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Abstract. This paper presents a novel generalization of the optical flow
equation to the case of refraction, and it describes a method for recover-
ing the refractive structure of an object from a video sequence acquired
as the background behind the refracting object moves. By structure here
we mean a representation of how the object warps and attenuates (or
amplifies) the light passing through it. We distinguish between the cases
when the background motion is known and unknown. We show that when
the motion is unknown, the refractive structure can only be estimated up
to a six-parameter family of solutions without additional sources of in-
formation. Methods for solving for the refractive structure are described
in both cases. The performance of the algorithm is demonstrated on real
data, and results of applying the estimated refractive structure to the
task of environment matting and compositing are presented.

1 Introduction

The human visual system is remarkable in its ability to look at a scene through
a transparent refracting object and to deduce the structural properties of that
object. For example, when cleaning a wine glass, imperfections or moisture may
not be visible at first, but they become apparent when one holds the glass up
and moves or rotates it.

We believe that the primary cue here is the optical flow of the background
image as observed through the refracting object, and our aims in this paper are
to build a theory of how motion can be used for recovering the structure of a
refracting object, to introduce algorithms for estimating this structure, and to
empirically validate these algorithms. By structure here we mean a represen-
tation of how the object warps and attenuates (or amplifies) the light passing
through it. Recall, as a light ray enters or exits the object, its direction changes
according to Snell’s Law (known as Descartes’ Law in France). Furthermore, the
emitted radiance may differ from the incident radiance due to the difference in
solid angle caused by the geometry of the interfaces between the object and the
air as well as absorption along the light ray’s path through the object. The geo-
metric shape of the object itself, while of independent interest, is not the focus
of our inquiry here.

The primary contribution of this paper is to generalize the optical flow equa-
tion to account for the warping and attenuation caused by a refractive object,
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and to present algorithms for solving for the warp and attenuation using a se-
quence of images obtained as a planar background moves behind the refracting
object. Both the case where the background motion is known and where it is
unknown are considered. We demonstrate the performance of these algorithms
on both synthetic and real data.

While there is a vast literature on motion understanding including trans-
parency, the warp induced by refraction appears to have been neglected hith-
erto [1–4]. The ability to recover the refractive structure of an object has a
number of applications. Recently, environment matting and compositing have
been introduced as techniques for rendering images of scenes which contains
foreground objects that refract and reflect light [5–7]. The proposed approach
offers a new method for creating a matte of real objects without the need for
extensive apparatus besides a video camera. Refractive optical flow may also be
useful for visual inspection of transparent/translucent objects.

This paper was inspired by the work of Zongker et. al [7] on environment
matting and its subsequent extension by Chuang et. al. [5]. We discuss this
method in the next section. However the work that comes closest to ours in
spirit is that of H. Murase [8]. Murase uses optical flow to recover the shape
of a flexible transparent object, e.g., water waves that change over time. To
make the problem tractable he makes a number of simplifying assumptions (a)
The camera is orthographic, (b) The refracting object is in contact with the
background plane which has a flat shape and a static unknown pattern on it, (c)
the average shape over time of the refracting surface is known a priori to have
zero slope. In this paper our interest is in scenes where the refracting object is
rigid and stationary. Beyond that, we make no assumptions about the number
of objects, their refractive indices, or the positioning of the refracting object in
the scene.We do not address effects due to specular, Fresnel or total internal
reflections in this work.

The rest of the paper is organized as follows. In the next section we begin by
describing our image formation model and we then introduce the notion of an
optical kernel and describe how the choice of a particular optical kernel leads to a
new generalization of the optical flow equation. Section 3 describes algorithms for
solving for the refractive structure using this equation. Section 4 demonstrates
the performance of our algorithm on synthetic and real data, and its application
to matting. We conclude in Section 5 with a discussion and directions for future
work.

2 A theory of refractive optical flow

In this section we describe our image formation model and use it to derive the
refractive optical flow equation. As illustrated in Figure 1(a), we assume that
the scene consists of three entities.

1. A background image plane B, where B(u, t) denotes the emitted radiance
at the point u = (u, v)> and time t.
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Fig. 1. The image formation model: (a) The general image formation model, where
the incident irradiance at a point x in the foreground plane I is a result of the emitted
radiance of some number of points in the background plane B. (b) The single ray image
formation model, where the incident irradiance at x is linear function of the emitted
radiance at the point T (x) in the background plane.

2. A foreground image plane I, where I(x, t) denotes the incident radiance at
the point x = (x, y)> and time t.

3. A collection of one or more refracting objects between I and B.

The illumination in the scene is assumed to be ambient or coming from a di-
rectional light source, and the background plane is assumed to be an isotropic
radiator. The background and the foreground planes are not constrained to be
parallel. No assumptions are made about the shape of the refracting objects,
or optical properties of their constituent materials. We treat the refracting ob-
jects as a “black-box” function that warps and attenuates the light rays passing
through it. It is our aim to recover this function from a small set of images of
the scene.

Given the assumptions about scene illumination stated earlier, the incident
radiance at a point x in the foreground is a result of the reflected and emitted
radiance from the background plane. Now let the function that indicates what
fraction of the light intensity observed at a point x in the foreground comes
from the point u in the background be denoted by the optical kernel K(u,x).
The total light intensity at x can now be expressed as an integral over the entire
background plane,

I(x, t) =

∫

K(u,x)B(u, t)du (1)

The problem of recovering the refractive structure of an object can now be
restated as the problem of estimating the optical kernel associated with it.

The set of all functions of the form K(u,x) is huge. A large part of this set
consists of functions that violate laws of physics. However the set of physically
plausible optical kernels is still very big, and the reconstruction of K using a
small number of images is an ill-posed problem. Additional constraints must be
used to make the problem tractable.

One such direction of inquiry is to assume a low dimensional form for K by
a small set of parameters. Zongker et al. in their work on environment matting,
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assume a parametric box form for K(u,x),

K(u,x) =

{

1/µ(x) if a(x) ≤ u ≤ b(x)& c(x) ≤ v ≤ d(x)

0 otherwise
(2)

where, a(x), b(x), c(x), d(x) are functions of x. µ(x) is the area of the rectangle
enclosed by (a, c) and (b, d). The kernel maps the average intensity of a rectan-
gular region in the background to a point in the foreground. The values of the
parameters {a(x), b(x), c(x), d(x)} for each point x are determined using a set of
calibrated background patterns and performing a combinatorial search on them
so as to minimize the reconstruction error of the foreground image. Chuang et
al. [5] generalize K to be from the class of oriented two-dimensional Gaussians.
In both of these cases, knowledge of the background image is assumed.

In this paper we choose to pursue an alternate direction. We consider optical
kernels of the form

K(u,x) = α(x)δ(u − T (x)) (3)

where δ(·) is Dirac’s delta function, T (x) is a piecewise differentiable function
that serves as the parameter for the kernel indicating the position in the back-
ground plane where the kernel is placed when calculating the brightness at x

in the foreground image plane. The function α(x) is a positive scalar function
that accounts for the attenuation of light reaching x. Figure 1(b) illustrates the
setup.

In the following we will show how if we restrict ourselves to this class of op-
tical kernels, we can recover the refractive structure without any knowledge of
the background plane. We will also demonstrate with experiments how this sub-
class of kernels despite having a very simple description is capable of capturing
refraction through a variety of objects.

The image formation equation can now be re-written as

I(x, t) =

∫

α(x)δ(u − T (x))B(u, t)du (4)

= α(x)B(T (x), t) (5)

We begin by differentiating the above equation w.r.t x, to get

∇xI(x, t) =(∇xα(x))B(T (x)) + α(x)J>(T (x))(∇T (x)B(T (x), t)) (6)

Here, J>(T (x)) is the transpose of the Jacobian of the transformation T (x).
Using Equation (5) the above equation can be written as

∇xI(x, t) = I(x, t)
∇xα(x)

α(x)
+ J>(T (x))

[

α(x)∇T (x)B(T (x))
]

J−>(T (x))

[

∇xI(x, t) − I(x, t)
∇xα(x)

α(x)

]

= α(x)∇T (x)B(T (x)) (7)

Taking temporal derivatives of Equation (5) gives

It(x, t) = α(x)Bt(T (x), t) (8)
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Now, let c(u, t) denote the velocity of the point u at time t in the background
plane. Then from the Brightness Constancy Equation [9] we know

c(u, t)>∇uB(u, t) + Bt(u, t) = 0 (9)

Now assuming that the background image undergoes in-plane translation with
velocity c(u, t) = c(T (x), t), we take the dot product of Equation (7) with
c(T (x), t) and add it to Equation (8) to get

c(T (x), t)>J−>(T (x))

[

∇xI(x, t) − I(x, t)
∇xα(x)

α(x)

]

+ It(x, t) =

α(x)
[

c(T (x), t)>∇T (x)B(T (x)) + Bt(T (x))
]

(10)

From Equation (9) we know that the right hand side goes to zero everywhere,
giving us

c(T (x), t)>J−>(T (x))

[

∇xI(x, t) − I(x, t)
∇xα(x)

α(x)

]

+ It(x, t) = 0 (11)

Now for simplification’s sake, let β(x) = log α(x). Dropping the subscript on ∇
we get

c(T (x), t)>J−>(T (x)) [∇I(x, t) − I(x, t)∇β(x)] + It(x, t) = 0 (12)

This is the refractive optical flow equation.

2.1 Properties of the refractive optical flow equation

Before we dive into the solution of Equation (12) for recovering the refractive
structure, we comment on its form and some of its properties. The first obser-
vation is that if there is no distortion or attenuation, i.e.,

T (x) = x, α(x) = 1

the Jacobian of T reduces to the identity, and the gradient of β(x) reduces to
zero everywhere, giving us the familiar optical flow equation in the foreground
image.

c(x, t)>∇I(x, t) + It(x, t) = 0 (13)

The second observation is that the equation is independent of B(u, t). This
means that we can solve for the refractive flow through an object just by observ-
ing a distorted version of the background image. Knowledge of the background
image itself is not needed.

Finally we observe that Equation (12) is in terms of the Jacobian of T ,
i.e. any function T ′(x) = T (x) + u0 will result in the same equation. This
implies that T can only be solved up to a translation ambiguity. Visually this
is equivalent to viewing the scene through a periscope. The visual system has
no way of discerning whether or not an image was taken through a periscope. A
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second ambiguity is introduced into the solution when we note that the velocity
c(u, t) is in the background plane and there is nothing that constrains the two
coordinate systems from having different scales along each axis. Hence T (x) can
only be recovered up to a four parameter family of ambiguities corresponding
to translation and scaling. The attenuation function β(x) is not affected by the
scaling in c(u, t) and hence is recovered up to a translation factor which in turn
means that α(x) is recovered up to a scale factor.

3 Solving the equation of refractive flow

In this section, we further analyze Equation (12) for the purposes of solving it.
We begin by considering a further simplification of Equation (12). We assume
that the background plane translates with in-plane velocity c(u, t) = c(t) that is
constant over the entire background plane. We consider two cases, the calibrated
case (when the motion of the background c(t) is known) and the uncalibrated
case (when the motion of the background is unknown). In each case we describe
methods for recovering T (x) and α(x), and note the ambiguities in the resulting
solution.

Let T (x) be denoted by

T (x, y) = (g(x, y), h(x, y))> (14)

The Jacobian of T and its inverse transpose are

J(T (x)) =

[

gx gy

hx hy

]

J−>(T (x)) =
1

gxhy − gyhx

[

hy −hx

−gy gx

]

The translation velocity in the background plane is c(t) = (ξ(t), η(t))>. Substi-
tuting these in Equation (12) we get

[

ξ η
] 1

gxhy − hxgy

[

hy −hx

−gy gx

] [

Ix − βxI
Iy − βyI

]

+ It = 0 (15)

which rearranges to

ηIygx − ηIxgy − ξIyhx + ξIxhy + ηI(gyβx − gxβy) − ξI(hyβx − hxβy)

gxhy − gyhx

+ It = 0

(16)
Now let

p =
gx

gxhy − gyhx

q =
gy

gxhy − gyhx

a =
gyβx − gxβy

gxhy − gyhx

(17)

r =
hx

gxhy − gyhx

s =
hy

gxhy − gyhx

b =
hyβx − hxβy

gxhy − gyhx

(18)

we get
ηIyp − ηIxq − ξIyr + ξIxs + ηIa − ξIb + It = 0 (19)
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3.1 The calibrated case

In the case where the velocity of the background plane c(u, t) is known, Equa-
tion (19) is linear in p, q, r, s, a, b. Given 7 or more successive frames of a video
or 14 or more pairs of successive frames and the associated motion of the back-
ground plane, we can solve the equation point-wise over the entire image. Given
n + 1 successive frames, we get n equations in 6 variables at each point in the
foreground plane, giving us an over-constrained linear system of the form

Ap = m (20)

here the ith row of the matrix A is given by

Ai =
[

η(i)Iy(i) −η(i)Ix(i) −ξ(i)Iy(i) ξ(i)Ix(i) η(i)I(i) −ξ(i)I(i)
]

m = [−It(1), . . . ,−It(n)]
>

p =
[

p q r s a b
]>

(21)

The above system of equations is solved simply by the method of linear least
squares. The corresponding values of gx, gy, hx, hx, βx, βy can then be obtained
as follows.

gx =
p

ps − qr
gy =

q

ps − qr
βx =

bp − ar

ps − qr
(22)

hx =
r

ps − qr
hy =

s

ps − qr
βy =

bq − as

ps − qr
(23)

3.2 The uncalibrated case

If the motion of the background image is not known, Equation (19) is bilinear in
the variables p, q, r, s, a, b and ξ(t), η(t). If we consider frames i = 1, . . . , n+1 and
pixels j = 1, . . . , m in the foreground image, then we can rewrite Equation (19)
in the following form

c>i Aijpj = 1 i = 1, . . . , n j = 1, . . . , m (24)

where

ci =
[

ξ(i) η(i)
]>

pj =
[

p(j) q(j) r(j) s(j) a(j) b(j)
]>

Aij =
−1

It(i, j)

[

0 0 −Iy(i, j) Ix(i, j) 0 −I(i, j)
Iy(i, j) −Ix(i, j) 0 0 I(i, j) 0

]

This gives us nm equations in 2n+6m variables, and we can solve them whenever
nm > 2n + 6m.

Equation (24) is a system of bilinear equations, i.e. given ci, the system
reduces to a linear system in pj and vice versa. The overall problem however
is highly non-linear. Using this observation a simple alternating procedure for
solving the system can be used, which starting with a random initialization,
alternates between updating ci and pj using linear least squares. Even with the
fast iterative procedure, solving for the structure in this manner is not feasible.
Hence we use a small slice through image stack and use it to solve for cj , which is
then used as input to the calibrated algorithm described in the previous section
to recover the flow over the entire foreground plane.
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Properties of the solution Observe that QAijR = Aij ∀i, j where

Q =

[

q12 q12

q21 q22

]

R =
1

q11q22 − q12q21

















q11 0 q21 0 0 0
0 q11 0 q21 0 0

q12 0 q22 0 0 0
0 q12 0 q22 0 0
0 0 0 0 q11 q21

0 0 0 0 q12 q22

















(25)

Hence, not knowing c(u, t) gives rise to a solution which is ambiguous up to a
2 × 2 invertible transformation, and a corresponding ambiguity in the values of
the various gradient estimates. Coupled with this is the translation ambiguity in
g and h. This gives rise to a six parameter family of ambiguities in the overall
solution.

3.3 Integration

The methods described in the previous two sections give us estimates of the
partial derivatives of g(x, y), h(x, y) and β(x, y). The final step is integrating
the respective gradient fields to recover the actual values of the functions. Re-
construction of a function from its first partial derivatives is a widely studied
problem. We use an iterative least squares optimization that minimizes the re-
construction error [10].

4 Experiments

All experiments were done with video sequences of 200 frames each. The syn-
thetic data were generated using a combination of MATLAB and POV-Ray,
a public domain ray tracer. The real data was captured by placing a refract-
ing object in front of an LCD screen, and imaging the setup using a firewire
camera. Figure 2 illustrates the data acquisition setup. Calculation of image

Fig. 2. (a) Shown above is a photograph of the data acquisition system used in our
experiments. It consists of Samsung 19” LCD display screen on the left, a Sony DFW-
VL500 firewire camera on the right and a refracting object between the screen and the
camera. (b) shows a frame from the background image sequence for all our experiments.
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derivatives is very sensitive to noise. Smoothing was performed on the images
using anisotropic diffusion [11], which has superior behavior along sharp edges
as compared to Gaussian filtering. This is important for objects that cause light
rays to be inverted, which in turn causes the optical flow across the boundary
to be opposite sign; a naive Gaussian based smoothing procedure will result in
significant loss of signal.

The least squares estimation step in the calibrated estimation algorithm was
made robust by only considering equations for which the temporal gradient term
It was within 85% of the maximum temporal gradient at that pixel over time.
This choice results in only those constraints being active where some optical flow
can be observed.

The boundary of refracting objects typically have little or no optical flow
visible. This results in the refractive optical flow constraint breaking down along
the boundary as well as certain medium interfaces. We mask these pixels out
by considering the average absolute temporal gradient at each point in the fore-
ground image plane and ignoring those pixels that fall below a chosen threshold.
This results in a decomposition of the image into a number of connected compo-
nents. All subsequent calculations are carried out separately for each connected
component.

4.1 Results
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Fig. 3. Estimation of background motion in the uncalibrated case. This figure plots
the true and estimated motion in the background plane. The two curves show motion
along the ξ(t) and η(t) along the u and v axis respectively. As can be seen there is
virtually no difference between the true and estimated values for ξ(t) and η(t).

We begin by considering a synthetic example to illustrate the performance of
our algorithm in the calibrated and the uncalibrated case. The warping function
used was T (x, y) = (xe−(x2+y2), ye−(x2+y2))> and the attenuation factor was

α(x, y) = e−(x2+y2). Figure 3 shows a comparison between the estimated and
the true motion in the uncalibrated case. Figure 4 illustrates the results of the
experiment. The estimated warp and attenuation functions are virtually iden-
tical to the true warp and attenuation functions. In the uncalibrated case, the
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estimated motion was disambiguated by doing a least squares fit to the ground
truth for the purposes of illustration.

Figure 5 illustrates the result of applying the refractive structure of a glass
with and without water inside it to the task of environment matting. Note that
the region along the rim of the glass is missing. This is more so in case of the
glass filled with water. These are the regions where the refractive optical flow
equation breaks down. The black band in the case of the filled glass is due to a
combination of the breakdown of the refractive optical flow equation along the
air/water/glass interface and the finite vertical extent of the image. More results
can be seen at http://vision.ucsd.edu/papers/rof/.

5 Discussion

We have introduced a generalization of the optical flow constraint, described
methods for solving for the refractive structure of objects in the scene, and
shown that this can be readily computed from images. We now comment on the
limitations of our work and directions of future work.

First, our method does not address Fresnel and total internal reflection. This
places a limit on our analysis to the case where all the illumination comes from
behind the object being observed. Methods for recovering surface geometry from
specular reflections are an active area of research and are better suited for this
task [12–14].

Second, the presented approach, like [5, 7], formulates the objective as deter-
mining a plane-to-plane mapping, i.e., it only informs us about how the object
distorts a plane in 3-space. A more satisfactory solution will be to recover how
the object distorts arbitrary light rays. We believe this is solvable using two or
more views of the background plane and is the subject of our ongoing work.

The choice of the optical kernel that resulted in the single ray model was
made for reasons of tractability. This however leaves the possibility of other
optical kernels that account for multiple ray models.

Our experiments were carried out using a 19 inch LCD screen as the back-
ground plane. For most refracting objects, as their surface curvature increases,
the area of the background plane that they project onto a small region in the
foreground image can increase rapidly. If one continues to use a flat background
one would ideally require an infinite background plane to be able to capture all
the optical flow. Obviously that is not practical. An alternate approach is to use
a curved surface as the background, perhaps a mirror which reflects an image
projected onto it.

The current work only considers gray scale images; extensions to color or
multi-spectral images is straightforward. There are two cases here: if the dis-
tortion T is assumed to be the same across spectral bands, the generalization
can be obtained by modeling α(x) as a vector valued function that accounts for
attenuation in each spectral band. In case T is dependent on the wavelength of
light, each spectral band results is an independent version of Equation (12) and
can be solved using the methods described.
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Finally, the refractive optical flow equation is a very general equation de-
scribing optical flow through a distortion function. This allows us to address
distortion not due to transmission through transparent objects, but also due to
reflection from non-planar mirrored and specular surfaces. We believe that the
problem of specular surface geometry can be addressed using this formalism,
and this is also a subject of our future work.
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(a) α(x) (b) αc(x) (c) αu(x)

(d) T (x) (e) Tc(x) (f) Tu(x)

Fig. 4. This figure shows compares the performance of refractive structure estimation
in the calibrated and the uncalibrated case. (a) and (d) show the true warp T (x)
applied to a checkerboard pattern and the attenuation factor α(x). (b) and (e) show
the estimated warp and the alpha for the calibrated case, and (c) and (f) show the
estimated warp and alpha for the uncalibrated case.

(a) (b) (c) (d)
Without Water

(e) (f) (g) (h)
With Water

Fig. 5. Results of using the refractive structure for environment matting. (a), (c) show
the true warping of a background image when an empty glass is placed in front of it,
(b) and (d) show the estimated refractive structure applied to the same images. (e)
and (g) show the true warping of a background image when a glass filled with water
is placed in front of it, (f) and (h) show the estimated refractive structure applied to
the same images.


