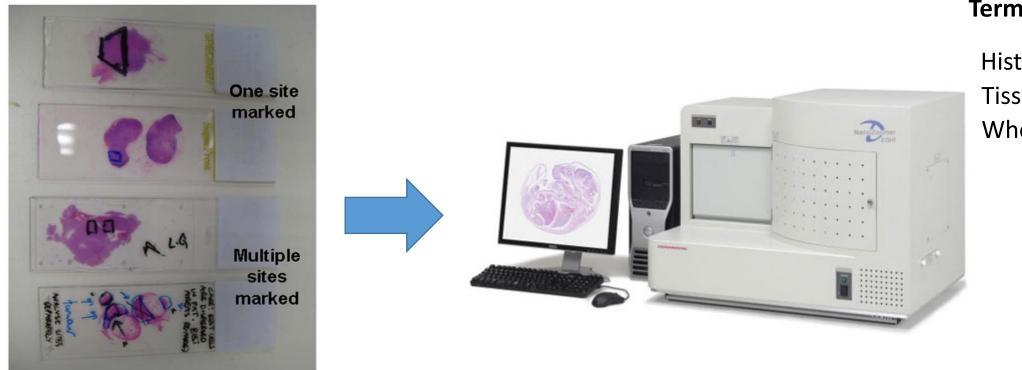
Fast Mitosis Detection in Histopathological Images using Deep Learning Neural Networks

Yuguang Li Advisor: Linda Shapiro

Histopathological Image Analysis – Breast Cancer Diagnosis



Terminology:

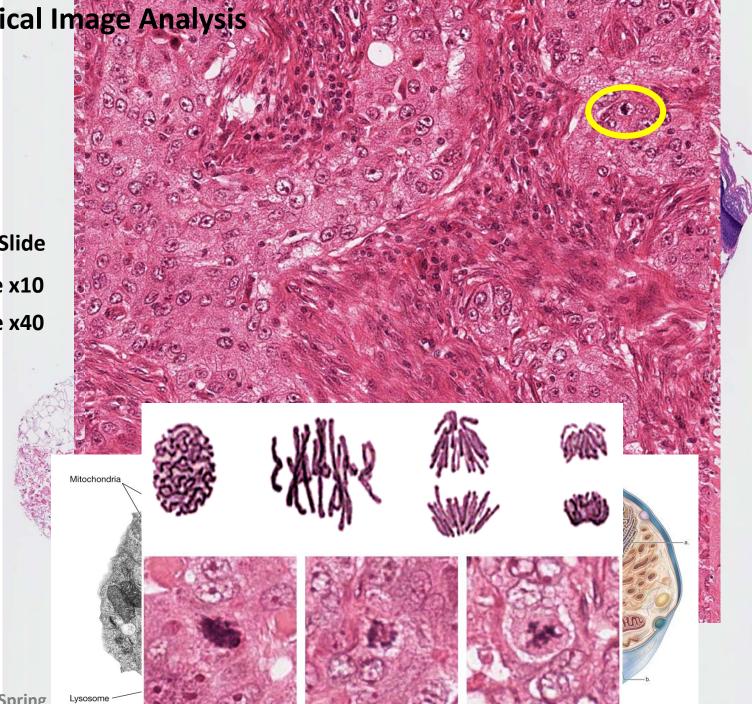
Histopathological Images Tissue Staining Whole Image Slides

Tissue Slide Staining

Image Scanning

Histopathological Image Analysis

Whole Slide Scale x10 Scale x40

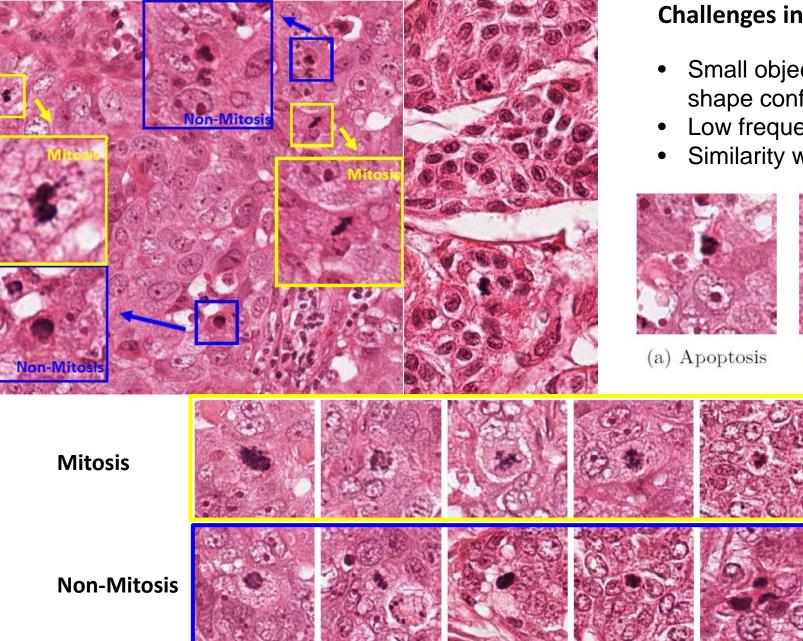


Terminology:

Histopathological Images **Tissue Staining** Whole Image Slides Region of Tumor Region of Interest Cell

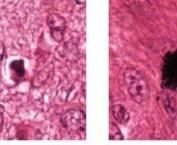
Mitosis

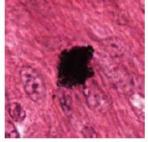
Objectives: Counting Mitosis



Challenges in Mitosis Detection:

- Small objects with a large variety of shape configurations & texture variation
- Low frequency of appearance.
- Similarity with other types of nuclei





(b) Apoptosis

(c) Dust

Objective

4

MITOS dataset – ICPR 2012 Mitosis Detection Challenge

General Information

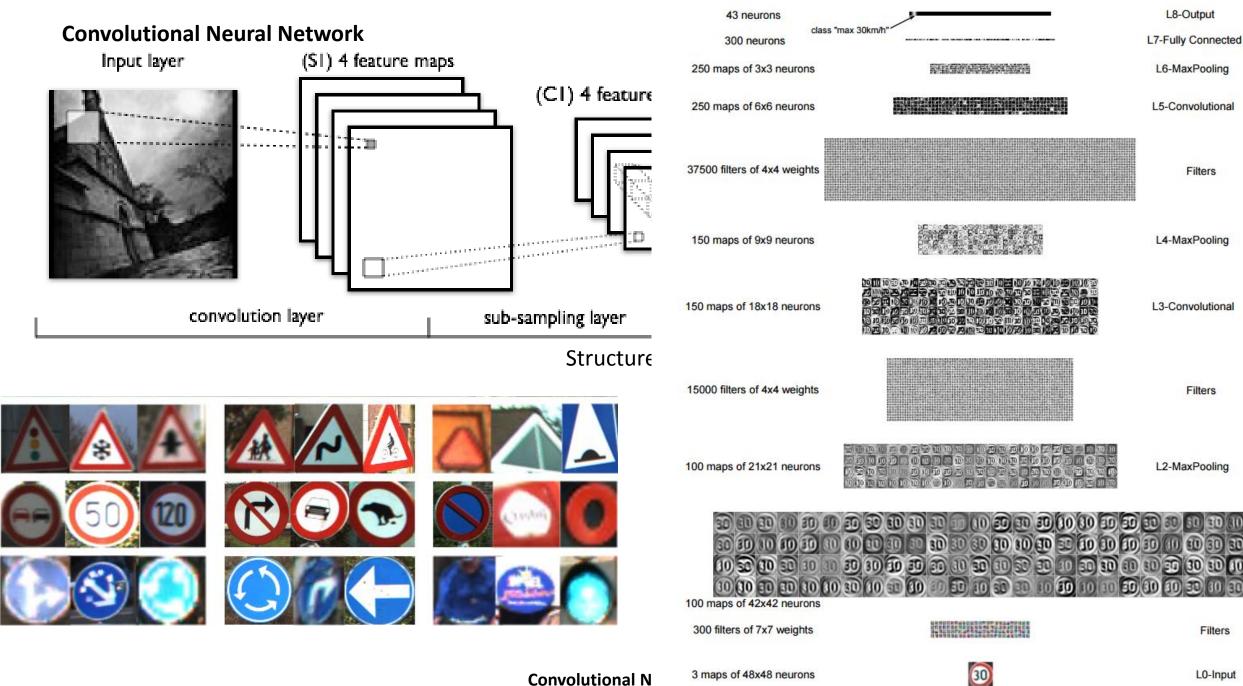
- 50 high-power fields (x40 magnitude) images in 5 different biopsy slides stained with Hematosin.
- Each field has 2048*2048 pixels representing a 512×512µm2 area.
- Expert pathologists manually annotated 300 mitoses. Average Mitosis size 30*30 pixels. Every pixel of each mitosis is labeled.
- The annotated mitoses are what two pathologists agreed on. So there are mitosis-like regions unannotated in these images.

Training Set

- 35 images (7 images from each biopsy slides)
- 200 mitoses annotated

Testing Set

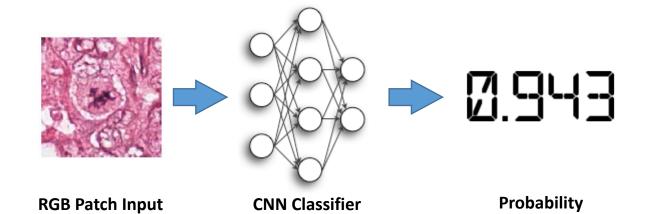
- 15 images (3 images from each biopsy slides)
- 100 mitoses annotated



Convolutional N

3 maps of 48x48 neurons

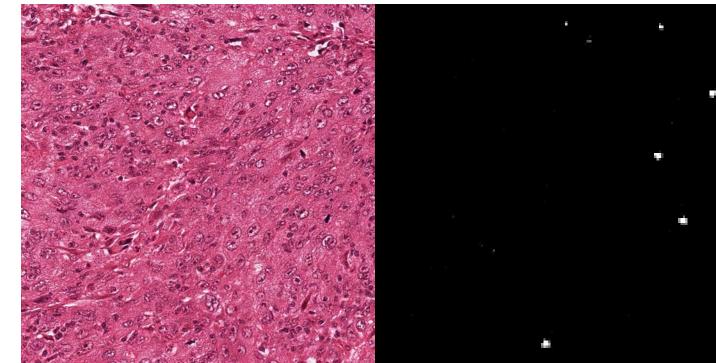
Structure of Convolutional Neural Network



12-layer CNN Model

Layer	Туре	Neurons	Filter Size
0	Input	3M x 101 x 101	
1	Conv	16M x 100 x 100	2 x 2
2	MaxPool	16M x 50 x 50	2 x 2
3	Conv	16M x 48 x 48	3 x 3
4	MaxPool	16M x 24 x 24	2 x 2
5	Conv	16M x 22 x 22	3 x 3
6	MaxPool	16M x 11 x 11	2 x 2
7	Conv	16M x 10 x 10	2 x 2
8	MaxPool	16M x 5 x 5	2 x 2
9	Conv	16M x 4 x 4	2 x 2
10	MaxPool	16M x 2 x 2	2 x 2
11	FullyConn	100	1 x 1
12	FullyConn	2	1 x 1

Testing method: Sliding Window



Original Image

Convolutional Neural Network

Training of Convolutional Neural Network

Objective:

Create an image patch classifier react positively when mitosis is found in the center of a patch.

Challenges:

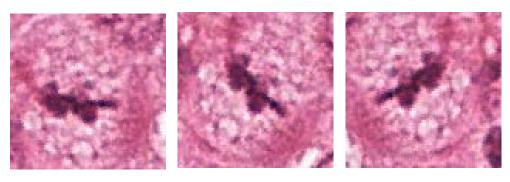
- Very few positive samples exist in the images. Only 200 Mitosis in training set. All the rest of the areas are nonmitosis
- Trained classifier needs to be rotational and shift invariant.

Solutions:

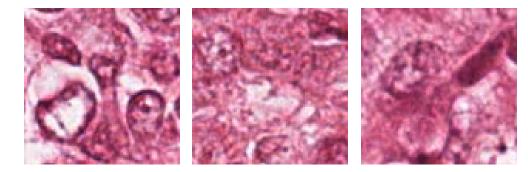
- We used random rotation, shift and mirroring to augmented the positive training samples.
- In the first stage, we are using 66000 mitosis and 66000 non-mitosis patches in training samples.
- Non-mitosis samples are randomly selected from the nonmitosis areas.

Augmented Training Samples:

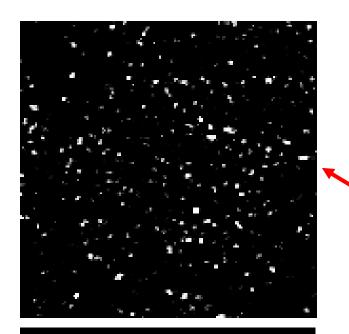
training



testing



Training technique: Semi-supervised Learning



Step 1: Initial training set

- 66000 Mitosis
- 66000 Non-mitosis
- Positive Samples ---- Apply rotations and shifts on 200 mitosis.
- Negative Samples ---- Randomly sampled from the non-mitosis pixels.

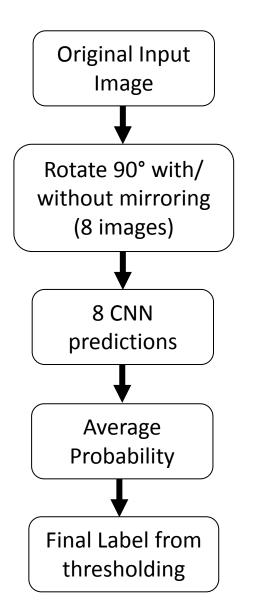
Sampling Probability Map

Step 2: Augmented training set

Have the classifier to learn difficult samples.

- 66000 Mitosis
- 1million Non-mitosis
- Positive Samples ---- Same samples as above
- Negative Samples ---- Use the probability of false positive samples from last step as sampling probabilities to create a lot more difficult samples.

Testing Process – Improving Rotational Invariance in the results



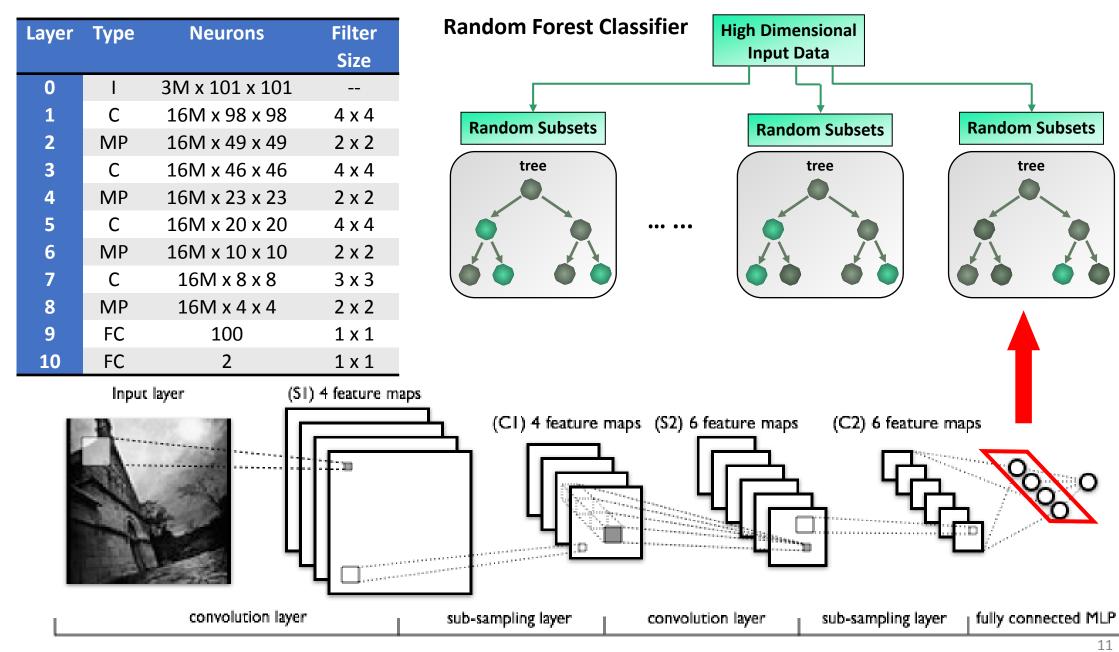
Accuracy from CNN Model with/ without 8 direction Average

	Precision	Recall	F-Score
Single Direction	0.78	0.74	0.758
8-direction Average	0.78	0.79	0.784
Original Paper	0.88	0.70	0.782

Accuracy from CNN Model with different thresholds

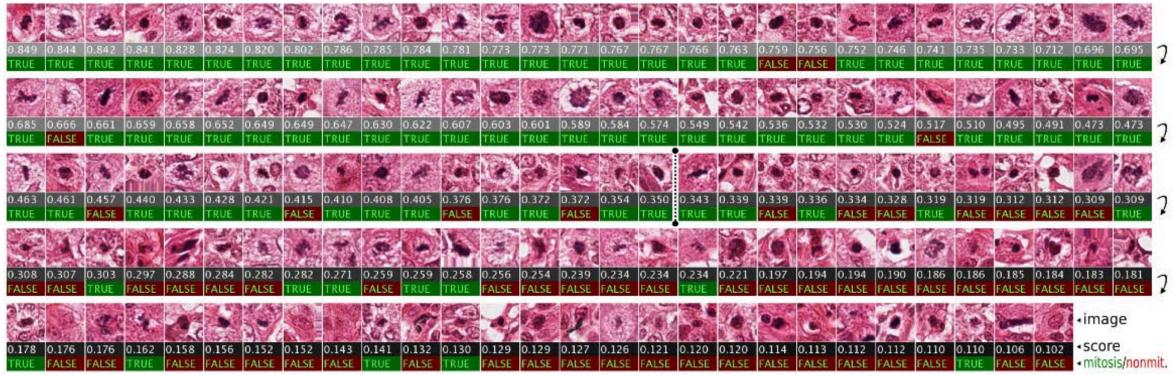
Threshold Values	Precision	Recall	F-Score
0.5	0.6905	0.8614	0.7665
0.6	0.7339	0.8345	0.7723
0.7	0.7767	0.7921	0.7843
0.8	0.8409	0.7327	0.7831
0.9	0.8659	0.7030	0.7760

CNN extracted feature Classification ------Merging Different CNN models



CNN Classification Accuracy

	10-layer DNN		12-layer DNN			
	Prec	Recall	F-meas	Prec	Recall	F-meas
Original Paper	0.78	0.72	0.751	0.88	0.70	0.782
Scanning window + Initial Samples	0.74	0.13	0.221	0.93	0.04	0.084
Scanning window + Augmented Samples	0.80	0.74	0.769	0.78	0.79	0.784
Extracted DNN feat. + RF classifier	0 79	0 76	0 775	0 84	0 73	0 781
Merged DNN feat. + RF classifier	Precision:	0.82	Recall:	0.76	F-meas:	0.789



CONVOLUCIONAL INCLINOIN

Training Efficiency

Convolutional Neural Network (Caffe library)

	ICPR Initial Set	ICPR Augmo	ented Set
	NVIDIA K40	NVIDIA K40	CPU
10-layer CNN	40 min.	8 hrs.	20hrs
12-layer CNN	2 hrs.	12 hrs.	45hrs

CNN-feature-based Method

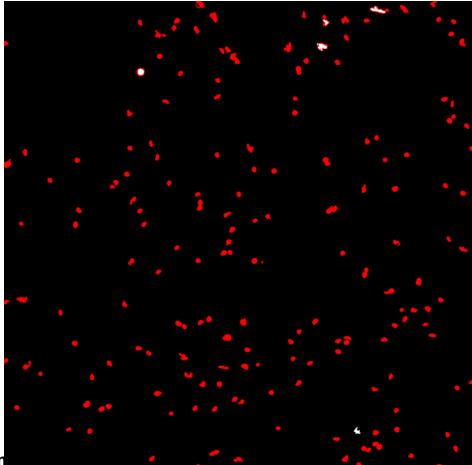
Random forest classifier is trained in less than 1 minute with extracted features on a CPU machine.

Testing Efficiency

Convolutional Neural Network (5-pixel scanning interval)

Image tested with 8 rotations: 24min per image with CPU

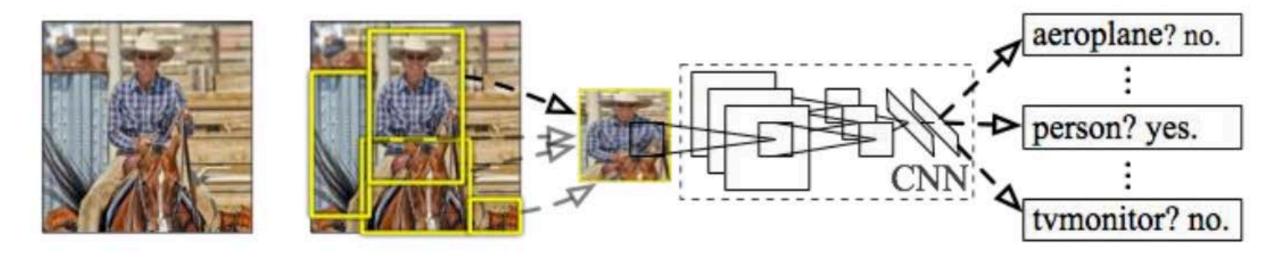
Lots of unnecessary scans!!!



Yuguang Li Quals– 2016 Spring

Accuracy & Efficien

Region-based Convolutional Neural Network



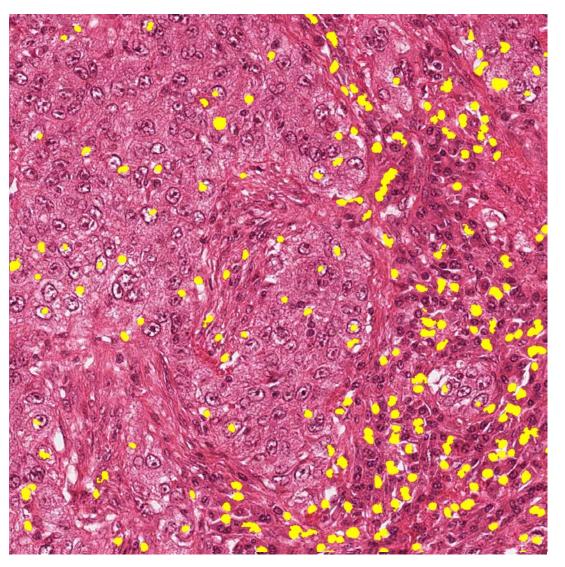
Input image Extract region proposals (~2k / image) e.g., selective search [van de Sande, Uijlings et al.]

Compute CNN features on regions

Classify and refine regions

Region-based convolutional network

Initial Mitotic Region Proposal Generation



Mitosis Candidates

List of features (10 dimensions)

- Multiscale Gaussian Smoothing
- Multiscale Laplacian of Gaussian
- Difference of Gaussians
- Structure Tensor Eigenvalues
- Hessian of Gaussian Eigenvalues

Idea: Only Scan in proposed regions

Speed (2000 * 2000 pixel RGB image):

Proposal Generation – 10sec/per image

CNN classification in 8 directions – 20sec/per image with cpu.

Calls CNN function 3200 times /per image instead of 320,000 times / per image