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Abstract

Shape modeling is an important constituent of computer vision as well as computer graphics
research. Shape models aid the tasks of object representation and recognition. This paper
presents a new approach to shape modeling which retains some of the attractive features of
existing methods, and overcomes some of their limitations. Our techniques can be applied to
model arbitrarily complex shapes, which include shapes with signi�cant protrusions, and to
situations where no a priori assumption about the object's topology is made. A single instance
of our model, when presented with an image having more than one object of interest, has the
ability to split freely to represent each object. This method is based on the ideas developed
by Osher and Sethian to model propagating solid/liquid interfaces with curvature-dependent
speeds. The interface (front) is a closed, nonintersecting, hypersurface 
owing along its gradient
�eld with constant speed or a speed that depends on the curvature. It is moved by solving a
\Hamilton-Jacobi" type equation written for a function in which the interface is a particular
level set. A speed term synthesized from the image is used to stop the interface in the vicinity of
object boundaries. The resulting equation of motion is solved by employing entropy-satisfying
upwind �nite di�erence schemes. We present a variety of ways of computing evolving front,
including narrow bands, reinitializations, and di�erent stopping criteria. The e�cacy of the
scheme is demonstrated with numerical experiments on some synthesized images and some low
contrast medical images.
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1 Introduction

In this paper, we describe a modeling technique based on a level set approach for recovering shapes

of objects in two and three dimensions from various types of image data. The modeling technique

may be viewed as a form of active modeling such as \snakes" [15] and deformable surfaces [34] since,

the model which consists of a moving front, may be molded into any desired shape by externally

applied halting criteria synthesized from the image data. The \snakes" or deformable surfaces may

be viewed as Lagrangian geometric formulations wherein the boundary of the model is represented

in a parametric form. These parameterized boundary representations will encounter di�culties

when the dynamic model embedded in a noisy data set is expanding/shrinking along its normal

�eld [10] and sharp corners, cusps develop or pieces of the boundary intersect. By exploiting recent

advances in interface techniques, our modeling technique avoids this Lagrangian geometric view and

instead capitalizes on a related initial value partial di�erential equation. In this setting, several

advantages are apparent, including the ability to evolve the model in the presence of sharp corners,

cusps and changes in topology, model shapes with signi�cant protrusions and holes in a seamless

fashion, and extension to three dimensions in an extremely straightforward way.

1.1 Background

An important goal of computational vision is to recover the shapes of objects in 2D and 3D from

various types of visual data. One way to achieve this goal is via model-based techniques. Broadly

speaking, these techniques involve the use of a model whose boundary representation is matched to

the image to recover the object of interest. These models can either be rigid, such as correlation-

based template matching techniques, or nonrigid, as those used in dynamic model �tting techniques.

Shape recovery from raw data typically precedes its symbolic representation. Shape models

are expected to aid the recovery of detailed structure from noisy data using only the weakest

of the possible assumptions about the observed shape. To this end, several variational shape

reconstruction methods have been proposed and there is abundant literature on the same ( see

[4, 27, 35, 38, 17] and references therein). Generalized spline models with continuity constraints

are well suited for ful�lling the goals of shape recovery (see [6, 33]). Generalized splines are the

key ingredient of the dynamic shape modeling paradigm introduced to vision literature by Kass et
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al. [15]. Incorporating dynamics into shape modeling enables the creation of realistic animation

for computer graphics applications and for tracking moving objects in computer vision. Following

the advent of the dynamic shape modeling paradigm [15, 34], considerable research followed, with

numerous application speci�c modi�cations to the modeling primitives, and external forces derived

from data constraints [39, 18, 11, 24, 36, 37].

The �nal recovered shape in these schemes can depend on the initial guess made to start the

numerical reconstruction procedure. This is due to the fact that the energy functionals used in the

variational formulations are typically nonconvex and hence have multiple local minima. Therefore,

the numerical procedures, for convergence to a satisfactory solution require an initial guess which is

reasonably close to the desired shape. One solution to this problem in the one-dimensional case has

been presented by Amini et al. [2]. They use a discrete form of dynamic programming to optimize

the univariate variational problem.

The framework of energy minimization (snakes) has been used successfully in the past for ex-

tracting salient image contours such as edges and lines by Kass et al. [15]. To make the �nal

result relatively insensitive to the initial conditions, Cohen [10] suggested the use of an in
ation

force which makes the snake behave like an edge seeking active model. Although the in
ation

force prevents the curve from getting trapped by isolated spurious edges, the active contour model

cannot be made to extrude through any signi�cant protrusions that a shape may possess (see �gure

1(b)) without resorting to cumbersome resampling techniques. In this paper, we present a tech-

nique which overcomes this problem and accurately models bifurcations and protrusions in complex

shapes.

Most existing shape modeling schemes require that the topology of the object be known before

the shape recovery can commence. However, it is not always possible to specify the topology

of an object prior to its recovery. For example, an important concern in object tracking and

motion detection applications is topological change resulting from tracking the positions of object

boundaries in an image sequence through time. During their evolution, these closed contours may

change connectivity and split, thereby undergoing a topological transformation. One such example

is the splitting of cell boundary in a sequence of images depicting cell division. A heuristic criterion

for splitting and merging of curves in 2D which is based on monitoring deformation energies of points
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(a) CT image (b) DSA image (c) Shapes with holes

Figure 1: Test bed for our topology-independent shape modeling scheme.

on the elastic curve has been discussed in [26]. In the context of static problems, more recently,

particle systems have been used to model surfaces of arbitrary topology [32]. Here, particles can

be added and deleted dynamically to enlarge and trim the surface respectively.

The schemes described in this paper o�er a new approach to some of the above problems. To

begin, the convergence to the �nal result is relatively independent of the shape initialization. The

algorithm allows branches to sprout automatically as the front moves. The scheme described in

this paper can be applied where no a priori assumption about the object's topology is made. A

single instance of our model, when presented with an image having more than one shape of interest

(see �gure 1(c)), has the ability to split freely to represent each shape [19, 20]. We show that by

using our approach, it is also possible to extract the bounding contours of shapes with holes in a

seamless fashion (see �gure 13).

Our method is inspired by ideas �rst introduced in Osher and Sethian [23, 29], which grew out

of work in Sethian [28], to model propagating fronts with curvature-dependent speeds. Two such

examples are 
ame propagation and crystal growth, in which the speed of the moving interface

normal to itself depends on transport terms modi�ed by the local curvature. The challenge in

these problems is to devise numerical schemes for the equations of the propagating front which will

accurately approximate these highly unstable physical phenomena. Osher and Sethian [23] achieve

this by viewing the propagating surface as a speci�c level set of a higher-dimensional function. The
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equation of motion for this function is reminiscent of an initial value \Hamilton-Jacobi" equation

with a parabolic right-hand side and is closely related to a viscous hyperbolic conservation law.

In our work, we adopt these level set techniques to the problem of shape recovery. To isolate a

shape from its background, we �rst consider a closed, nonintersecting, initial hypersurface placed

inside (or outside) it. This hypersurface is then made to 
ow along its gradient �eld with a speed

F (K), where K is the curvature of the hypersurface. Unknown shapes are recovered by making

the front adhere to the object boundaries. This is done by synthesizing a speed term from image

data which acts as a halting criterion. Finally, we note that a separate study also applying a level

set approach has been performed independently by Caselles et al. [7].

The outline of this paper is as follows. In section 2, we brie
y explain the level set approach

to front propagation problems and the accompanying numerical algorithms. In sections 3 and 4,

we discuss the application of this technique to shape recovery problems, consider various speed

functions and approaches to the problem, such as the e�ect of global speed laws, narrow band

formulations, reinitialization and stopping criteria. In section 5, we present some experimental

results of applying our method to some synthetic and low contrast medical images. We conclude

in section 6.

2 Front Propagation Problem

In this section we present the level set technique due to Osher and Sethian [23]. For details and an

expository review, see Sethian [29].

As a starting point and motivation for the level set approach, consider a closed curve moving in

the plane, that is, let 
(0) be a smooth, closed initial curve in Euclidean plane <2, and let 
(t)

be the one-parameter family of curves generated by moving 
(0) along its normal vector �eld with

speed F (K), a given scalar function of the curvature K. Let x(s; t) be the position vector which

parameterizes 
(t) by s, 0 � s � S.

One numerical approach to this problem is to take the above Lagrangian description of the

problem, produce equations of motion for the position vector x(s; t), and then discretize the pa-

rameterization with a set of discrete marker particles laying on the moving front. These discrete

markers are updated in time by approximating the spatial derivatives in the equations of motion,
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and advancing their positions. However, there are several problems with this approach, as discussed

in Sethian [28]. First, small errors in the computed particle positions are tremendously ampli�ed

by the curvature term, and calculations are prone to instability unless an extremely small time step

is employed. Second, in the absence of a smoothing curvature (viscous) term, singularities develop

in the propagating front, and an entropy condition must be observed to extract the correct weak

solution. Third, topological changes are di�cult to manage as the evolving interface breaks and

merges. And fourth, signi�cant bookkeeping problems occur in the extension of this technique to

three dimensions.

As an alternative, the central idea in the level set approach of Osher and Sethian [23] is to

represent the front 
(t) as the level set f = 0g of a function  . Thus, given a moving closed

hypersurface 
(t), that is, 
(t = 0) : [0;1)! <N , we wish to produce an Eulerian formulation for

the motion of the hypersurface propagating along its normal direction with speed F , where F can

be a function of various arguments, including the curvature, normal direction, e.t.c. The main idea

is to embed this propagating interface as the zero level set of a higher dimensional function  . Let

 (x; t = 0), where x 2 <N be de�ned by

 (x; t = 0) = �d (1)

where d is the distance from x to 
(t = 0), and the plus (minus) sign is chosen if the point x is outside

(inside) the initial hypersurface 
(t = 0). Thus, we have an initial function  (x; t = 0) : <N ! <

with the property that


(t = 0) = (xj (x; t= 0) = 0) (2)

As illustration, consider the example of an expanding circle. Suppose the initial front 
 at t = 0

is a circle in the xy-plane (�gure 2(a)). We imagine that the circle is the level set f = 0g of an

initial surface z =  (x; y; t = 0) in <3 (see �gure 2(b)). We can then match the one-parameter

family of moving curves 
(t) with a one-parameter family of moving surfaces in such a way that

the level set f = 0g always yields the moving front (see �gures 2(c) & 2(d)).

Our goal is to now produce an equation for the evolving function  (x; t) which contains the

embedded motion of 
(t) as the level set f = 0g. Here, we follow the derivation presented in [22].

Let x(t); t 2 [0;1) be the path of a point on the propagating front. That is, x(t = 0) is a point on
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Figure 2: Level set formulation of equations of motion { (a) & (b) show the curve 
 and the surface
 (x; y) at t = 0, and (c) & (d) show the curve 
 and the corresponding surface  (x; y) at time t.

the initial front 
(t = 0), and xt = F (x(t)) with the vector xt normal to the front at x(t). Since

the evolving function  is always zero on the propagating hypersurface, we must have

 (x(t); t) = 0: (3)

By the chain rule,

 t +
NX
i=1

 xi xit = 0 (4)

where xi is the ith component of x. Let (u1; u2; : : : ; uN) = (x1t; x2t; : : : ; xNt
). Since

NX
i=1

 xi xit = ( x1 ;  x2; : : : ;  xN) � (u1; u2; : : : ; uN) = F (x(t))jr j; (5)

we then have the evolution equation for  , namely

 t + F j r j= 0 (6)

with a given value of  (x; t = 0). We refer to this as a Hamilton-Jacobi \type" equation because,

for certain forms of the speed function F , we obtain the standard Hamilton-Jacobi equation.

There are four major advantages to this Eulerian Hamilton-Jacobi formulation. The �rst is that

the evolving function  (x; t) always remains a function as long as F is smooth. However, the level

surface f = 0g, and hence the propagating hypersurface 
(t) may change topology, break, merge,

and form sharp corners as the function  evolves, see [23].
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The second advantage of this Eulerian formulation concerns numerical approximation. Because

 (x; t) remains a function as it evolves, we may use a discrete grid in the domain of x and substitute

�nite di�erence approximations for the spatial and temporal derivatives. For example, using a

uniform mesh of spacing h, with grid nodes ij, and employing the standard notation that  n
ij is

the approximation to the solution  (ih; jh; n�t), where �t is the time step, we might write

 n+1
ij �  n

ij

�t
+ (F )(rij 

n
ij) = 0: (7)

Here, we have used forward di�erences in time, and let rij 
n
ij be some appropriate �nite di�erence

operator for the spatial derivative.

The correct technique for approximating the spatial derivative in the above comes from respecting

the appropriate entropy condition for propagating fronts, discussed in detail in [29]. As brief

motivation for these schemes, consider a periodic cosine curve propagating in its normal direction

with speed F = 1 � "K, where K is the curvature. This problem has been discussed extensively

in [28]. For " > 0, the front stays smooth for all time. For " = 0, the parameterized analytic

solution corresponds to a front which passes through itself and develops a swallowtail solution. In

order for the propagating front to correspond to the boundary of an expanding region, we invoke

the entropy condition, namely that if the boundary is viewed as a propagating 
ame, then once a

particle is burnt, it stays burnt. This entropy condition yields the front which corresponds to the

limiting solution as "! 0 of the smooth case.

In order to build a correct entropy-satisfying approximation to the di�erence operator, we exploit

the technology of hyperbolic conservation laws. Following [23], we use a modi�cation of an Engquist-

Osher schemes [12]. That is, given a speed function F (K), we update the front by the following

scheme. First, separate F (K) into a constant advection term F0 and the remainder F1(K), that is,

F (K) = F0 + F1(K) (8)

The advection component F0 of the speed function is then approximated using upwind schemes,

while the remainder is approximated using central di�erences. In one space dimension, we have

�n+1i = �ni ��t
h
f(max(D�

i �; 0))
2 + (min(D+

i �; 0))
2g1=2 � F1(K)r�ni

i
: (9)

Extension to higher dimensions are straightforward; we use the version given in [30].
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The third advantage of the above formulation is that intrinsic geometric properties of the front

may be easily determined from the level function  . For example, at any point of the front, the

normal vector, is given by

~n = r (10)

and the curvature is easily obtained from the divergence of the gradient of the unit normal vector

to front, i.e.,

K = r �
r 

jr j
= �

 xx 
2
y � 2 x y xy +  yy 

2
x

( 2
x +  2

y)
3=2

: (11)

Finally, the fourth advantage of the above level set approach is that there are no signi�cant

di�erences in following fronts in three space dimensions. By simply extending the array structures

and gradients operators, propagating surfaces are easily handled.

Since its introduction in [23], the above level set approach has been used in a wide collection of

problems involving moving interfaces. Some of these applications include the generation of minimal

surfaces [8], singularities and geodesics in moving curves and surfaces in [9], 
ame propagation

[25, 40], 
uid interfaces [31, 22]. Extensions of the basic technique include fast methods in [1] and

extensions to triple points in [3]. The fundamental Eulerian perspective presented by this approach

has since been adopted in many theoretical analyses of mean curvature 
ow, in particular, see [13].

In computer vision, a model for shape theory based on this work has been presented in [16].

3 Shape Recovery with Front Propagation

In this section, we describe how the level set formulation for the front propagation problem discussed

in the previous section can be used for shape recovery. First, note that the front represents the

boundary of an evolving shape. Since the idea is to extract objects' shapes from a given image, the

front should be forced to stop in the vicinity of the desired objects' boundaries. This is analogous

to the force criterion used to push the active contour model towards desired shapes [15]. We de�ne

the �nal shape to be the con�guration when all the points on the front come to a stop, thereby

bringing the computation to an end.

Our goal now is to de�ne a speed function from the image data that can be applied on the prop-

agating front as a halting criterion. As before, we split the speed function F into two components:
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F = FA + FG. The term FA, referred to as the advection term, is independent of the moving

front's geometry. The front uniformly expands or contracts with speed FA depending on its sign

and is analogous to the in
ation force de�ned in [10]. The second term FG, is the part which

depends on the geometry of the front, such as its local curvature. This (di�usion) term smooths

out the high curvature regions of the front and has the same regularizing e�ect on the front as

the internal deformation energy term in thin-plate-membrane splines [15] (see the �gure (9)). We

rewrite equation (6) by splitting the in
uence of F as

 t + FA j r j +FG j r j= 0: (12)

First consider the case when the front moves with a constant speed, i.e., FG = 0 ) F = FA.

De�ne a negative speed FI to be

FI (x; y) =
�FA

(M1 �M2)
fj rG� � I(x; y) j �M2g ; (13)

where M1 and M2 are the maximum and minimum values of the magnitude of image gradient

j rG� � I(x; y) j, (x; y) 2 
. The expression G� � I denotes the image convolved with a Gaussian

smoothing �lter whose characteristic width is �. Alternately, we could use a smoothed zero-crossing

image to synthesize the negative speed function. The zero-crossing image is produced by detecting

zero-crossings in the function r2G� � I , which is the original image convolved with a Laplacian-

of-Gaussian �lter whose characteristic width is �. The value of FI lies in the range [�FA; 0] as

the value of image gradient varies between M1 and M2. From this argument it is clear that, if

j rG� � I(x; y) j approaches the maximum M1 at the object boundaries, then the front gradually

attains zero speed as it gets closer to the object boundaries and eventually comes to a stop.

If FG 6= 0, then it is not possible to �nd an additive speed term from the image that will cause

the net speed of the front to approach zero in the neighborhood of a desired shape. Instead, we

multiply the speed function F = FA + FG with a quantity kI . The term kI , which is de�ned as

kI(x; y) =
1

1+ j rG� � I(x; y) j
; (14)

has values that are closer to zero in regions of high image gradient and values that are closer to

unity in regions with relatively constant intensity. If one desires a speed function that falls to zero
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faster than the reciprocal function, the following de�nition can be employed:

kI(x; y) = e�jrG��I(x;y)j: (15)

More sophisticated stopping criteria can be synthesized by using the orientation dependent \steer-

able" �lters [14].

4 Extending the Speed Function

The image-based speed terms have meaning only on the boundary 
(t), i.e. on the level set f = 0g.

This follows from the fact that they were designed to force the propagating level set f = 0g to

a complete stop in the neighborhood of an object boundary. However, the level set equation of

motion is written for the function  de�ned over the entire domain. Consequently, we require

that the evolution equation has a consistent physical meaning for all the level sets, i.e. at every

point (x; y) 2 
. The speed function FI derives its meaning not from the geometry of  but from

the con�guration of the level set f = 0g in the image plane. Thus, our goal is to construct an

image-based speed function F̂I that is globally de�ned. We call it an extension of FI o� the level

set f = 0g because it extends the meaning of FI to other level sets [30]. Note that the level set

f = 0g lies in the image plane and therefore F̂I must equal FI on f = 0g. The same argument

applies to the coe�cient kI . With the extensions so de�ned, the equation of motion for the case

F = FA is given by

 t + (FA + F̂I) j r j= 0; (16)

and

 t + k̂I(FA + FG) j r j= 0; (17)

when F = FA + FG.

If the level curves are moving with a constant speed, i.e. FG = 0, then at any time t, a typical

level set f = Cg, C 2 R, is a distance C away from the level set f = 0g (see �gure 3). Observe

that the above statement is a rephrased version of Huygen's principle which, from a geometrical

standpoint, stipulates that the position of a front propagating with unit speed at a given time t
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should consist of only the set of points located a distance t away from the initial front. On the

other hand, for FG 6= 0, the level sets will not remain a constant distance apart.

With this in mind, there are several ways to extend the speed function to the neighboring level

sets.

4.1 Global Extension

As a �rst attempt, we require that the external (image-based) speed function be such that level

sets moving under this speed function cannot collide.

We can construct one such extension to the image-based speed function by (see �gure 4) letting

the value of F̂I (k̂I) at a point P lying on a level set f = Cg be the value of FI (kI) at a point

Q, such that point Q is closest to P and lies on the level set f = 0g. Thus, F̂I (k̂I) reduces to FI

(kI) on f = 0g.

By updating the level set function on a grid, we are moving the level sets without constructing

them explicitly. Therefore a straightforward algorithm consists of advancing from one time step to

the next as follows:
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Algorithm 1

1. At each grid point (i�x; j�y), where �x and �y are step sizes in either coordinate directions,

the extension of image-based speed term is computed. This is done in accordance with the

construction described in previous section; i.e., by searching for a point q which lies on the

level set f = 0g, and is closest to the point (i�x; j�y). The value of image-based speed

term at the current point is simply its value at the point q.

2. With the value of extended speed term (k̂nI )i;j and  n
i;j , calculate  

n+1
i;j using the upwind,

�nite di�erence schemes given in [30].

3. Construct an approximation for the level set f = 0g from  n+1
i;j . This is required to visualize

the current position of the front in the image plane. A piecewise linear approximation for the

front 
(t) is constructed as follows. Given a cell C(i; j), if max( i;j;  i+1;j;  i;j+1;  i+1;j+1) <

0 or min( i;j;  i+1;j;  i;j+1;  i+1;j+1) > 0, then C(i; j) =2 
(t) and is ignored, else, the entry

and exit points where  = 0 are found by linear interpolation. This provides two nodes on


(t) and thus, one of the line segments which form the approximation to 
(t). The collection

of all such line segments constitutes the approximation to the level set f = 0g, which is used

for future evaluation of the image-based speed term in the update equation.

4. Replace n by n+ 1 and return to step 1.

4.2 Global Extension with Reinitialization

The above construction can create a discontinuous velocity extension away from the zero level set,

since the distance function is not di�erentiable. One solution to this is to reinitialization the level

set function every �xed number of time steps to keep the level sets evenly spaced around the front.

A straightforward way to do this is to recompute the distance from each point of the grid to the

zero level set. However, this is an O(N3) operation, if we assume that there are N points in each

coordinate direction, plus approximately O(N) points on the interfaces.

An alternative to this reconstruction is provided by [31], based on an idea of Morel. The idea is

simply to iterate on the level set function at a given time according to the following equation:
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 k+1 =  k + S( )(1� jr j): (18)

In the limit as k ! 1, this convergences to the distance function, with some error in relocating

the original zero level set. For details, see [5].

The most expensive step in either of these algorithms is the computation of the extension for

image-based speed term. This is because at each grid point, we must search for the closest point

lying on the level set f = 0g. Moreover, if FG = 0, then the stability requirement for the explicit

method for solving our level set equation is �t = O(�x). For the full equation (12), the stability

requirement is �t = O(�x2). This could potentially force a very small time step for �ne grids.

These two e�ects, individually and compounded, make the computation exceedingly slow. In the

case of reinitializing using the above iteration formula, additional labor is involved.

4.3 Narrow-Band Extension with Reinitialization

As a e�cient alternative, we observe that the front can be moved by updating the level set function

at a small set of points in the neighborhood of the zero set instead of updating it at all the points on

the grid. In �gure (5) the bold curve depicts the level set f = 0g and the shaded region around it

is the narrow band. The narrow band is bounded on either side by two curves which are a distance

� apart, i.e., the two curves are the level sets f = ��=2g. The value of � determines the number

of grid points that fall within the narrow band. Since, during a given time step the value of  ij is

not updated at points lying outside the narrow band, the level sets fj  j> �=2g remain stationary.

The zero set which lies inside moves until it collides with the boundary of the narrow band. Which

boundary the front collides with depends on whether it is moving inward or outward; either which

way, it cannot move past the narrow band. A complete discussion of the narrow band techniques

for interface propagation may be found in [1].

As a consequence of our update strategy, the front can be moved through a maximum distance of

�=2, either inward or outward, at which point we must rebuild an appropriate (a new) narrow band.

We reinitialize the  function by treating the current zero set con�guration, i.e., f = 0g, as the

initial curve 
(0). Chopp [8] observed that the reinitialization step can be made cheaper by treating

the interior and exterior mesh points as sign holders. Note that the reinitialization procedure must
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account for the case when f = 0g changes topology. This procedure will restore the meaning of

 function by correcting the inaccuracies introduced as a result of our update algorithm. Once a

new  function is de�ned on the grid, we can create a new narrow band around the zero set, and

go through another set of, say l, iterations in time to move the front ahead by a distance equal to

�=2. The value of l is set to the number of time steps required to move the front by a distance

roughly equal to �=2. This choice depends on some experimentation. Thus, a faster algorithm for

shape recovery consists of the following steps:

Algorithm 2

1. Set the iteration number m = 0 and go to step 2.

2. At each grid point (i; j) lying inside the narrow band, compute the extension k̂I of image-based

speed term.

3. With the above value of extended speed term (k̂mI )i;j and  m
i;j , calculate  

m+1
i;j using the

upwind, �nite di�erence scheme given in [30].

4. Construct a polygonal approximation for the level set f = 0g from  m+1
i;j . A contour tracing

procedure is used to obtain a polygonal approximation. Given a cell (i; j) which contains


(t), this procedure traces the contour by scanning the neighboring cells in order to �nd the

next cell which contains 
(t). Once such a cell is found, the process is repeated until the

contour closes on itself. The set of nodes visited during this tracing process constitutes the

polygonal approximation to 
(t). In general, to collect all the closed contours, the above

tracing procedure is started at a new, as yet unvisited, cell which contains the level set
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f = 0g. A polygonal approximation is required in step 2 for the evaluation of image-based

speed term and more importantly, in step 6 for reinitializing the  function.

5. Increment m by one. If the value of m equals l, go to step 6, else, go to step 2.

6. Compute the value of signed distance function  by treating the polygonal approximation

of f = 0g as the initial contour 
(0). As mentioned earlier, a more general method of

reinitialization is required when f = 0g changes topology. Go to step 1.

In this approach, since we only update  at points lying in the narrow band, the issue of specifying

boundary conditions for points lying on the edge of the band becomes pertinent. With our relatively

simple speed motion, the free-end boundary condition is adequate, however, in more complex

applications such as crystal growth, and 
ame propagation, accurate speci�cation of boundary

conditions is necessary [1].

We now show that this new faster approach provides a correct approximation to the propagating

front problem. In �gure (6), we show the result of applying narrow-band algorithm to a star

shaped front propagating with speed F = �K, where K is the curvature as in equation (11).

The calculation was done on a unit box with 64 points in either direction, and a time step of

�t = 0:00003 was employed. The width of the narrow band has been set to � = 0:075, and the  

function was recomputed once every (l =) 40 time steps. In �gure 6(a), we show the initial curve

along with the level sets fj  j< 0:2g. After 40 narrow-band updates (�gure 6(b)), only the level

sets fj  j< 0:0375g move and the rest remain stationary. We note the inconsistency between the

level sets lying on either side of the narrow band, making the reinitialization step necessary in order

to restore the meaning of the  function. Following the reinitialization step, another 40 update

steps are applied (�gure 6(c)), which \di�uses" the high curvature regions of the front even further.

In subsequent �gures, the results of repeatedly applying the same strategy are shown. Finally, in

�gure 6(f), the peaks and troughs on the front get completely di�used, and it attains a smooth

circular con�guration after 4 reinitialization steps and a total of 200 time steps.
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(a) t = 0:0000 (b) t = 0:0012

(c) t = 0:0024 (d) t = 0:0036

(e) t = 0:0048 (f) t = 0:0060

Figure 6: Narrow-band algorithm applied to a star-shaped front propagating with speed F = �K.
Calculations were done on a 64� 64 grid with a time step �t = 0:00003.  was recomputed after
every 40 time iterations.
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4.4 Straightforward Narrow-Band Extension

The narrow-band approach, in addition to being computationally e�cient, allows us to return to

the original construction of the speed function extension and replace it with a more mathematically

appealing version. Since the narrow-band mechanism periodically \recalibrates" the front, we can

in fact simply move each level set with the speed determined by the image gradient as given in

equations (14) and (15). In other words, for points inside the narrow band, the external speed

values are picked directly from their corresponding image locations. Thus, we can ignore the

previous extension velocity and provide a purely geometric one based on the local image gradient.

Although this may cause many other level sets to temporarily stop, the narrow-band reinitialization

resets them all around the zero level set. This will ensure that the zero level set is drawn close to

the object boundary as well as retain other desirable properties of the level set approach, such as

topological merge and split. Also, since the extension computation does not involve any search,

the time complexity of this approach is identical to that of a basic narrow-band front propagation

algorithm. We currently use this computationally e�cient algorithm, and suggest it for others

interested in this work.

5 Shape Recovery Results

In this section we present several shape recovery results that were obtained by applying the narrow-

band level set algorithm to image data. Given an image, our method requires the user to provide

an initial contour 
(0). The initial contour can be placed anywhere in the image plane. However,

it must be placed inside a desired shape or enclose all the constituent shapes. Our front seeks the

object boundaries by either propagating inward or outward in the normal direction. This choice

is made at the time of initialization. Note that after the speci�cation of initial shape of 
(0),

our algorithm does not require any further user interaction. On the other hand, the user may

interact with the model by varying the smoothness control parameter " until a desired amount of

smoothness is achieved in a given shape.

The initial value of the function  i.e.,  (x; 0) is computed from 
(0). We �rst discretize the level

set function  on the image plane and denote  i;j as the value of  at a grid point (i�x; j�y),
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where �x and �y are step sizes in either coordinate directions. We de�ne the distance from a point

(i; j) to the initial curve to be the shortest distance from (i; j) to 
(0). The magnitude of  i;j is

set to this value. We use the plus sign if (i; j) is outside 
(0) and minus sign if (i; j) is inside. Once

the value of  i;j is computed at time t = 0 by following the above procedure, we use algorithms

from the previous section to move the front.

We now present our shape recovery results in 2D. First, we consider a 256� 256 CT (computed

tomography) image of an abdominal section shown in �gure 7(a), with the goal of recovering the

shape of the stomach in this particular slice. The function  has been discretized on a 128� 128

mesh, i.e., calculations are performed at every second pixel. In �gure 8(a), we show the closed

contour that the user places inside the desired shape at time t = 0. The function  is then made to

propagate in the normal direction with speed F = k̂I(�1:0� 0:025K). We employed the narrow-

band update algorithm to move the front with a time step size set to �t = 0:0005, and the  

function was recomputed after every 50 time steps. Figure 7(b) shows the image-based speed term

which is synthesized according to equation (14). Note that in �gure 7(b), kI(x; y) values lying in

the interval [0::1] have been mapped into the interval [0::255]. In �gures 8(b) through 8(e) we depict

the con�guration of the level set f = 0g at four intermediate time instants. The �nal result is

achieved after 575 time iterations and is shown in �gure 8(f). We emphasize that our method does

not require that the initial contour be placed close to the object boundary. In addition, observe

how the front overshoots all the isolated spurious edges present inside the shape (see �gure 7(b))

and settles in the neighborhood of edges which correspond to the true shape. This feature is a

consequence of "K component in the speed which di�uses regions of high curvature on the front

and forces it to attain a smooth shape.

As mentioned in section 3, smoothness of the front can be controlled by choosing an appropriate

curvature component in the speed function F = 1�"K. The objective of our next experiment is to

demonstrate smoothness control in the context of shape recovery. In �gures 9(a) through 9(c), we

show the results of applying our narrow-band shape recovery algorithm to an image consisting of

three synthetic shapes. Initialization was performed by drawing a curve enclosing each one of the

three shapes. We compute the signed distance function  (x; y) from these curves. The level sets

of  are then made to propagate with speed F = k̂I(1:0� "K). First, as shown in �gure 9(a), we
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(a) Original image (b) Image-based speed term

Figure 7: Image-based speed term kI(x; y) =
1

1+jrG��I(x;y)j
, with � = 3:25, synthesized from the

CT image.

perform shape recovery with the value of " = 0:05. The process is repeated with di�erent values

of "; 0.25 in �gure 9(b) and 0.75 in �gure 9(c). Clearly, with every increment in the value of ",

the level set f = 0g attains a con�guration that is relatively smoother. This is analogous to the

smoothness provided by the second order term in the internal energy of a thin 
exible rod [15].

In our third experiment we recover the complicated structure of an arterial tree. The real image

has been obtained by clipping a portion of a digital subtraction angiogram. This is an example

of a shape with extended branches or signi�cant protrusions. In this experiment we compare the

performance of our scheme with the active contour model. First, an attempt is made to reconstruct

the arterial structure using a snake model with in
ation forces [10]. In �gures 10(a) through 10(i),

we show a sequence of pictures depicting the snake con�guration in the image. We present the

�nal equilibrium state of the snake in �gures 10(c), 10(f), & 10(i) corresponding to three distinct

initializations, each better than the preceding one { in terms of the closeness to the desired �nal

shape. In all three cases the active contour model, even after 1000 time iterations, barely recovers

the main stem of the artery and completely fails to account for the branches. Due to the existence of

multiple local minima in the (nonconvex) energy functional which the numerical procedure explicitly

minimizes, the �nal result depends on the initial guess. Observe how in the third case, despite a
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(a) t = 0:0000 (b) t = 0:0500

(c) t = 0:0875 (d) t = 0:1500

(e) t = 0:2250 (f) t = 0:2875

Figure 8: Recovery of the stomach shape from a CT image of an abdominal section. Narrow-
band computation was done on a 128 � 128 grid { the front was made to propagate with speed
F = k̂I(�1:0� 0:025K) and the time step �t was set to 0.0005.  was recomputed once every 50
time steps.
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(a) " = 0:05 (b) " = 0:25 (c) " = 0:75

Figure 9: Smoothness control in shape recovery can be achieved by varying the curvature component
in the speed F = k̂I(1:0� "K).

good initialization (�gure 10(g)), the snake snaps back into a relatively bumpless con�guration in

�gure 10(h). This is due to the snake's arc-length (elasticity) and curvature (rigidity) minimizing

property. Snakes prefer regular shapes because shapes with protrusions have very high deformation

energies. Note that it is important to maintain a balance between the image-based force and the

in
ation force. Therefore, we cannot increase the latter arbitrarily. One possible way to account for

signi�cant protrusions in a shape is via an adaptive resampling of the �rst order \balloon-snake"

model. This however is a cumbersome solution to the problem.

Now, we apply our level set algorithm to reconstruct the same shape. After the initialization in

�gure 11(a), the front is made to propagate in the normal direction. We employ the narrow-band

algorithm with a band width of � = 0:045 to move the front. It can be seen that in subsequent

frames the front evolves into the branches and �nally in 11(h) it completely reconstructs the complex

tree structure. Thus, a single instance of our shape model sprouts branches and recovers all the

connected components of a given shape. Calculations were carried out on a 128� 128 grid and a

time step �t = 0:00025 was used. The plots of  (x; t = 0) and  (x; t = 0:375) are shown in �gure

11(b) and 11(i) respectively.

In the next experiment, we depict a situation when the front undergoes a topological transforma-

tion to reconstruct the constituent shapes in an image. The image shown in �gure 12(a) consists
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of three distinct shapes. Initial curve is placed in such a way that it envelopes all the objects.

The front is then advanced in the direction of the negative normal. Alternately, we could perform

the initialization by placing a curve in each one of the individual shapes and propagating them

in the normal direction. We choose the former option. The level set f = 0g �rst wraps itself

tightly around the objects (see �gures 12(d) { 12(f)). Subsequently it changes connectivity and

splits twice { in �gure 12(g) and �gure 12(h) thereby recovering three shapes. Figure 12(i) shows

the �nal result. Again it should be noted that a single instance of our shape model dynamically

splits into three instances to represent each object. The function  was discretized on a 64 � 64

grid and �t was set to 0.00025.

Next, we show that our approach can also be used to recover shapes with holes. The shapes in

the �gure (13) are examples of shapes with holes. The outer and inner boundaries of a given shape

are recovered without requiring separate initializations. In �gure 13(a), we show the initial contour

which encloses both the shapes. This contour is then made to propagate inward with a constant

speed. Figures 13(b)-13(d) are intermediate stages in the front evolution and in �gure 13(e), it

splits into two separate contours. The calculation comes to a halt when in �gure 13(f), the level

set f = 0g recovers the outer boundaries of two disconnected shapes. In the second stage of our

computation, we treat the zero set con�guration in �gure 13(f) as an initial state, and propagate

the front inward by momentarily relaxing the image-based speed term. This causes the zero set to

move into the shapes as shown in �gure 13(g), and recover the holes, thereby achieving a complete

shape recovery (see 13(h)). The calculations for this experiment were done on a 128� 128 grid and

the time step �t was set to 0.00025.

In our last experiment, we recover the shape of a 
at superquadric using the level set front prop-

agation scheme in 3D. Volume data for this experiment consists of 32 slices each with a particular

cross section of the superquadric. The image-based speed term kI is computed from these images

according to an equation in 3D which is analogous to equation (14). A sphere, which is the level

surface f = 0g of a function  (x; y; z) = x2 + y2 + z2 � 0:01, forms our initialization (see �gure

14(a)). This initial surface is moved with speed F = k̂I by updating the value of  on a discrete

3D grid. The initial surface expands smoothly in all directions until a portion of it collides with

the superquadric boundary. At points with high gradient, the k̂I values are close to zero and
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cause the zero set to locally come to stop near the boundary of the superquadric shape. This

situation is depicted in �gures 14(b)- 14(e), wherein the initial spherical shape transforms into a


at superquadric. Finally, in �gure 14(f), all the points on our shape model are stopped, thereby

recovering the entire shape of the 
at superquadric. Calculations were done on a 32� 32� 32 grid

with a time step �t = 0:0025.

6 Concluding Remarks

In this paper we have presented a new shape modeling scheme. Our approach retains some of the

desirable features of existing methods for shape modeling and overcomes some of their de�ciencies.

We adopt the level set techniques �rst introduced in Osher and Sethian [23] to the problem of shape

recovery. With this approach, complex shapes can be recovered from images. The �nal result in

our method is relatively independent of the initial guess. This is a very desirable feature to have,

specially in applications such as automatic shape recovery from image data. Moreover, our scheme

makes no a priori assumption about the object's topology. Other salient features of our shape

modeling scheme include its ability to split and merge freely without any additional bookkeeping

during the evolutionary process, and its easy extensibility to higher dimensions. We believe that

this shape modeling algorithm will have numerous applications in the areas of computer vision and

computer graphics.
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(a) Initialization 1 (b) 500 iterations (c) 1000 iterations

(d) Initialization 2 (e) 500 iterations (f) 1000 iterations

(g) Initialization 3 (h) 500 iterations (i) 1000 iterations

Figure 10: An unsuccessful attempt to reconstruct a complex shape with signi�cant protrusions
using an active contour model. Three di�erent results are shown in parts (c), (f), & (i) corresponding
to three distinct initializations in parts (a), (d), & (g) respectively. The following parameter values
were employed in this experiment: 
 (damping) = 1.0, �t = 0:50, w1 (elasticity) = 0.035, w2

(rigidity) = 0.015, coe�cient of in
ation force = 0.50, and coe�cient of image force = 2.50.
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(a) t = 0:0000 (b)  (x; 0) (c) t = 0:0625

(d) t = 0:1250 (e) t = 0:1875 (f) t = 0:2500

(g) t = 0:3050 (h) t = 0:3750 (i)  (x; 0:375)

Figure 11: Reconstruction of a shape with signi�cant protrusions: an arterial tree structure. Com-
putation was done on a 128� 128 grid with a time step �t = 0:00025. The narrow-band algorithm
was used with a band width of � = 0:045.
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(a) t = 0:0000 (b) t = 0:0250 (c) t = 0:0875

(d) t = 0:1250 (e) t = 0:1625 (f) t = 0:1750

(g) t = 0:1875 (h) t = 0:2000 (i) t = 0:2500

Figure 12: Topological split: a single instance of the shape model splits into three instances to
reconstruct the individual shapes. Computation was done on a 64 � 64 mesh with a time step
�t = 0:00025.
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(a) t = 0:0000 (b) t = 0:0500 (c) t = 0:1000

(d) t = 0:1750 (e) t = 0:2137 (f) t = 0:2400

(g) t = 0:2500 (h) t = 0:2700 (i) t = 0:2950

Figure 13: Shapes with holes: a two-stage scheme is used to arrive at a complete shape description
of both simple shapes and shapes with holes. Computation was performed on 128� 128 grid and
the time step �t was set to 0.00025.
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(a) t = 0:0000 (b) t = 0:0500

(c) t = 0:1000 (d) t = 0:1750

(e) t = 0:2250 (f) t = 0:3000

Figure 14: Shape recovery in 3D: a 
at superquadric shape. Calculations were done on a 32�32�32
grid with a time step �t = 0:0025.
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