
ECEP 596

HW 1 Notes

1

Overview
• Assignment 1 is a big set of exercises to code

functions that are basic and many of which are
needed for future assignments.

• Sample functions are provided at the beginning
of the code, so you get an idea how to work with
the images in Qt.

• The required functions come from the lectures on
filtering, edge finding.

• For each function, an image argument will be
passed. Your task is to modify the image
according to different functions.

2

QImage Class
in the QT package

• The Qimage class provides a hardware-
independent image representation

• Some of the useful methods
– QImage() (and other forms with parameters)

– copy(int x, int y, int width, int height) const

– setPixel(int x, int y, uint index_or_rgb) can use
function qRgb(int r, int g, int b)

– width() const, height() const

• The QRgb class holds a color pixel.

• from https://doc.qt.io/qt-5/qimage.html

3

https://doc.qt.io/qt-5/qimage.html

C++ Prerequisite

• Object by pointer (Project1.cpp, line 17):

– Qimage *image:

• image->height(); image->width(); image->pixel(r,c);

• image->setPixel(…)

• Object by reference (Project1.cpp, line 63):

– Qimage &image:

• image.height(); image.width(); image.pixel(r,c);

• Image.setPixel(…)

• Initialization:
– image = QImage(w/2, h/2, QImage::Format_RGB32);

4

Double Arrays

• We’ve modified the original assignment, which had
truncation problems when passing images around.

• Instead, you will pass around arrays of doubles.
• The function ConvertQImage2Double() that we provide will

convert a Qimage to a 2D matrix.
• The first dimension handles both columns (c) and rows (r),

while the second one specifies the color channel (0, 1, 2).
• Position (c,r) maps to r*imageWidth + c.
• This will lead nicely in HW 2, which also uses doubles.
• You don’t have to convert back to Qimage!
• You do have to copy any images that you are going to

modify.

5

C++ Prerequisite

• 2D matrix by pointer (Project1.cpp, line 203):
– double **image:

• Image[r*imageWidth+c][0] (access the pixel value of it)

– Note: imageWidth and imageHeight are global
variables, you can use directly.

• 1D array by pointer (Project1.cpp, line 203):
– double *kernel:

• Kernel[i] (access the value of it)

• New 2D matrix:
– double** buffer = new double* [imageWidth*imageHeight]

Note: delete buffer to avoid memory leak
6

1. Convolution

• The first task is to code a general convolution
function to be used in most of the others.

• void Convolution(double **image, double *kernel, int
kernelWidth, int kernelHeight, bool add)

• image is a 2D matrix of class double

• kernel is a 1D mask array with rows stacked horizontally

• kernelWidth is the width of the mask

• kernelHeight is the height of the mask

• if add is true, then 128 is added to each pixel for the result to
get rid of negatives.

7

Reminder: 2D Gaussian function with standard deviation

8

2. Gaussian Blur

• The second task is to code a Gaussian blur
which can be done by calling the Convolution
method with the appropriate kernel.

• void GaussianBlurImage(double **image,
double sigma)

• Let the radius of the kernel be 3 times

• The kernel size is then (2 * radius) + 1

9

3. First Derivatives of the Gaussian

• void FirstDerivative_x(double **image, double
sigma) takes the image derivative in the x
direction using a 1*3 kernel of { -1.0, 0.0, 1.0 }
and then does a standard Gaussian blur.

• void FirstDerivative_y(double **image, double
sigma) takes the derivative in the y direction and
then does a standard Gaussian blur

• All of these add 128 to the final pixel values in
order to see negatives. This is done in the call to
Convolution().

10

4. Sobel Edge Detector

• Implement the Sobel operator, produce both the
magnitude and orientation of the edges, and display them.

• void SobelImage(double **image)
• Use the standard Sobel masks:

-1, 0, 1,
-2, 0, 2,
-1, 0, 1

1, 2, 1,
0, 0, 0

-1, -2, -1

11

