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Figure 1:Close-up rendering of a glossy buddha in the grace cathedral environment. dieages on the left have been rendered using stratified importance samplin@@ith 3
and 3000 samples, while the two images on the right show the resutuofisted importance sampling using 300 samples, and after further renderingzagitimé an average of
4.7 rays per pixel to evaluate the 300 possible samples.

Abstract 1 Introduction

We introducestructured importance sampling new technique for To capture realistic natural lighting, it is common to use environ-
efficiently rendering scenes illuminated by distant natural illumina- ment maps, a representation of the distant illumination at a point.
tion given in an environment map. Our method handles occlusion, Environment map rendering has a long history in graphics, going
high-frequency lighting, and is significantly faster than alternative back to seminal work by Blinn and Newell [1976], Miller and Hoff-
methods based on Monte Carlo sampling. We achieve this speedupman [1984], Greene [1986] and Cabral et al. [1987], as well as
as a result of several ideas. First, we present a new metric for strat-recent work on high-dynamic range imagery by Debevec [1998],
ifying and sampling an environment map taking into account both and extensions of the basic environment mapping ideas by Cabral
the illumination intensity as well as the expected variance due to et al. [1999], Kautz and McCool [2000], Kautz et al. [2000], Ra-
occlusion within the scene. We then present a novel hierarchical mamoorthi and Hanrahan [2001; 2002], and others.
stratification algorithm that uses our metric to automatically strati- ~ Most of the previous environment mapping techniques [Miller
fy the environment map into regular strata. This approach enablesand Hoffman 1984; Greene 1986; Ramamoorthi and Hanrahan
a number of rendering optimizations, such as pre-integrating the 2001] are intended for real-time applications, and ignore visibility.
illumination within each stratum to eliminate noise at the cost of They usually require an expensive pre-computation or pre-filtering
adding bias, and sorting the strata to reduce the number of samplestep, where an irradiance environment map is obtained by convolv-
rays. We have rendered several scenes illuminated by natural light-ing the incident illumination with the Lambertian or more complex
ing, and our results indicate that structured importance sampling reflection function. Ramamoorthi and Hanrahan [2001; 2002] pro-
is better than the best previous Monte Carlo techniques, requiring pose fast pre-filtering methods using spherical harmonics, but their
one to two orders of magnitude fewer samples for the same imagemethods also make the common assumption of no cast shadows. In
quality. recent work, Sloan et al. [2002] have demonstrated real-time ren-
. — . . dering taking visibility effects into account, but their technique is
gg;ﬁzgg;'? R egﬁ;ﬁgﬁ‘;&fé Graphics]: Three-Dimensional limited to static scenes with low-frequency lighting, and requires a
slow pre-computation step involving ray tracing and detailed sam-
Keywords: Rendering, Image Synthesis, lllumination, Ray Trac- pling of visibility.
ing, Monte Carlo Techniques, Shadow Algorithms, Global Illumi- In this paper, we address the problem of efficiently rendering
nation, Environment Mapping high quality images of scenes illuminated by arbitrary environment
maps. Our method specifically optimizes the integration of distant
illumination on surfaces with Lambertian and semi-glossy BRDFs,
it correctly accounts for occlusion within the scene (such as shad-
ows due to bright lights in the environment map), and it handles
scenes with changing geometry. In terms of global illumination
research, our method can be viewed as an efficient technique for
sampling millions of distant lights corresponding to pixels in an en-
vironment map. We seek to estimate the integral of a product of
the visibility and the illumination. One of these, the illumination, is
known, and is the same for every surface point in the scene, and may
also be reused for multiple scenes or multiple frames of an anima-
tion. Therefore, unlike many previous image synthesis problems, it
is feasible to perform extensive preprocessing on the environment
map without degrading performance. Visibility, on the other hand
can be complicated and changes throughout the scene, requiring
sampling for general scenes. Naive Monte Carlo sampling such as
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path tracing [Kajiya 1986] is well-suited for sampling visibility, but

in the presence of high-frequency environment maps it results in
significant noise, since it does not take the variation of the illumi-
nation into account. In this situation it is better to use importance
sampling based on the illumination in the environment map. Even
though importance sampling is significantly better than path trac-
ing, it is not deterministic and results in significant sampling noise

as shown in Figure 1. Pure illumination based importance sampling

also tends to use too many samples on small bright lights such a
the sun in the blue sky even though it is very small, within which
the variation in visibility is mostly insignificant.

To understand how to sample an environment map, we presen
a novel analysis of visibility variance, and develop a metric for
sampling both visibility and illumination efficiently. We also intro-
duce a general and automatic hierarchical stratification algorithm
for partitioning environment maps into a set of area light sources.
The algorithm performs hierarchical thresholding of the map and

uses our importance metric to deterministically allocate samples tc
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each level. The samples are then placed inside each level using thdrigure 2: Analysis of a representative visibility map, confirming the qualitative re-
Hochbaum-Shmoys clustering algorithm [Hochbaum and Shmoys sults expected, and validating our quantitative analysip: Part of a visibility map
1985], which has strong runtime and quality guarantees associated_“”o”e pixel on the ground plane with a teapot casting shadows. On thigtletorig-

with it.

Our stratification algorithm ensures a good sampling pattern of
the environment map, and in addition it enables a number of ren-
dering optimizations that are difficult to include in standard Monte

inal binary visibility map. This region has approximately equal visibld shadowed
regions and the variance over the whole region is the maxirtiin= 0.25. We zoom
in on the red rectangle in the right figure. Even though this is one of tre complex
regions in the original visibility map, it is clear that over a smallefdsahgle, visibility

is much simpler, and the variance drops down to less @tieh Bottom: Quantitative

Carlo techniques. We can eliminate sampling noise and make t|’1eanalysis of above effect. On the left, we plot the log of the correlation fumcti®)

method completely deterministic by pre-integrating the illumina-
tion in each stratum — effectively collapsing the stratum into a di-
rectional light source. This results in a set of lights approximating
the environment similar to the output of the LightGen plug-in for
HDRShop [Cohen and Debevec 2001].

2 Monte Carlo Sampling and Importance

In this section, we analyze Monte Carlo integration of irradiance
due to environment maps in more detail with the purpose of defining
an appropriate importance metric. The irradianEe,at a given
surface locationx is computed as

E() = | Li(@)Sx.0)(@-f) o,

@)

whereQ,  is the hemisphere of directions aboy; is the incident
radiance or environment map, indexed only as a function of angle
@, Sis the (binary) visibility in the directiord, andriis the surface
normal atx. For our analysis we will ignore the surface orientation
and focus on the illumination and visibility. A complete rendering
algorithm is presented in section 4. Our goal is to compute this in-
tegral efficiently using Monte Carlo sampling, whérés a known
function that is easy to evaluate and the same for all paginshile
Srequires sampling since it is unknown and depends.on

To understand how to distribute samples in the domain of the
integrand, i.e. the illumination sphere, we introduce a new impor-
tance metrid". The two key competing strategies here are area-

based stratified sampling and illumination-based importance sam-

pling. To unify these two extremes and intermediate possibilities
within a common framework, we use the following general met-
ric for distributing samples in a region of solid andiey, with net
(integrated) illuminatiori.,

M(L,Aw) = LPAw® . )
Here,a andb are parameters we seek to determine. First, con-
sider the extreme casesa = 1,b = 0 corresponds to standard

as it varies with with the angular separat@nConfirming our theoretical analysis, we
find a straight line, showing that correlation decays exponentially &vithhe correla-
tion angleT is estimated from this plot &~ 0.5. On the right, we plot the variance
as a function of the angular separation. For srBalthe variance increases linearly,
fairly accurately obeying Equation 6. AT approache8/4, the graph tails off, with
the maximum variance df/4 being approached.

pure area-based stratification without considering illumination (this
technique under-samples the bright lights). It would appear at first
glance that both extremes have problems, and an intermediate pa-
rameter setting is better. To determine the parameters for the opti-
mal metric we first analyze the variance due to visibility.

2.1 Variance Analysis for Visibility

We now present a novel preliminary theoretical and empirical anal-
ysis showing that variance in visibility is proportional to the angular
extent (square root of solid angle) of the region in question, provid-
ing a basis for a new importance metric.

We analyze the expected variance of the visibility function
S(x, @) in a region subtending solid angliew, corresponding to
a cluster or light source. Intuitively, we expect some coherence in
the visibility functionS, at least over small regions, so we expect
the variance to be a function &fw, with less variance in smaller
regions and more in larger regions. Figure 2 shows some empir-
ical tests on a representative visibility map—we have carried out
experimental tests on approximately 10 visibility maps. In partic-
ular, in the top left, we show a relatively complex section of the
visibility map (here, part of one face of a binary cubemap). Even
in the most complex regions, the visibility function is much more
coherent when zooming in on a smaller region, as shown in the top
right of Figure 2.

For further quantitative analysis, we assume a correlation model
for visibility. Mathematically, we can define a correlation function,

a(8) =P(S(@y) =S| || &y~ [=6), ®3)

which simply measures the probability that the visibility funct®n
is the same for two points separated by a distance (afglés-

illumination-based importance regardless of area (this technique suming the worst case that the mean visibilgyis 1/2, or that

over-samples small bright lights), amd= 0,b = 1 corresponds to

overallP(S=0) = P(S= 1) = 1/2, gives the highest overall vari-
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ance of 1/4. Under this assumptionés- 0, a(6) = 1 (neighbor- As Awy, — 0, our metric becomes similar to illumination based im-
ing points are the same with high probability), whileGabecomes portance, and a&w, — 41, the metric penalizes small lights more
largea(6) — 1/2, i.e. things become random. We often prefer a and more, resulting in a distribution which is closer to area based

measure going from 0 to 1 instead, and define stratification. As mentioned in the previous section, we found that
. the correlation angld typically varies between.02 and.6, and
a(6)=2a(6)-1, 4 we make a conservative choicesy, = .01.

We will use an exponential model fér(0)
3 Hierarchical Environment Map Stratifi-

a(e)=e9T. (5) .

cation

The equation above has a simple explanation—the probability that

the visibility at points is correlated decays exponentially with the In this section, we describe how to efficiently stratify an environ-

angular separation between the pointsis the correlation angle ment map using the visibility importance metric from the previous

for visibility and measures the average visibility feature size. It can section. Our stratification algorithm consists of two steps: a hi-

be estimated from the above equation for a given visibility map, erarchical thresholding procedure that assigns samples to different

but the precise value will turn out not to be of significant practical regions in the map, and a stratification algorithm to subdivide the

importance for sampling. regions into strata that can be sampled during rendering. This al-
While the simple form of Equation 5 is only plausible, and can- gorithm is applicable to general irregular multidimensional spaces

not be rigorously proven, our empirical tests on approximately 10 and may have applications beyond sampling of environment maps.

visibility maps, withT ranging from.02 to .6, indicate that it is a

reasonably good approximation. A representative example is shown . . .

in Figure 2. The bottom left of Figure 2 plots l16g6) as a func- 3.1 Hierarchical Thresholding

tion of 8 for one visibility map. We see that this graph is almost a  Environment maps with natural lighting (e.g. [Debevec 1998]) have

straight line, confirming the exponential correlation model. illumination that varies significantly throughout the map. Elements
In the appendix, we derive that the expected variance for a small such as small bright lights, large bright windows, and dark regions
angular exten® (corresponding to a solid angleo ~ 1162) is mean that the importance of different regions and consequently the
0 desired number of samples or strata is highly non-uniform.
V[S AW ~ —— . (6) To create this non-uniform stratification we use a hierarchical
3T thresholding in which we threshold the map at given illumination
Note that the above equation is valid only wHfT < 3/4; as@/T intensities to create levels in the map of approximately equal inten-

becomes larger, visibility becomes essentially random and uncorre-Sity that can be assigned an appropriate number of strata.

lated, so the variance will tend toward the limit of its maximal or _ Our thresholding algorithm uses the standard deviatiaf the
worst-case value of/4. The bottom right of Figure 2 plots the vari- illumination in the_map to define a standard scale that is indepen-
ance as a function of angular extéht Equation 6 is quite closely ~ dent of the dynamic range of the map

followed for 6/T < 3/4, and the variance increases linearly with t—io 0. d-1 3

6. At some solid angléay,, at which8/T is close to 34, the i=10 1=0,....d=L. (®)

variance tails off, approaching the limit of 4. HereAw, 0 T2. Here,t; is the threshold value for leveé) andd is the number of

The appendix goes further in using Equation 6 to determine the hierarchies (We useé = 6 for all our examples). The above scheme
optimal distribution of samples. In particular, the variance of are- defines an increasing sequence of threshold values, and since the

gion of total illuminationL subtending a solid angkscw is propor- intensity values are positive it start@t= 0. While it is possible to
tional to L2Aw!/2, assuming uniform lighting. Hence, the number  define more sophisticated thresholding schemes, this scheme works
of samples is proportional to/L2Awl/2 = LAwl/4. Notice that well in prgctice and we use it for all our experimgnts. _
this formula applies only whefiw < Aay,, since visibility variance To assign samples, we first compute our metric for the entire map
tends to a constant fakw > Awy,. Our results do not seem to be  as: 14
sensitive to the precise value used to estirgteither in the distri- Can =T (Y Lj,Day) = LAwO/ ) 9)

1

bution of the samples or the corresponding valuA@§.

where the sum is over all pixels in the mapig the net illumination

of the whole map), anday, < 4Tis the area of the smallest lights

for which area importance is used, as per the discussion at the end
Based on the visibility analysis, we use= 1, b = 1/4 for our of the previous section. Our sample assignment proceeds hierar-
importance metric (Equation 2). This has the nice property of re- chically by first assigning samples to the brightest regions as given
ducing the number of samples allocated to small (in the limit point- by the threshold valug, ;. We detect all pixelV,_; brighter
likel) sources, while it reduces to illumination importanae<(1) thant,_,. For all pixels inM;_; we find the connected compo-

for equal area regions. A major consequence of our analysis andnentst [Gonzalez and Woods 2001]. For each connected compo-
empirical results is that visibility coherence is significant only for nentC. we evaluate our metric for all pixels in the component as

small light sources, and consequently the main impactofourmetric - _ s, | s A whereAa is the solid anale of pixl
is to reduce the number of samples for these lights while using an _ | (Zecj i» 2iec, @) 04 9 P
essentially illumination-based metric in other regions. In particular, N C;- The number of samples assigned to the component can then

2.2 An Importance Metric for Environment Maps

we use the the following modified version of Equation 2: be computed as r
: 14 N =N_1 10
M(L, Aw) = L- (min(Aw, Aay)) Y. ) i=NF,- (10)
1As the area goes to zero the number of samples allocated fohta lig WhereN is the total number of samples used.
can become less than one. Since visibility sampling requirésaat one Once the samples have been assigned to the components cor-
ray, we ensure that we always allocate one sample for a lightifination responding tay_,, we proceed to the next threshold levgl .
importance would assign one or more samples to this light. All the components at this level contain the components from the
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(da=1b=025t, (e)a=1,b=025t (la=1b=025t,

Figure 3. This figure illustrates our hierarchical stratification algorithm on a plane miag three different metrics. (a) shows the map that is being stratified, after the hieahrch
thresholding. It contains three regions, with the illumination coristapach region and decreasing as we move away from the center. (b) shows the resalifging the map
based purely on area. Note how few samples the central bright region gets. (c) Baoasuit of stratifying the map based solely on illumination, while (6ehthe result using our
metric. We see that while our stratification is largely similar to one baseliLiomnation importance, we allocate a somewhat smaller number of sanaplles small bright central
region (25 vs 35) because of increased visibility coherence. Finally, figures (d)-(@rd¢rate how our algorithm hierarchically operates on each illumination lexagdifigng it and
carrying the strata centers to the next level to ensure a good global stratificatio

previous (brighter) level. In effect, we grow the components and
possibly create new components. Our assignment of the total num-| Dataset = {y;,Y,,...,Y¥n},.X={}
ber of samples to the individual components proceeds exactly as| Hochbaum-Shmoys Algorithm
described before and we comptNFfor each component. Finally, ] ] o .
we compute the number of samples to add to this component at this| 'Izldcg)z(antggk()ltrary pointifY and label itx,
level by subtracting the number of samples already assigned to the 1 :
elements of the previous hierarchy within the component. Fori=2,3,... .k

This continues until we readh at which point we include all :
the remaining illumination in tﬂg map. Thg result is a hierarchy 5= ar%[)nax{mc;n [d(yp,xq)]]
of levels with individual components each assigned a fixed number

of samples. The next section describes an efficient algorithm for _Add % toX.
stratifying the entire map utilizing this hierarchical structure. Forj=12....k .
Sj={y:yeYx = ar%mldd(y,&)]}
3.2 Hierarchical Stratification ReturnX, {S;}
The hierarchical thresholding of the environment map results in a Figure 4:The Hochbaum-Shmoys Algorithm.

number of samples assigned to each component at each level. Next
we have to stratify these irregularly shaped and non-Euclidean com- (i our case the set of points in a pate) and a functiord(x,y)

ponents into the appropriate number of compact strata of approxi- which gives the distance between any pair of points in that set. The

n}ately eqltJa(; are_a;[ In qthelr \(votrrc]is, we must patrtltlon ak]ntg;l?lt_rf%[ry set algorithm performs darthest-firsttraversal of the dataset. Starting
of connected points (pixels in the environment map) Join with an arbitrarily chosen point; and adding it to the seX, the

partitions, wher is the number of samples allocated this compo- algorithm in each iteration picks that point@] which is farthest

nent. away from the points iXX and adds it toX. At the end ofk itera-

A good metric for this partitioning is to minimize the maximum fi h point iiX act ter f trat dth It of
distance between the center of each partition and any point inside 1ons, each poInt Ik acts as a center for a stratum and the result o
the algorithm is a disjoint partitioning obtained by assigning each

it. This is a well-studied problem in theoretical computer science, = <. ) e
and is known to be NP-hard [Nemhauser and Wolsey 1988]. Given point |an to its nearest point iiX. . .
the number of strata, the task of stratifying a region of the illumi- A very useful property of the Hochbaum-Shmoys algorithm is
nation map is equivalent to solving thecenters problem on the  thatthe position of the centexsdoes not change across iterations;
surface of a sphere. Given the NP-Hardness of the problem, thereh€nce it can be used for adding centers to a region which already
is little hope of a polynomial time solution. However, it is pos- contains a number of centers assigned to it. This means that the
sible to get high quality approximations in polynomial time. We &lgorithm integrates directly with the hierarchical assignment algo-
use the pairwise clustering method proposed by Hochbaum and'ithm outlined in the previous section, since it can add more strata
Shmoys [1985]. This algorithm produces a 2-approximation, i.e. C€nters to a component that already has a number of points assigned
the quality of the stratification returned by the algorithm is at most 2 t0 previous hierarchy levels. -
times worse than the optimal stratification. In fact it can proved that FIQUfe 3 |Ilus.trates our algorlthr_n and compares_the §tr§t|f|cgt|on
this is the best approximation possible in polynomial time [Feder ©btained by using our proposed importance metric with illumina-
and Greene 1988]. Figure 4 gives the pseudocode for the algorithm.tion and area based importance.

The Hochbaum-Shmoys algorithm takes as input a set of points
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4 Rendering Optimizations This approach is less useful to us since we have light entering from
all directions and the contribution from the different strata can vary
The previous section described how to stratify the environment map significantly from one location of an object to another. Instead,
based on our importance metric. In this section, we describe how we randomly sample a fraction of the remaining lights, and use the
this stratification can be used to efficiently render arbitrary geome- fractional visibility obtained by this sampling as an estimate of the
try with complex BRDFs. visibility of the remaining unsampled lights. This optimization is

Let us first consider Lambertian surfaces for which we are eval- particularly powerful for glossy materials where only a few strata
uating Equation 1 scaled by the diffuse reflectance. A straightfor- contribute significantly to the reflected radiance. Again, this op-
ward evaluation of this integral would be to pick a random location timization is difficult to include with importance sampling, since
within each stratum and evaluate the illumination and BRDF (co- there is no notion of directional lights.
sine term for Lambertian surfaces) at this location, as well as the
visibility Susing ray tracing. An unbiased estimate of the contri- . .
bution from that stratum can then be obtained by scaling this result 5 Results and Discussion
by the area of the stratum. This approach improves on naive Monte ) ) )

Carlo methods since we have a good stratification of the environ- We show the results of our implementation of structured importance
ment map, based on our importance metric. sampling and compare it to previous Monte Carlo techniques as

However, we can improve on this as a consequence of our strati-Well as LightGen [Cohen and Debevec 2001]. Allimages have been
fication, which enables a number of optimizations that are difficult rendered on a 2.4GHz P4 PC using a Monte Carlo ray tracer.
to include in standard importance sampling methods. Some of these We use three different Monte Carlo techniques for comparison
introduce a bias (but maintain consistency) in order to significantly With our results. Stratified sampling involves sampling visibility by
decrease variance, and are “bias for variance” optimizationsl generating ray directions that are distributed uniformly over the vis-
ible hemisphere. Importance sampling is implemented by consider-
ing the environment map in raster scan order as a one dimensional
function and points are sampled on the sphere with probability pro-
portional to their irradiance. Stratified importance sampling uses
a stratified random number generator combined with standard im-
portance sampling—This results in a superior sample distribution as
compared to pure importance sampling. Finally we compare our
results with those produced by using LightGen. LightGen is an un-
published environment map approximation algorithm which clus-
ters the environment map by using a weighted sphekigakans
algorithm. The irradiance of a pixel is used as its weight. The out-
put of the algorithm is a set of directional light sources.

Figure 5 compares structured importance sampling with the ex-
isting rendering techniques on a teapot illuminated in Galileo’s
tomb [Debevec 1998]. As the images demonstrate, structured im-
portance sampling produces significantly better results than strat-
ified importance sampling as well as LightGen. Stratified impor-
tance sampling is still noisy with 300 samples, and to obtain rea-
sonably noise free results similar to our method requires at least
3000 samples. The figure also shows the sample distribution pro-
duced by LightGen as well as our method for this map, and these
two distributions demonstrate that that structured importance sam-
pling gives better results due to a detailed sampling of the lights in
the model, while LightGen’s samples are closer to an area-based
stratified sampling of the map. To check the convergence of Light-
Gen, we created 3000 lights (which took 10 hours), but to our sur-
] ] ) prise having 10 times as many lights did not improve the quality
Jittering:  One disadvantage with the above approach is that mych. We suspect this is becauseneans is an iterative local
a small number of strata can introduce unwanted banding nearsearch based clustering algorithm and it got stuck in a local min-
shadow boundaries due to strata centers suddenly becoming visiblemum. The structured importance sampling images were rendered
or invisible. This banding can be eliminated by jittering the direc- by pre-integrating the illumination in each stratum and treating it as

tion of the ray that is used to test visibility, by randomly choosing a 3 directional source. Note that we did not use sorting or jittering in
location in the stratum—this eliminates banding, and instead adds Figure 5.

noise. Note that, unlike standard Monte Carlo evaluation, this noise  The use of jittering makes it possible to reduce the number of
is added only where the visibility varies, such as shadow bound- samples even further as shown in Figure 7. Here, the shadow from
aries, since we are pre-integrating the illumination contribution of the teapot has been rendered using just 50 samples for the entire
the stratum. map. This results in banding if these samples are used as point-
lights, but as shown in the figure this banding can be eliminated
Sorting:  The third optimization is sorting and adaptively sam- at the cost of noise along the shadow boundaries by jittering the
pling the strata based on the potential contribution taking surface direction of the ray used for shadow testing.
orientation and the BRDF into account. For this purpose, we use The Galileo map was pre-processed at its full resolution of
a variant of Ward’s adaptive shadow testing method [Ward 1991] 1024x 1024 to produce 300 lights. Our stratification algorithm
which samples all the lights deterministically in order of contribu- took about a minute to process the map while LightGen took about
tion until the contrast that the remaining lights can add is below a an hour. For Figure 5 the rendering time for the full teapot image
certain threshold. In Ward’s method, the contribution from the re- at 500x 500 with 300 samples was 10 seconds with structured im-
maining lights is added based on prior statistics from the sampling. portance sampling (as well as LightGen), while it was 70 seconds

Pre-integrating the illumination: The first optimization is
pre-integrating the illumination within each stratum—effectively
combining all the pixels in the stratum into a single directional light
source located at the center. This method introduces bias by ignor-
ing the variation of the BRDF and the surface orientation within
each stratum. The surface orientation could be included using the
nine coefficient spherical harmonics approximation of Ramamoor-
thi and Hanrahan [2001]. However, in practice, our strata are suf-
ficiently small that the error of just using a directional light source
is negligible. An exception is highly glossy materials for which the
BRDF itself can vary significantly within the stratum. This makes
the point source approximation less accurate, and it would be bet-
ter to use a large number of spherical harmonic coefficients as de-
scribed in [Ramamoorthi and Hanrahan 2002].

Since this optimization creates a set of directional lights, it also
allows us to use environment maps with unmodified renderers. We
evaluate the BRDF for the directional light at the center of the stra-
tum and add the pre-integrated illumination in case the stratum is
visible. This integration technique adds extra bias, but it eliminates
sampling noise and makes the evaluation of the illumination com-
pletely deterministic. These noise-reducing optimizations are not
easy to incorporate into standard importance sampling since naive
approaches to stratification do not give compact regular strata lim-
ited to a single light source.
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for stratified importance sampling (the increased time is due to the luminated by this map (this can be seen in parts of the animations on

search for the next sample in a histogram of the environment map).the CD-ROM that have been rendered using structured importance

Sorting the samples on the teapot enabled us to reduce the numbesampling).

of samples by 75%, however the total render time was nearly the In future work, we would like to apply structured importance

same since the overhead of sorting outweighed the advantage of ussampling to rapid computation of surface light fields and other mul-

ing fewer sample rays. Interestingly, our experiments also showed tidimensional data, integrating fast pre-filtering [Ramamoorthi and

that the lights produced by LightGen are much less amenable to Hanrahan 2001; Ramamoorthi and Hanrahan 2002] and visibility

sorting for the Galileo map, since they mostly have uniform inten- computations. We would also like to extend our theoretical analy-

sity. sis of visibility into a complete statistical analysis of visibility maps,
The second test scene shown in Figure 6 (and Figure 1) com-just as for images [Field 1987; Huang and Mumford 1999] and il-

pares the convergence rates of structured importance sampling andumination [Dror et al. 2001]. Finally, we would like to integrate

stratified importance sampling for a glossy buddha in the Grace our technique into real-time rendering approaches to speed up the

cathedral. This figure shows how structured importance sampling pre-computation phase of methods like Sloan et al. [2002], or to in-

requires an order of magnitude fewer samples than stratified impor- corporate shadows into real-time environment mapping [Miller and

tance sampling to generate images of comparable quality. Even atHoffman 1984; Greene 1986; Ramamoorthi and Hanrahan 2001].

1000 samples per pixel, the best Monte Carlo techniques are noisy

for this model. We also rendered an image by importance sam-

pling based on the glossy BRDF (a normalized Phong model with 7 Acknowledgments
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Standard Monte Carlo theory tells us that the variance of a function Now, the variance is given b§(Aw)(1— B(Aw)) and this becomes
(random variable) is given by

RO
V[§ =E[$] - E[F> (11) VISAwW ~ (1~ 27) ~ 57 (16)
Since shadows are binar? = S, andE[S?] = E[S. Letting 8 = Note that in these equations, the solid angle for sddl given by
E[S, we getV[§ = B — B2 =B(1-P). Aw = 162, 506 = \/Aw/ T, and the variance is proportional to the
We want to compute the expected variance (for one sample) of Square root of the solid angle. . S
the visibility functionSfor a small solid anglé\w. The expected Finally, we seek to determine the optimal distribution of samples,
value of the variance (where for clarity, we denote expected values and we will do so by attempting to minimize the variance of the
over all regions by an overline) will be given by net integral. For this, consider two regions of variakgeandV,,

with N samples to be distributed between them in the rabloand
V[SAw] = E[SAw] — E[SAw]? = B(Aw)(1- B(Aw)), (12) (1— p)N. Assuming variance decreases at the ratd of,

where we defing8 (Aw) as the average or expected valueSaiver V[N] = 1 <\Q + Vo ) 17)
solid angleAw. N\p (1-p)/)’

The key expression above f{Aw)(1— B(Aw)). Consider the
case whei = 1 (the entire region of interest is visible). The above Which we can differentiate with respect o obtaining
expression is then 0, and there is no variance. Similarlg,4f 0,
the variance is 0. In fact, the worst casg8is- 1/2, corresponding P A
to a variance of 14. Over the entire image, we will assume the 1p \|V (18)
worst case of random visibilitp(S=0) = P(S=1) =1/2.

We want to consider the expected variance as a function of solid
angleAw. The intuition is that af\co becomes smaller than the
feature size of visibility, the probability distribution fg#(Aw) is
bimodal, i.e. eithef3 = 0 or 3 = 1, and the corresponding variance
tends to zero. Note that we must consider the average or expecte
value of the variancg8(1— 3) and not separatel§ x 1— 3, which
tends to ¥4 asAw tends to 0, sinc@ has equal probability of being
Oorl.

To analyze further, we assume a correlation model for visibility,

and with more than two regions, this ratio must generally be fol-
lowed, i.e. the number of samples is proportionahfd. As an
example, considey = L2, assuming simple scaling of variance by
dllumination magnitude. In that case, the number of samplesL,

as for standard importance-based stratification. Now, consider the
variance in a region of solid anglew. The visibility variance is
proportional toAw?/2, but the net variance must be scaled by net
illumination intensityl.2, assuming uniform lighting (this assump-
as per Equation 5. Now assume that the central point of the re- tion also builds on our hierarchical thresholding scheme which cre-
gion of interest, subtending solid andle, is visible, i.e.50) = 1. ates levels of apprommgtely equgl illumination |ntenS|t3l/);‘ Hence,
Analysis withS(0) = 0 is symmetric. We will assume that the vis-  the number of samples is proportionaitt.2Aw!/2 = LAw!/%.

ibility at a point making an anglé with the central point is de-

scribed using the simple correlation model above, so that the ex-

pected value, give(0) = 1 is simplya(8) = 3(1+&(6)). In

other words,

(1+e*9/T) , (13)

NI =

E[S(6) | S(0)=1] =
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Structured importance sampling with 300 samples Stratifie800 Importance w/ 300 LightGen w/ 300 LightGen w/ 3000 Stinved w/ 100 Structured w/ 300

C

The Galileo map LightGen w/ 300 samples Structured importance sampling w/ 300 samples
Figure 5: A teapot in Galileo’s tomb rendered using different samplitigtegies. No sorting or jittering has been used for this amspn. The
large image in the top row has been computed using structureatiamze sampling with 300 samples, which we verified to be fimgjgishable from a
reference image computed with 100,000 samples using standart&arlo sampling. The red squares show two regions thattfeen rendered using
different sampling techniques as close-ups in the small imagebke right. From left to right these images have been reddesig naive stratified
sampling, illumination based stratified importance samplirdyusing LightGen with 300 samples, LightGen with 3000 samysiegctured importance
sampling with 100 samples and 300 samples. Both Monte Carlaitpods produce significant statistical noise even for timpke model, LightGen
shows banding in the shadows with both 300 and 3000 sampfe® (&io few samples are placed at the bright lights), stradtimportance sampling
looks convincing with just 100 samples and with 300 samplesehelt is indistinguishable from a reference image. Theopotiow shows from left
to right, the Galileo map, the lights created by LightGen, Hredstratum centers created using our method. Note how atiifiseition method samples
the bright lights much more densely than LightGen. This is dason why the shadows with structured importance samplingare accurate.

Structured importance sampling with 300 samples 1 sample saftfples 100 samples 300 samples Sorted 4.7 sample rays/pixe
Figure 6:A glossy buddha in the Grace environment map. The large imageedgft is our sampling technique with 300 samples, which istipally
indistinguishable from a reference image. The two rows sHogeeups of the head rendered with an increasing number ofleamphe top row is
stratified importance sampling with 1, 10, 100 and 1000 samsegefl as BRDF based importance sampling with 1000 samples. @tient row
shows structured importance sampling with 1, 10, 100, and 80kes per pixel, as well as a version rendered with sortiagtaresholding resulting
in an average of just 4.7 samples per pixel. Note how strudtimportance sampling results in noise free images and quidtyerges to the final
result while the best Monte Carlo sampling techniques argyrmien when using 1000 samples.

No jittering Jittering

Figure 7:Jittering can be used to eliminate banding at low sample
counts at the cost of adding noise along the shadow boumsdarie
This image is the same close-up of the shadow as in Figure 5 using
just 50 samples. The image on the left is without jittering drel t
image on the right has been rendered using jittering of thdaha

ray.

Figure 8:A snow covered mountain model illuminated at sun-
rise. This model has more than 2 million triangles, and the im-
age has been rendered in 640x512 with full global illuminatio
in 75 seconds.



