Image Stitching II

Linda Shapiro
 ECE P 596

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Image Blending

Feathering

Effect of window (ramp-width) size

Effect of window size

Good window size

What can we do instead?
"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Blending comparison (IJCV 2007)

(a) Linear blending

(b) Multi-band blending

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber =7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&arAu hor=Blinn\%2C+J.F.

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (a premultiplied) RGB values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Gain Compensation: Getting rid of artifacts

- Simple gain adjustment
- Compute average RGB intensity of each image in overlapping region
- Normalize intensities by ratio of averages

Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Recognizing Panoramas

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point ($K=4$) (from the OTHER images)
3. For each image
a) Select M candidate matching images by counting matched keypoints in other images ($\mathrm{m}=6$)
b) Solve homography \mathbf{H}_{ij} for each matched image

What else matches?

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point ($K=4$)
3. For each image
a) Select M candidate matching images by counting matched keypoints ($m=6$)
b) Solve homography \mathbf{H}_{ij} for each matched image
c) Decide if match is valid $\left(n_{i}>8+0.3, n_{f}\right)$

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Make a graph of matched pairs

Find connected components of the graph

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Find connected components
5. For each connected component
a) Solve for rotation and f
b) Project to a surface (plane, cylinder, or sphere)
c) Render with multiband blending

Finding the panoramas

