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Abstract. This paper presents a practical method for finding the prov-
ably globally optimal solution to numerous problems in projective geom-
etry including multiview triangulation, camera resectioning and homog-
raphy estimation. Unlike traditional methods which may get trapped
in local minima due to the non-convex nature of these problems, this
approach provides a theoretical guarantee of global optimality. The for-
mulation relies on recent developments in fractional programming and
the theory of convex underestimators and allows a unified framework for
minimizing the standard L2-norm of reprojection errors which is optimal
under Gaussian noise as well as the more robust L1-norm which is less
sensitive to outliers. The efficacy of our algorithm is empirically demon-
strated by good performance on experiments for both synthetic and real
data. An open source MATLAB toolbox that implements the algorithm
is also made available to facilitate further research.

1 Introduction

Projective geometry is one of the success stories of computer vision. Methods
for recovering the three dimensional structure of a scene from multiple images
and the projective transformations that relate the scene and its images are now
the workhorse subroutines in applications ranging from specialized tasks like
matchmove in filmmaking to consumer products like image mosaicing for digital
camera users.

The key step in each of these methods is the solution of an appropriately for-
mulated optimization problem. These optimization problems are typically highly
non-linear and finding their global optima in general has been shown to be NP -
hard [1]. Methods for solving these problems are based on a combination of
heuristic initialization and local optimization to converge to a locally optimal
solution. A common method for finding the initial solution is to use a direct
linear transform (for example, the eight-point algorithm [2]) to convert the op-
timization problem into a linear least squares problem. The solution then serves
as the initial point for a non-linear minimization method based on the Jacobian
and Hessian of the objective function, for instance, bundle adjustment. As has
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been documented, the success of these methods critically depends on the quality
of the initial estimate [3].

In this paper we present the first practical algorithm for finding the globally
optimal solution to a variety of problems in multiview geometry. The problems
we address include general n-view triangulation, camera resectioning (also called
cameras pose or absolute orientation) and the estimation of general projections
Pn 7→ Pm, for n ≥ m. We solve each of these problems under three different noise
models, including the standard Gaussian distribution and two variants of the bi-
variate Laplace distribution. Our algorithm is provably optimal, that is, given
any tolerance ε, if the optimization problem is feasible, the algorithm returns
a solution which is at most ε far from the global optimum. The algorithm is
a branch and bound style method based on extensions to recent developments
in the fractional and convex programming literature [4–6]. While the worst case
complexity of our algorithm is exponential, we will show in our experiments that
for a fixed ε the runtime of our algorithm scales almost linearly with problem
size, making this a very attractive approach for use in practice.

Recently there has been some progress made towards finding the global solu-
tion to a few of these optimization problems. An attempt to generalize the opti-
mal solution of two-view triangulation [7] to three views was done in [8] based on
Gröbner basis. However, the resulting algorithm is numerically unstable, compu-
tationally expensive and does not generalize for more views or harder problems
like resectioning. In [9], linear matrix inequalities were used to approximate the
global optimum, but no guarantee of actually obtaining the global optimum is
given. Also, there are unsolved problems concerning numerical stability. Robus-
tification using the L1-norm was presented in [10], but the approach is restricted
to the affine camera model. In [11], a wider class of geometric reconstruction
problems was solved globally, but with L∞-norm.

In summary, our main contributions are:

– A scalable algorithm for solving a class of multiview problems with a guar-
antee of global optimality.

– In addition to using the standard L2-norm of reprojection errors, we are able
to handle the robust L1-norm for the perspective camera model.

– Introduction of fractional programming to the computer vision community.

We begin with an exposition on fractional programming in the next section
along with an introduction to branch and bound algorithms. We describe in de-
tail the construction of the lower bounds and present our initialization methods
along with a novel bounds propagation scheme. This scheme exploits the special
properties of structure and motion problems to restrict the branching process
to a small, fixed number of dimensions independent of the problem size. Finally,
we demonstrate that various structure and motion problems can indeed be for-
mulated as fractional programs of the type we deal with and present the results
of our experiments.
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2 Fractional Programming

In its most general form, fractional programming seeks to minimize/maximize
the sum of p ≥ 1 fractions subject to convex constraints. Our interest from the
point of view of multiview geometry, however, is specific to the minimization
problem

min
x

p∑
i=1

fi(x)
gi(x)

subject to x ∈ D (F1)

where fi : Rn → R and gi : Rn → R are convex and concave functions, respec-
tively, and the domain D ⊂ Rn is a convex, compact set. Further, it is assumed
that both fi and gi are positive with lower and upper bounds over D. Even with
these restrictions the above problem is NP -complete [1], but we demonstrate
that practical and reliable estimation of the global optimum is still possible for
the multiview problems considered.

Let us assume that we have available to us upper and lower bounds on
the functions fi(x) and gi(x), denoted by the intervals [ li, ui ] and [Li, Ui ],
respectively. Let Q0 denote the 2p-dimensional rectangle [ l1, u1 ]×· · ·×[ lp, up ]×
[L1, U1 ] × · · · × [Lp, Up ]. Introducing auxiliary variables t = (t1, . . . , tp)> and
s = (s1, . . . , sp)>, consider the following alternate optimization problem:

min
x,t,s

p∑
i=1

ti
si

subject to fi(x) ≤ ti gi(x) ≥ si

x ∈ D (t, s) ∈ Q0. (F2)

We note that the feasible set for problem (F2) is a convex, compact set and that
(F2) is feasible if and only if (F1) is. Indeed the following holds true [5]:

Theorem 1. (x∗, t∗, s∗) ∈ Rn+2p is a global, optimal solution for (F2) if and
only if t∗i = fi(x∗), s∗i = gi(x∗), i = 1, · · · , p and x∗ ∈ Rn is a global optimal
solution for (F1).

Thus, Problems (F1) and (F2) are equivalent, and henceforth we shall restrict
our attention to Problem (F2).

2.1 Branch and Bound Theory

Branch and bound algorithms are non-heuristic methods for global optimization
in non-convex problems. They maintain a provable upper and/or lower bound on
the (globally) optimal objective value and terminate with a certificate proving
that the solution is ε-suboptimal (that is, within ε of the global optimum), for
arbitrarily small ε.

Consider a non-convex, scalar-valued objective function Φ(x), for which we
seek a global optimum over a rectangle Q0 as in Problem (F2). For a rectangle
Q ⊆ Q0, let Φmin(Q) denote the minimum value of the function Φ over Q. Also,
let Φlb(Q) be a function that satisfies the following conditions:
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Fig. 1. This figure illustrates the operation of a branch and bound algorithm on a
one dimensional non-convex minimization problem. Figure (a) shows the the function
Φ(x) and the interval l ≤ x ≤ u in which it is to be minimized. Figure (b) shows
the convex relaxation of Φ(x) (indicated in yellow/dashed), its domain (indicated
in blue/shaded) and the point for which it attains a minimum value. q∗1 is the
corresponding value of the function Φ. This value is the best estimate of the minimum
of Φ(x) is used to reject the left subinterval in Figure (c) as the minimum value of
the convex relaxation is higher than q∗1 . Figure (d) shows the lower bounding opera-
tion in the right sub-interval in which a new estimate q∗2 of the minimum value of Φ(x).

(L1) Φlb(Q) computes a lower bound on Φmin(Q) over the domain Q, that is,
Φlb(Q) ≤ Φmin(Q).

(L2) The approximation gap Φmin(Q)−Φlb(Q) uniformly converges to zero as the
maximum half-length of sides of Q, denoted |Q|, tends to zero, that is

∀ ε > 0, ∃ δ > 0 s.t. ∀Q ⊆ Q0, |Q| ≤ δ ⇒ Φmin(Q)− Φlb(Q) ≤ ε.

The branch and bound algorithm begins by computing Φlb(Q0) and the
point q∗ ∈ Q0 which minimizes Φlb(Q0). If Φ(q∗) − Φlb(Q0) < ε, the algo-
rithm terminates. Otherwise Q0 is partitioned as a union of subrectangles Q0 =
Q1 ∪ · · ·Qk for some k ≥ 2 and the lower bounds Φlb(Qi) as well as points
qi (at which these lower bounds are attained) are computed for each Qi. Let
q∗ = arg min{qi}k

i=1
Φ(qi). We deem Φ(q∗) to be the current best estimate of

Φmin(Q0). The algorithm terminates when Φ(q∗) − min1≤i≤k Φlb(Qi) < ε, else
the partition of Q0 is refined by further dividing some subrectangle and repeat-
ing the above. The rectangles Qi for which Φlb(Qi) > Φ(q∗) cannot contain
the global minimum and are not considered for further refinement. A graphical
illustration of the algorithm is presented in Figure 1.

Computation of the lower bounding functions is referred to as bounding , while
the procedure that chooses a rectangle and subdivides it is called branching . The
choice of the rectangle picked for refinement in the branching step and the actual
subdivision itself are essentially heuristic. We consider the rectangle with the
smallest minimum of Φlb as the most promising to contain the global minimum
and subdivide it into k = 2 rectangles. Algorithm 1 uses the abovementioned
functions to present a concise pseudocode for the branch and bound method.

Although guaranteed to find the global optimum (or a point arbitrarily close
to it), the worst case complexity of a branch and bound algorithm is exponential.
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However, we will show in our experiments that the special properties offered by
multiview problems lead to fast convergence rates in practice.

Algorithm 1 Branch and Bound
Require: Initial rectangle Q0 and ε > 0.
1: Bound : Compute Φlb(Q0) and minimizer q∗ ∈ Q0.
2: S = {Q0} //Initialize the set of candidate rectangles
3: loop
4: Q′ = arg minQ∈S Φlb(Q) //Choose rectangle with lowest bound
5: if Φ(q∗)− Φlb(Q′) < ε then
6: return q∗ //Termination condition satsified
7: end if
8: Branch : Q′ = Ql ∪Qr

9: S = (S/{Q′}) ∪ {Ql, Qr} //Update the set of candidate rectangles
10: Bound : Compute Φlb(Ql) and minimizer ql ∈ Ql.
11: if Φ(ql) < Φ(q∗) then
12: q∗ = ql //Update the best feasible solution
13: end if
14: Bound : Compute Φlb(Qr) and minimizer qr ∈ Qr.
15: if Φ(qr) < Φ(q∗) then
16: q∗ = qr //Update the best feasible solution
17: end if
18: S = {Q |Q ∈ S, Φlb(Q) < Φ(q∗) } //Discard rectangles with high lower bounds
19: end loop

2.2 Bounding

The goal of the Bound procedure is to provide the branch and bound algorithm
with a bound on the smallest value the objective function takes in a domain. The
computation of the function Φlb must possess three properties - crucial to the
efficiency and convergence of the algorithm: (i) it must be easily computable, (ii)
must provide as tight a bound as possible and (iii) must be easily minimizable.
Precisely these features are inherent in the convex envelope of our objective
function, which we define below.

Definition 1 (Convex Envelope). Let f : S → R, where S ⊂ Rn is a non-
empty convex set. The convex envelope of f over S (denoted convenv f) is a
convex function such that (i) convenv f(x) ≤ f(x) for all x ∈ S and (ii) for
any other convex function u, satisfying u(x) ≤ f(x) for all x ∈ S, we have
convenv f(x) ≥ u(x) for all x ∈ S.

Finding the convex envelope of an arbitrary function may be as hard as
finding the global minimum. To be of any advantage, the envelope construction
must be cheaper than the optimal estimation.
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In [4], it was shown that the convex envelope for a single fraction t/s, where
t ∈ [ l, u ] and s ∈ [L,U ], is given as the solution to the following Second Order
Cone Program (SOCP):

minimize ρ

subject to
∥∥∥∥ 2λ

√
l

ρ′ − s′

∥∥∥∥ ≤ ρ′ + s′
∥∥∥∥ 2(1− λ)

√
u

ρ− ρ′ − s + s′

∥∥∥∥ ≤ ρ− ρ′ + s− s′

λL ≤ s ≤ λU (1− λ)L ≤ s− s′ ≤ (1− λ)U
ρ′ ≥ 0 ρ− ρ′ ≥ 0

l ≤ t ≤ u L ≤ s ≤ U

where we have substituted λ =
u− t

u− l
for ease of notation, and ρ, ρ′, s′ are aux-

iliary scalar variables.
It is easy to show that the convex envelop of a sum is always greater (or equal)

than the sum of convex envelopes. That is, if f =
∑

i ti/si then convenv f ≥∑
i convenv ti/si. It follows that in order to compute a lower bound on Prob-

lem (F2), one can compute the sum of convex envelopes for ti/si subject to
the convex constraints. Hence, this way of computing a lower bound Φlb(Q)
amounts to solving a convex SOCP problem which can be done efficiently [12].
It can be shown [5] that the convex envelope satisfies conditions (L1) and (L2),
and therefore, is well-suited for our branch and bound algorithm.

2.3 Branching

Branch and bound algorithms can be slow, in fact, the worst case complex-
ity grows exponentially with problem size. Thus, one must devise a sufficiently
sophisticated branching strategy to expedite the convergence.

A general branching strategy applicable to fractional programs [5] is to
branch along p dimensions corresponding to the denominators si of each frac-
tional term ti/si in Problem (F2). This limits the practical applicability to prob-
lems containing 10-12 fractions [13]. However, we demonstrate in Section 4.1 that
for our class of problems, it is possible to restrict the branching to a small and
fixed number of dimensions regardless of the number of fractions, which substan-
tially enhances the number of fractions our algorithm can handle.

After a choice has been made of the rectangle to be further partitioned, there
are two issues that must be addressed within the branching phase - namely,
deciding the dimensions along which to split the rectangle and where along a
chosen dimension to split the rectangle. We pick the dimension with the largest
interval and employ a simple spatial division procedure, called α-bisection (see
Algorithm 2) for a given scalar α, 0 < α ≤ 0.5. It can be shown [5] that the
α-bisection leads to a branch-and-bound algorithm which is convergent.
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Algorithm 2 α-bisection
Require: A rectangle Q ⊂ R2p

1: j = arg maxi=1,...,p(Ui − Li)
2: Vj = α(Uj − Lj)
3: Ql = [ l1, u1 ]× · · · × [ lp, up ]× [ L1, U1 ]× · · · × [ Lj , Vj ]× · · · × [ Lp, Up ]
4: Qr = [ l1, u1 ]× · · · × [ lp, up ]× [ L1, U1 ]× · · · × [ Vj , Uj ]× · · · × [ Lp, Up ]
5: return (Ql, Qr)

3 Applications to Multiview Geometry

In this section, we elaborate on adapting the theory developed in the previous
section to common problems of multiview geometry. In the standard formulation
of these problems based on the Maximum Likelihood Principle, the exact form
of the objective function to be optimized depends on the choice of noise model.
The noise model describes how the errors in the observations are statistically
distributed given the ground truth.

In the Gaussian noise model, assuming an isotropic distribution of error with
a known standard deviation σ, the likelihood for two image points - one measured
point x and one true x′ - is

p(x|x′) = (2πσ2)−1 exp(−‖x− x′‖22/(2σ2)) . (1)

Thus maximizing the likelihood of the observed point correspondences and
assuming iid noise, is equivalent to minimizing

∑
i ‖xi−x′i‖22, which we interpret

as a combination of two vector norms - the first for the point-wise error in the
image and the second that cumulates these point-wise errors. We call this the
(L2, L2)-formulation.

The exact definition of the Laplace noise model depends on the particular
definition of the multivariate Laplace distribution [14]. In the current work we
choose two of the simpler definitions. The first one is a special case of the mul-
tivariate exponential power distribution giving us the likelihood function:

p(x|x′) = (2πσ)−1 exp(−‖x− x′‖2/σ) . (2)

An alternative view of the bivariate Laplace distribution is to consider it
as the joint distribution of two iid univariate Laplace random variables, where
x = (u, v)> and x′ = (u′, v′)> which gives us the following likelihood function

p(x|x′) =
1
2σ

e−
1
σ |u−u′| 1

2σ
e−

1
σ |v−v′| = (4σ2)−1 exp(−‖x− x′‖1/σ) . (3)

Maximizing the likelihoods in (2) and (3) is equivalent to minimizing
∑

i ‖xi−
x′i‖2 and

∑
i ‖xi − x′i‖1, respectively. Again, in our interpretation of these ex-

pressions as a combination of two vector norms, we denote these minimizations
as (L2, L1) and (L1, L1), respectively.

We summarize the classification of overall error under various noise models
in Table 1.
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Gaussian Laplacian I Laplacian IIP
i ‖xi − x′i‖2

2

P
i ‖xi − x′i‖2

P
i ‖xi − x′i‖1

(L2, L2) (L2, L1) (L1, L1)

Table 1. Different cost-functions of reprojection errors.

3.1 Triangulation

The primary concern in triangulation is to recover the 3D scene point given
measured image points and known camera matrices in N ≥ 2 views. Let P =
[p1 p2 p3]> denote the 3 × 4 camera where pi is a 4-vector, (u, v)> image coor-
dinates, X = (U, V,W, 1)> the extended 3D point coordinates, then the repro-
jection residual vector for this image is given by

r =
(

u− p>1 X

p>3 X
, v − p>2 X

p>3 X

)>

(4)

and hence the objective function to minimize becomes
∑N

i=1 ||ri||qp for the (Lp, Lq)-
case. In addition, one can require that p>3 X > 0 which corresponds to the 3D
point being in front of the camera. We now show that by defining ||r||qp as an ap-
propriate ratio f/g of a convex function f and a concave function g, the problem
in (4) can be identified with the one in (F2).

(L2, L2). The norm-squared residual of r can be written ||r||22 = ((a>X)2 +
(b>X)2)/(p>3 X)2 where a, b are 4-vectors dependent on the known image
coordinates and the known camera matrix. By setting f = ((a>X)2 +
(b>X)2))/(p>3 X) and g = p>3 X, a convex-concave ratio is obtained. It is
straightforward to verify the convexity of f via the convexity of its epigraph:

epif = {(X, t) | t ≥ f(X)}

=
{

(X, t) | 1
2
(t + p>3 X) ≥

∥∥∥∥(
a>X, b>X,

1
2
(t− p>3 X)

)∥∥∥∥}
,

which is a second-order convex cone [6].
(L2, L1). Similar to the (L2, L2)-case, the norm of r can be written ||r||2 = f/g

where f =
√

(a>X)2 + (b>X)2 and g = p>3 X. Again, the convexity of f can
be established by noting that the epigraph epif =

{
(X, t) | t ≥ ‖(a>X, b>X)‖

}
is a second-order cone.

(L1, L1). Using the same notation as above, the L1-norm of r is given by
||r||1 = f/g where f = |a>X|+ |b>X| and g = p>3 X.

In all the cases above, g is trivially concave since it is linear in X.

3.2 Camera Resectioning

The problem of camera resectioning is the analogous counterpart of triangulation
whereby the aim is to recover the camera matrix given N ≥ 6 scene points and
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their corresponding images. The main difference compared to the triangulation
problem is that the number of degrees of freedom has increased from 3 to 11.

Let p =
(
p>1 , p>2 , p>3

)> be a homogeneous 12-vector of the unknown elements
in the camera matrix P . Now, the squared norm of the residual vector r in (4) can
be rewritten in the form ||r||22 = ((a>p)2 + (b>p)2)/(X>p3)2, where a, b are 12-
vectors determined by the coordinates of the image point x and the scene point
X. Recalling the derivations for the (L2, L2)-case of triangulation, it follows that
||r||22 can be written as a fraction f/g with f = ((a>p)2 +(b>p)2)/(X>p3) which
is convex and g = X>p3 concave in accordance with Problem (F2). Similar
derivations show that the same is true for camera resectioning with (L2, L1)-
norm as well as (L1, L1)-norm.

3.3 Projections from Pn to Pm

Our formulation for the camera resectioning problem is very general and not
restricted by the dimensionality of the world or image points. Thus, it can be
viewed as a special case of a Pn 7→ Pm projection with n = 3 and m = 2.

When m = n, the mapping is called a homography. Typical applications
include homography estamation of planar scene points to the image plane, or
inter-image homographies (m = n = 2) as well as the estimation of 3D homogra-
phies due to different coordinate systems (m = n = 3). For projections (n > m),
camera resection is the most common application, but numerous other instances
appear in the computer vision field [15].

4 Multiview Fractional Programming

4.1 Bounds Propagation

Consider a fractional program with p fractions. For all problems presented in
Section 3, the denominator is a linear function in the unknowns. For example,
in the case of triangulation, the unknown point coordinates X = (U, V,W, 1)>

are linear in gi(X) = p>3iX for i = 1, . . . , p. Suppose p > 3 and bounds are
given on three denominators, say g1, g2, g3 which are not linearly dependent.
These bounds then define a convex polytope in R3. This polytope constrains
the possible values of U, V and W which in turn induce bounds on the other
denominators g4, . . . , gp. The bounds can be obtained by solving a set of linear
equations each time branching is performed.

Thus, it is sufficient to branch on three dimensions in the case of triangu-
lation. Similarly, in the case of camera resectioning, the denominator has only
three degrees of freedom and more generally, for projections Pn 7→ Pm, the de-
nominator has n degrees of freedom.

4.2 Coordinate System Independence

All three error norms (see Table 1) are independent of the coordinate system
chosen for the scene (or source) points. In the image, one can translate and scale
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the points without effecting the norms. For all problem instances and all three
error norms considered, the coordinate system can be chosen such that the first
denominator g1 is a constant equal to one. Thus, there is no need to approximate
the first term in the cost-function with a convex envelope, since it is a convex
function already.

4.3 Initialization

In the construction of the algorithm we assumed that initial bounds are available
on the numerator and the denominator of each of the fractions. This initial
rectangle Q0 in R2p is the starting point for the branch and bound algorithm.

Let γ be an upper bound on the reprojection error in pixels (specified by the
user), then we can bound the denominators gi(x) by solving the following set of
optimization problems:

for i = 1, . . . , p, min gi(x) max gi(x)
fj(x)
gj(x)

≤ γ
fj(x)
gj(x)

≤ γ j = 1, . . . , p.

Depending on the choice of error norm, the above optimization problems will be
instances of linear or quadratic programming. We will call this γ-initialization.
While tight bounds on the denominators are crucial for the performance of the
overall algorithm, we have found that the bounds on the numerators are not.
Therefore, we set the numerator bounds to preset values.

5 Experiments

Both triangulation and estimation of projections Pn 7→ Pm have been imple-
mented for all three error norms in Table 1 in the Matlab environment using
the convex solver SeDuMi [12] and the code is publicly available3. The optimiza-
tion is based on the branch and bound procedure as described in Algorithm 1
and α-bisection (see Algorithm 2) with α = 0.5. To compute the initial bounds,
γ-initialization is used (see Section 4.3) with γ = 15 pixels for both real and
synthetic data. The branch and bound terminates when the difference between
the global optimum and the underestimator is less than ε = 0.05. In all exper-
iments, the Root Mean Squares (RMS) errors of the reprojection residuals are
reported regardless of the computation method.

5.1 Synthetic Data

Our data is generated by creating random 3D points within the cube [−1, 1]3

and then projecting to the images. The image coordinates are corrupted with
iid Gaussian noise with different levels of variance. In all graphs, the average
of 200 trials are plotted. In the first experiment, we employ a weak camera
3 See http://www.maths.lth.se/matematiklth/personal/fredrik/download.html.



Practical Global Optimization for Multiview Geometry 11

geometry for triangulation, whereby three cameras are placed along a line at
distances 5, 6 and 7 units, respectively, from the origin. In Figures 2(a) and (b),
the reprojection errors and the 3D errors are plotted, respectively. The (L2, L2)
method, on the average, results in a much lower error than bundle adjustment,
which can be attributed to bundle adjustment being enmeshed in local minima
due to the non-convexity of the problem. The graph in Figure 2(c) depicts the
percentage number of times (L2, L2) outperforms bundle adjustment in accuracy.
It is evident that higher the noise level, the more likely it is that the bundle
adjustment method does not attain the global optimum.

In the next experiment, we simulate outliers in the data in the following man-
ner. Varying numbers of cameras, placed 10o apart and viewing toward the ori-
gin, are generated in a circular motion of radius 2 units. In addition to Gaussian
noise with standard deviation 0.01 pixels for all image points, the coordinates
for one of the image points have been perturbed by adding or subtracting 0.1
pixels. This point may be regarded as an outlier. As can seen from Figure 5.1(a)
and (b), the reprojection errors are lowest for the (L2, L2) and bundle methods,
as expected. However, in terms of 3D-error, the L1 methods perform best and
already from two cameras one gets a reasonable estimate of the scene point.

In the third experiment, six 3D points in general position are used to compute
the camera matrix. Note that this is a minimal case, as it is not possible to
compute the camera matrix from five points. The true camera location is at
a distance of two units from the origin. The reprojection errors are graphed
in Figure 5.1(c). Results for bundle adjustment and the (L2, L2) methods are
identical and thus, likelihood of local minima is low.

To demonstrate scalability, Table 2 reports the runtime of our algorithm over
a variety of problem sizes for resectioning. The tolerance, ε, here is set to within
1 percent of the global optimum, the maximum number of iterations to 500 and
mean and median runtimes are reported over 200 trials. The algorithm’s excellent
runtime performance is demonstrated by almost linear scaling in runtimes.
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Fig. 2. Triangulation with forward motion. The performance of bundle adjustment de-
grades rapidly with increasing noise, while our algorithm continues to perform well,
both in terms of (a) reprojection error and (b) 3D error. The plot in (c) shows per-
centage number of times our algorithm outperforms bundle adjustment.
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Fig. 3. (a) and (b) show reprojection and 3D erorrs, respectively, for triangulation
with one outlier. Despite a higher reprojection error, the L1-algorithms better bundle
adjustment in terms of 3D error. (c) Reprojection errors for camera resectioning.

5.2 Real Data

We have evaluated the performance on two publicly available data sets as well -
the dinosaur and the corridor sequences. In Table 3, the reprojection errors are
given for (1) triangulation of all 3D points given pre-computed camera motion
and (2) resection of cameras given pre-computed 3D points. Both the mean error
and the estimated standard deviation are given. There is no difference between
the bundle adjustment and the (L2, L2) method. Thus, for these particular se-
quences, the bundle adjustment did not get trapped in any local optimum. The
L1 methods also result in low reprojection errors as measured by the RMS cri-
terion. More interesting is, perhaps, the number of iterations on a standard PC
(3 GHz), see Table 4. In the case of triangulation, a point is typically visible
in a couple of frames. The differences in iterations are most likely due to the
setup: the dinosaur sequence has circular camera motion which is a better-posed
geometry compared to forward motion in the corridor sequence.

Points (L2, L2) (L2, L1) (L1, L1)

Mean Median MI Mean Median MI Mean Median MI

6 42.8 35.5 0.5 41.6 31.5 1.5 7.9 4.7 0.0
10 51.8 41.9 0.5 105.8 66.6 3.5 20.3 13.5 0.5
20 72.7 50.5 2.5 210.2 121.2 9.0 46.8 28.2 1.0
50 145.5 86.5 4.5 457.9 278.3 8.5 143.0 75.9 2.5
70 172.5 107.8 3.5 616.5 368.7 7.5 173.0 102.8 1.5
100 246.2 148.5 4.5 728.7 472.4 4.0 242.3 133.6 2.0

Table 2. Mean and median runtimes (in seconds) for the three algorithms as the
number of points for a resectioning problem is increased. MI is the percentage number
of times the algorithm reached 500 iterations.
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Experiment Bundle (L2, L2) (L2, L1) (L1, L1)

Mean Std Mean Std Mean Std Mean Std

Dino (triangulation) 0.30 0.14 0.30 0.14 0.18 0.09 0.22 0.11
Corridor (triangulation) 0.21 0.16 0.21 0.16 0.13 0.13 0.15 0.12

Dino (resection) 0.33 0.04 0.33 0.04 0.34 0.04 0.34 0.04
Corridor (resection) 0.28 0.05 0.28 0.05 0.28 0.05 0.28 0.05

Table 3. Reprojection errors (in pixels) for triangulation and resectioning in the Di-
nosaur and Corridor data sets. “Dinosaur” has 36 turntable images with 324 tracked
points, while “Corridor” has 11 images in forward motion with a total of 737 points.

6 Discussions

In this paper, we have demonstrated that several problems in multiview geome-
try can be formulated within the unified framework of fractional programming,
in a form amenable to global optimization. A branch and bound algorithm is
proposed that provably finds a solution arbitrarily close to the global optimum,
with a fast convergence rate in practice. Besides minimizing reprojection error
under Gaussian noise, our framework allows incorporation of robust L1 norms,
reducing sensitivity to outliers. Two improvements that exploit the underlying
problem structure and are critical for expiditious convergence are: branching in
a small, constant number of dimensions and bounds propagation.

It is inevitable that our solution times be compared with those of bundle
adjustment, but we must point out that it is producing a certificate of optimality
that forms the most significant portion of our algorithm’s runtime. In fact, it
is our empirical observation that the optimal point ultimately reported by the
branch and bound is usually obtained within the first few iterations.

A distinction must also be made between the accuracy of a solution and the
optimality guarantee associated with it. An optimality criterion of, say ε = 0.95,
is only a worst case bound and does not necessarily mean a solution 5% away
from optimal. Indeed, as evidenced by our experiments, our solutions consistently
equal or better those of bundle adjustment in accuracy.

Experiment (L2, L2) (L2, L1) (L1, L1)

Mean Std Mean Std Mean Std

Dino (triangulation) 1.2 1.5 1.0 0.2 6.7 3.4
Corridor (triangulation) 8.9 9.4 27.4 26.3 25.9 27.4

Dino (resection) 49.8 40.1 84.4 53.4 54.9 42.9
Corridor (resection) 39.9 2.9 49.2 20.6 47.9 7.9

Table 4. Number of branch and bound iterations for triangulation and resectioning
on the Dinosaur and Corridor datasets. More parameters are estimated for resection-
ing, but the main reason for the difference in performance between triangulation and
resectioning is that several hundred points are visible to each camera for the latter.
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