Geometric Transformations

ECE P 596

Linda Shapiro

Matt Brown's Multi-Scale Oriented Patches

- Extract oriented patches at multiple scales

Ideas from Matt’s Multi-Scale Oriented Patches

- 1. Detect an interesting patch with an interest operator. Patches are translation invariant.
- 2. Determine its dominant orientation.
- 3. Rotate the patch so that the dominant orientation points upward. This makes the patches rotation invariant.
- 4. Do this at multiple scales, converting them all to one scale through sampling.
- 5. Convert to illumination "invariant" form

Implementation Concern: How do you rotate a patch?

- Start with an "empty" patch whose dominant direction is "up".
- For each pixel in your patch, compute the position in the detected image patch. It will be in floating point and will fall between the image pixels.
- Interpolate the values of the 4 closest pixels in the image, to get a value for the pixel in your patch.

Rotating a Patch

Using Bilinear Interpolation

- Use all 4 adjacent samples

What are geometric transformations?

Why do we need them?

Translation

$$
\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Translation and rotation

$$
\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & t_{x} \\
\sin (\theta) & \cos (\theta) & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

Scale

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

Similarity transformations

Similarity transform (4 DoF) = translation + rotation + scale

Preserves: Angles

Aspect ratio

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & \frac{1}{a} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

Shear

$$
\left[\begin{array}{lll}
1 & a & 0 \\
b & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

Affine transformations

Affine transform (6 DoF) = translation + rotation + scale + aspect ratio + shear

What is missing?

Canaletto

Are there any other planar transformations?

General affine

We already used these

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

How do we compute projective transformations?

Homogeneous coordinates

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

One extra step:

$$
\begin{aligned}
x^{\prime} & =u / w \\
y^{\prime} & =v / w
\end{aligned}
$$

Projective transformations

a.k.a. Homographies

Preserves: Straight Lines

Finding the transformation

Translation $=2$ degrees of freedom Similarity $=4$ degrees of freedom Affine $=6$ degrees of freedom
Homography $=8$ degrees of freedom

How many corresponding points do we need to solve?

Finding the transformation

- How can we find the transformation between these images?
- How many corresponding points do we need to solve?

What can I use homographies for?

For one thing: Panoramas

