dition, to achieve a desired resolution (< 10Å) in spite of
the noise, researchers use between 1,000 and 100,000 pro-
jections, about two orders of magnitude more images than
typically used in conventional SFM problems.

Cryo-Electron Microscopy (cryo-EM) is an emerging
technique in structural biology for 3D structure (density)
estimation of a specimen preserved in vitreous ice. Unlike
tomography where a large number of images of a specimen
can be acquired, the number of images of a specimen in
cryo-EM is limited because of radiation damage. In cryo-
EM, the specimen consists of identical copies of the same
protein macro-molecule, preserved at random and unknown
3D orientations in ice. Due to larger number of unknowns in
cryo-EM as compared to tomography, the problem is more
challenging and calls for a different set of techniques.

One of the advantages of cyro-EM over the more widely
used technique of X-ray crystallography is that it deter-
mines the 3D structure without the need for crystallization.
It is often very difficult to crystallize large molecules (Bi-
ologists may spend many years trying to do this). Even in
the cases when crystallization is possible, the structure con-
strained in crystalline form can be different from the struc-
ture of the macro-molecule in its native environment. Cryo-
EM therefore presents an attractive alternative for structure
estimation from a biological point of view.

Within the cryo-EM community, a set of techniques for
solving the reconstruction problem have emerged [8], and
implementations are available [9, 16, 21]. The process is
essentially the following: First, a rough, usually low reso-
lution and possibly distorted initial density (initial model)
is constructed by some means (e.g., low resolution, higher
dose electron micrographs, x-ray crystallography, single
axis or random conical tomography, known structure of re-
lated molecules, assumed structure from other means, etc.).
This model is used to initiate an iterative process where the

image plane orientations relative to the current 3D model
are determined (pose estimation), and then the 3D density
(a new model) is reconstructed using CT techniques. The
process repeats with this new model. It should be noted
that each iteration may take 12 hours to run, and a full re-
construction may take a few weeks. In the end, the ability
of the iterative process to converge to the correct solution
depends critically on the accuracy of the initial model, and
when it does converge, the number of required iterations
also depends upon the accuracy of the initial model.

In this paper we address the problem of generating an
initial model of the 3D structure using randomly oriented
projections. In the following sections we will show that
this is an instance of orthographic structure from motion
using line correspondences. More specifically, the problem
can be stated as:

Problem Statement: Consider a set ofN planes inR3

passing through the origin and with unknown orientations
Ri, i = 1, 2, · · ·N . A common linecij(= cji) is defined as
the line of intersection between two such planesi and j.
Since the planes pass through the origin, the orientation of
the common linecij in the planei is parameterized by the
angleφij it makes with the x-axis in the local coordinate
frame. Given a matrixΦ = [φij ], i, j = 1, 2, · · ·N with
noisy entries , the objective is to recover the common lines
cij and the rotation matricesRi.

Our paper makes the following three contributions.

1. It introduces a new, large scale structure from motion
problem in which direct correspondence of image fea-
tures is not possible.

2. It provides the solution to a problem that has plagued
and possibly limited the applicability of cryo-EM for
reconstructing macro-molecule density for structural
biology.

3. We introduce to the computer vision community an ap-
plication domain (cryo-EM) that can benefit from ex-
isting vision techniques, but which also challenge us
with a new but relevant set of vision problems that have
broader applicability beyond this specific domain.

2. Background and Related Work

In a typical cryo-EM imaging setup, several randomly
oriented macro-molecules (aka particles) of the same kind
frozen in ice and suspended over holes in a carbon film are
placed under an electron microscope and their projections
recorded onto a CCD. The projection is orthographic and
the intensity at a pixel in the micrograph is directly propor-
tional to the density in the path of the electron(s) that con-
tribute to the intensity at a particular pixel. A typical cryo-



a. b. c.
Figure 2. In (a) a typical cryo-EM micrograph containing several images of a macro-molecule called GroEL is shown. The inset shows a
zoomed portion of the micrograph. (b) shows nine projections selected from a micrograph. Many such projections (≈ 10000) are clustered
into≈ 50− 100 classes. (c) shows the class averages of nine arbitrarily chosen classes. The class averages have significantly better signal
to noise ratio at the expense of finer details (high resolution information) contained in raw projections.

EM micrograph is shown in Fig. 2 (a). A single micrograph
contains noisy projections of several identical particles ori-
ented randomly. The individual particles are selected and
cropped from the micrograph. As can be seen in Fig. 2 (b),
individual projections are extremely noisy. The signal to
noise ratio can be improved by clustering a large number
(∼ 10, 000) of projections into a few classes (∼ 50 − 100)
and averaging within each class; see Fig. 2 (c). Averaging
within a class leads to smoothing of high resolution infor-
mation contained in the projections. However the detail in
class averages is sufficient for the purpose of reconstructing
an initial model at a resolution of about30 − 40Å.

The different approaches for initial model reconstruction
can be broadly classified on the basis of the imaging ge-
ometry used. In the untilted configuration, the carbon film
is placed orthogonal to the direction of the electron beam
and a single image of the specimen is obtained. On the
other hand, in the tilted configuration, several images of the
specimen are acquired by rotating the stage supporting the
carbon film about a known axis by known angular incre-
ments. In this paper we focus our attention to the recon-
struction of 3D density using a single exposure at zero tilt
[5, 6, 10, 15, 19, 20, 22].

In modalities like electron microscopy where the ob-
tained image is an integral of a 3D density along a particular
direction, there arises a line correspondence between a pair
of views; see Fig. 3 for an illustration. Typically, the planes
of projection corresponding to two imagesi andj intersect
in a linecij(= cji) called thecommon line; see Fig. 3 (a).
The entire density can be projected onto the common line
by integrating the intensities of either image in a direction
orthogonal to the orientation of the common line. In other
words, ifφij andφji are the orientations of the common line
in the local coordinate system of imagei andj respectively,
then

ri(φij) = rj(φji), (1)

whereri is the Radon transform of imagei. We call this
constraint thecommon lines constraint. Fig. 3 (b) shows

a graphical illustration of the common lines constraint. It
suggests that we can obtain the orientation of the common
line in each image by performing a brute force comparison
of their Radon transforms at all orientations. Unfortunately
these estimates are very noisy because the error surface ob-
tained by matching two Radon transforms typical contains
several minima; see for example Fig. 3 (c).

Given noisy estimates of the common lines betweenN
projections, the central problem is to find the relative ori-
entation of these projections in 3-space.N projections of a
density with known orientations can be assembled to obtain
the 3D density using the Fourier Slice Theorem.

Theorem 1 (Fourier Slice Theorem). The 2D Fourier
transform of a projection of a 3D density is a central slice
through the 3D Fourier transform of the density. The orien-
tation of the central slice is the same as the orientation of
the plane of projection.

The case whenN = 3 is well studied and is also the
minimal problem in terms of the number of images re-
quired. It was shown independently by Vainshtein and Gon-
charov [20] and Van Heel [22] (and later by Lauren and
Nandhakumar [14]) that the relative orientation of three pro-
jections can be estimated up to a hand (chirality) ambiguity
by using the common lines between the three projections.
This method is calledAngular Reconstitution.

Inspired by the work of Horn[12], Farrow and Ottens-
meyer [5] used quaternions to obtain the relative orienta-
tion of a new projection in a least square sense. One of the
criticisms of such an approach is that the solution is biased
by the sequence in which the relative orientation of differ-
ent projections are obtained. For example, if the common
lines between the first three projections are noisy, the noise
is propagated to the orientation estimates of all subsequent
projections.

In [19] Penczek et al. try to obtain rotations correspond-
ing to each projection simultaneously by minimizing an en-
ergy functional. Unfortunately there is no good way to min-
imize the functional except for a brute force search over all
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Figure 3. (a) Two projectionsi andj of a density (Left) with their
Radon transformsri and rj (Center), and their viewing planes
(Right) are shown. The line of intersection of the viewing planes
is called the common line and is shown using a dashed line. The
common line is oriented at anglesφij and φji in the local co-
ordinate system of projectioni andj respectively. (b) shows the
Radon transformsri(φij) and rj(φji) which match closely be-
cause of the common lines constraint (Eq. 1). The matching error
surfaceE(α, β) = ‖ri(α)−rj(β)‖, 0 ≤ α < π and0 ≤ β < 2π,
between the Radon transforms of the two images is shown in (c).
SinceE(α, β) has multiple minima, the estimate of the common
lines is very noisy.

possible orientations for all projections. It is only expected
to work well when the initial point is in the neighborhood
of the optimal solution.

A similar problem has been studied in the field of to-
mography when the rotation corresponding to a projection
is not known [14, 15]. In [15], the authors dealt with imag-
ing noise using self consistency between four projections.
Given four projections, it is possible to predict the location
of common lines on one projection based on the other three
projections.

3. Angular Reconstitution Revisited

In contrast to the traditional SFM problems, the minimal
problem in uncalibrated tomography involves three views
(projections). Given three projections of a 3D density, the
viewing plane of each projection can be recovered up to a
global rotation and chirality. Published derivations [20, 22]
for uncalibrated three view tomography involve complex
solid geometry which makes further analysis difficult. We
present a novel derivation using simple linear algebra and
vector calculus that enables a characterization of the neces-
sary and sufficient conditions for a non-degenerate solution.

In this derivation, the camera is assumed to be ortho-
graphic and the projections are assumed to be centered. Un-
der the above assumptions, the pose of the camera associ-
ated with projectioni is fully specified by a rotation matrix

Ri. The line along which the viewing planes of imagesi
andj intersect is denoted bycij . Note thatcij = cji and
we will use them interchangeably as the need arises. Let
φij denote the angle made by the vectorcij with the local
x-axis in imagei. We refer to the matrix of these angles,
Φ = [φij ] as thecommon lines matrix. The direction of
common linecij in the local co-ordinate of projectioni is
denoted bybij = [cos φij , sinφij , 0]>.

Given two projectionsi and j, the anglesφij and φji

are determined by exhaustively comparing the Radon trans-
forms (ri and rj) and identifying those orientations for
which they match the best.

(φij , φji) = arg min
0≤α<π
0≤β<2π

‖ri(α) − rj(β)‖, i < j (2)

Note that both(φij , φji) and(φij + π, φji + π) are valid
solutions of (2). Restricting the maximum value ofα to π
ensures a unique solution.
The vectorcij and its projectionbij are related by

Ricij = bij (3)

Considering the inner product ofbij andbik we obtain

〈Ricij ,Ricik〉 = 〈bij ,bik〉
〈cij , cik〉 = 〈bij ,bik〉

Using the fact that〈bij ,bik〉 = cos(φij − φik), we obtain
the fundamental geometric constraint

〈cij , cik〉 = cos(φij − φik) (4)

The above constraint is essentially a restatement of the sim-
ple fact that the angle between two vectors is preserved un-
der a rigid transformation.

In the three view case, three common linesc12, c23, and
c31 are shared between the projections. Let us define ma-
tricesC = [c12, c23, c31]

>, andM = CC>. Then using
Eq (4), we obtain the following relation

M =

 1 cos(φ31 − φ32) cos(φ23 − φ21)
cos(φ31 − φ32) 1 cos(φ12 − φ13)
cos(φ23 − φ21) cos(φ12 − φ13) 1

 .

Note that ifC is a rank 3 matrix, i.e. the three common
lines are not co-planar, then the matrixM is symmetric pos-
itive definite with unit diagonal entries. Given a matrixM
of this kind with eigenvalue decompositionM = UDU>,
we can determineC up to a rotation and reflection as

C = UD1/2

The solution is ambiguous up to a rotation because a global
rotation preserves the angles between the common lines.
The reflection ambiguity is a result of the fact that the pair



of entriesMij andMji are only known up to a sign. This
is so because the intersection of viewing planes of projec-
tionsi andj can be represented equally well by vectorscij

and−cij . This ambiguity is reflected in the matrixΦ by the
fact that we can change the entriesφij andφji by π with-
out changing the common lines. This ambiguity is not just
a mathematical artifact, it manifests in nature in the form
of chirality and the phenomenon of optical isomerism. Two
molecules that are reflections of each other give rise to the
same set of projections, and while performing a reconstruc-
tion, a choice of either a left handed or a right handed co-
ordinate system must be made to recover a unique solution.

The above analysis is valid when the matrixM is positive
definite. Is it possible to obtain a full rank matrixC in a least
squares sense even when the matrixM is not positive defi-
nite? This problem is equivalent to finding the closest sym-
metric positive semidefinite matrix̂M with unit diagonal.
The resulting matrix can then be exactly factorized to esti-
mateC. However, the following theorem by Higham [11]
shows that such an attempt is not useful asM̂ is always rank
deficient.

Theorem 2 (Higham). If a symmetric matrixM with unit
diagonal hask non-positive eigenvalues, then the nearest
positive semidefinite matrix toM with unit diagonal has at
leastk zero eigenvalues.

Thus if M is not positive definite, then it is either rank
deficient or the closest positive semidefinite matrix to it is.
In either case this would result in a matrixC that is rank
deficient, i.e. the three common lines lie in the same plane.
Co-planar common lines is a degenerate configuration for
tomographic reconstruction.

3.1. Rotation Estimation

We now consider the problem of estimating the rotation
matrix that relates a set of common lines with their projec-
tions. LetCi = [cik] be a matrix with columns consisting of
common lines formed by viewi with other viewing planes
andBi be the matrix formed by collecting the correspond-
ing image of the common lines in projectioni as column
vectors; then from Eq. (3) we have the relation

RiCi = Bi (5)

For matricesCi andBi with 3 or more columns we have an
over-constrained problem, one which can be solved in the
least squares sense as

min
Ri

‖RiCi − Bi‖F subject toR>i Ri = 1 (6)

The above is a well studied problem in computer vision and
linear algebra [1, 13]. We use the solution proposed by Arun
et al. [1] Let

UDV> = BiC>i

be the singular value decomposition ofBiC>i , then Arun et
al have shown that the optimal solution to the optimization
problem above is given by

Ri = UV>

In the case of three projections, the matricesCi andBi

are both3 × 2 and their outer product is rank deficient and
generally of rank 2. Thus while the first two pairs of singu-
lar vectors ofBiC>i are well defined, the two vectors span-
ning the left and right null spaces have a sign ambiguity.
This results in two estimates ofRi,

R+
i = UV>, R−i = UI−V>, (7)

Here,I− is an identity matrix with its third diagonal entry
set to−1. The ambiguity between these two solutions can
be resolved by observing that rotation matrices have a pos-
itive determinant of 1.

4. Robust Rotation Estimation

The matrixΦ contains the orientation of the common
lines in the local co-ordinate system of images and its en-
tries are directly measured using Eq. 2. If the entries of the
matrix Φ are relatively noise free, a simple greedy strategy
of starting with a triplet of views, and adding one view of
the molecule at a time, using the least squares solution ex-
plained in sub-section 3.1, would be sufficient for generat-
ing an initial model. However, as shown in Fig. 3 (c), the en-
tries of the matrixΦ often contain gross errors. This makes
the use of a greedy least squares based strategy unsuitable
for producing an initial model. In this section we present
a Bayesian Maximum A Posteriori (MAP) estimation pro-
cedure that denoises the common lines matrix, which can
then be used for estimating the initial model. Before we
discuss the details of the denoising algorithm, we illustrate
key ideas of our approach using a simpler problem.

4.1. Denoising Pairwise Distances

Consider the classical Multidimensional Scaling
(MDS) [2] problem of embeddingm points in a plane
given pairwise distance matrixS = [sij ]. As classical MDS
is based on minimizing theL2 norm, a single outlier can
result in an arbitrarily bad embedding. Therefore, it would
be useful to denoise the distance matrixS to correct for
gross errors before MDS is performed.

The key idea in the denoising process is that of consis-
tency. To denoise the distance between pointsi andj we
choose a triple of points(p, q, r) from the remaining points.
Unless the pairwise distances between the pointsp, q, and
r do not obey the triangle inequality, they can be used to
define a triangle in a plane. This triangle provides a fixed
coordinate system in which we can embed the pointsi and



j using their distances from pointsp, q, andr. Notice that
the pointsi andj are embedded in the plane defined by the
triple (p, q, r) without using the distance betweeni andj.
The coordinates of the pointsi andj in the embedding can
be used to measure the distance between them. This is an
estimate of the distance betweeni andj via the triplet. This
process can be repeated over various choices of the triplets
sampled fromm−2C3 possibilities, and the resulting dis-
tance estimates collected. If the corruption inS is random
and it does not have a systematic bias, one expects that his-
togram of these distances will exhibit a peak near the correct
value ofsij and the errors would be distributed randomly.
Of course, one cannot rule out a systematic corruption in the
matrix, and one cannot just trust the peak in the histogram;
some weight should be given to the original estimate ofsij .
These ideas can be formalized in a Maximum A Posteriori
(MAP) framework as follows.

The Maximum A Posteriori estimate of a random vari-
able is the value for which its posterior given some obser-
vation achieves the maximum value. More formally, let us
assume that we are interested in estimating a parameterθ
and letp0(θ) be a prior distribution on the domain ofθ. If
we now observe a random variableX that has conditional
probability densityp(X|θ), then by Bayes’ rule, the proba-
bility of observingθ givenX is written as

p(θ|X) =
p(X|θ)p0(θ)

p(X)
,

wherep(θ|X) is the posterior ofθ. The Maximum A Pos-
teriori (MAP) estimate ofθ is then written as

θ∗ = arg max
θ

p(θ|X) = arg max
θ

p(X|θ)p0(θ)
p(X)

= arg max
θ

p(X|θ)p0(θ) (8)

In the context of the distance estimation problem,p0(θ)
is a distribution centered around the initial estimatesij and
p(X|θ) is the empirical density of the observed distances.
As we know very little about the behavior of the observed
data density, but we have plenty of data available as triplets
are sampled fromm−2C3 possibilities, we will use a ker-
nel density estimate to modelp(X|θ). In particular, if a
Gaussian distribution is used for the prior as well as the ob-
servations, then the MAP estimator is given by

sMAP
ij = arg min

x
e−‖sij−x‖2/σ2

p

∑
k

e−‖xk−x‖2/σ2
o . (9)

Hereσp andσo are the standard deviation of the kernel for
the prior and the observations respectively and express our
confidence in each of these quantities.

4.2. Denoising the Common Lines Matrix

We now consider the problem of denoising the common
lines matrixΦ. As in the case of denoising the distance

Figure 4. Indirect estimate of common linecij . (a) Three projec-
tionsp, q andr are first assembled in three space using Angular
Reconstitution. (b) The common lines between projectioni and
triplet (p, q, r) are used to find the orientation of projectioni in
the co-ordinate system defined by(p, q, r). (c) Similarly, the ori-
entation of projectionj is found. (d) The common line between
projectionsi andj estimated via the triplet(p, q, r).

matrix of points in a plane, we use geometric consistency to
indirectly obtain multiple estimates for each entry ofΦ in
addition to the noisy direct measurement.

Fig. 4 shows indirect estimation of the common linecij

via three projectionsp, q, andr. A triplet (p, q, r) of views
establishes a coordinate system in which we can use the
common line angles between the views(p, q, r) and the
views i andj to estimate the rotationsRi andRj in space.
The method for this was described in sub-section 3.1. Given
the two rotations, the common line between the two views
is the cross product of their third rows.

cij = R3
i × R3

j

This common line can then be back projected to images
i and j using Eq. (3) to obtain estimates ofφij and φji.
Figure 5 shows typical histograms corresponding to entries
of Φ. Notice the sharp peaks which allow us to estimate the
common line orientations robustly.

There are three major differences between the problem
of denoising a distance matrix and the problem of denoising
a common lines matrix. First we have to estimate two scalar
parameters(φij , φji) simultaneously as compared to a sin-
gle distance(sij = sji). Further, to ensure uniqueness in
common line matching, we have to enforce the constraints
0 ≤ φij < π and0 ≤ φji < 2π for i < j. While this
representation enforces uniqueness, it destroys the topology
of the manifold of common lines angles. For example, the
common line with angleφij = 0 + ε and the common line
with angleφij = π − ε are very close in space and yet they
are mapped far apart in this representation. This is a stan-
dard issue in analyzing axial data, i.e. data which is repre-
sented using a line segment and, as opposed to a vector, has
ambiguous orientation [7, 18]. A standard trick is to map
the data back onto the circle by doubling it. This maps the
point π to 2π, thereby fixing the topological problem. Fi-
nally, now that the data lies onS1 × S1, i.e. the product of
two circles, which unlike the real line wraps around, and the
kernel density function must take this into account. We use
the analog of the Gaussian distribution for circular data, the
von Mises distribution, which has the correct wraparound
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Figure 5. Typical histograms corresponding to entries ofΦ ob-
tained during the reconstruction of GroEL.

behavior for circles and spheres. In the univariate case it is
written as

K(φ) = κ(σ) exp(cos(φ0 − φ)/σ)

where,κ is the normalization constant. For the bi-variate
case we use a product of two univariate kernels.

While there is a substantial literature on finding the max-
imum of a probability density from samples [4] which work
well in Rn, generalizations to more complex manifolds like
a product of circles are not known to the best of our knowl-
edge. Thus we evaluate the density at all points in our sam-
ple and select the point at which the maximum is attained.

5. Results

Experiments on real data were performed on a protein
macro-molecule called GroEL and results were compared
with a widely used cyro-EM reconstruction tool called Elec-
tron Micrograph Analysis (EMAN) [16]. 15839 projections
of GroEL were clustered into40 classes and the correspond-
ing 40 class averages were generated. A few examples of
the class averages are shown in Fig. 2 (c). A comparison
between the initial model obtained using our method and
the initial model obtained using EMAN is shown in Fig. 1.
Our initial model clearly captures the gross structure of pub-
lished high resolution structure [17], and appears to be bet-
ter than EMAN’s initial model. The two initial models were
refined using standard refinement routines in EMAN using
all 15839 projections. Fig. 6 shows the progress of the re-
finement stage. Our initial model refined to a reasonable
model by the end of two iterations (18 hours of compute
time), while the convergence of EMAN’s initial model is
much slower. It is worth noting that with an unreliable ini-
tial model, not only is the rate of convergence slow, the
probability of the initial model converging to the true so-
lution is very low.

The last iteration shown in Fig. 6 (b) and 6 (d) also illus-
trate the hand ambiguity inherent in the solution. A close
look at the two solutions shows that one is the mirror reflec-
tion of the other. As mentioned earlier, the hand ambiguity
is resolved by other means after the reconstruction.

6. Discussion

In this paper we considered the initial model problem
in uncalibrated computed tomography. We proposed a

Bayesian solution to the problem which improves the prac-
tical applicability of a theoretical result known for two
decades. In addition, we presented a novel and much sim-
pler algebraic derivation and analysis of uncalibrated three
view tomography.

An interesting aspect of our MAP formulation is that it
allows for the use of more sophisticated priors on the esti-
mates of the common lines than the one we have used in the
paper. In particular it allows us to use the entire matching
error surface of the Radon transform of two projections as
the basis of a prior. In addition, we have not addressed the
question of optimal kernel bandwidth for the MAP estima-
tor. We hope to address these issues in future work.
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