ECEP 596

HW 1 Notes

Overview

Assignment 1 is a big set of exercises to code
functions that are basic and many of which are
needed for future assighnments.

Sample functions are provided at the beginning
of the code, so you get an idea how to work with
the images in Qt.

The required functions come from the lectures on
filtering, edge finding.

For each function, an image argument will be
passed. Your task is to modify the image
according to different functions.

Qlmage Class
in the QT package

The Qimage class provides a hardware-
independent image representation

Some of the useful methods
— Qlmage() (and other forms with parameters)
— copy(int x, int y, int width, int height) const

— setPixel(int x, int y, uint index_or_rgb) can use
function gRgb(intr, int g, int b)

— width() const, height() const
The QRgb class holds a color pixel.

from https://doc.qgt.io/gt-5/gimage.html

https://doc.qt.io/qt-5/qimage.html

C++ Prerequisite

* Object by pointer (Projectl.cpp, line 17):
— Qimage *image:
* image->height(); image->width(); image->pixel(r,c);
* image->setPixel(...)
* Object by reference (Projectl.cpp, line 63):
— Qimage &image:
* image.height(); image.width(); image.pixel(r,c);
* Image.setPixel(...)
* |nitialization:
— image = Qlmage(w/2, h/2, Qlmage::Format_RGB32);

Double Arrays

We’ve modified the original assignment, which had
truncation problems when passing images around.

Instead, you will pass around arrays of doubles.

The function ConvertQlmage2Double() that we provide will
convert a Qimage to a 2D matrix.

The first dimension handles both columns (c) and rows (r),
while the second one specifies the color channel (0, 1, 2).

Position (c,r) maps to r*imageWidth + c.
This will lead nicely in HW 2, which also uses doubles.
You don’t have to convert back to Qimage!

You do have to copy any images that you are going to
modify.

C++ Prerequisite

e 2D matrix by pointer (Projectl.cpp, line 203):

— double **image:
* Image[r*imageWidth+c][0] (access the pixel value of it)
— Note: imageWidth and imageHeight are global
variables, you can use directly.

* 1D array by pointer (Projectl.cpp, line 203):
— double *kernel:

e Kernel[i] (access the value of it)

* New 2D matrix:

— double** buffer = new double* [imageWidth*imageHeight]
Note: delete buffer to avoid memory leak

1. Convolution

The first task is to code a general convolution
function to be used in most of the others.

void Convolution(double **image, double *kernel, int
kernelWidth, int kernelHeight, bool add)

image is a 2D matrix of class double

kernel is a 1D mask array with rows stacked horizontally
kernelWidth is the width of the mask

kernelHeight is the height of the mask

if add is true, then 128 is added to each pixel for the result to
get rid of negatives.

Reminder: 2D Gaussian function with standard deviation ¢

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form:

1 2242
G(x,y) — 271_0_28 20

This distribution is shown in Figure 2.

0.2

015 ,
o= {
= 0.1 fi
5 i

0.05 ik

i
LIAAAXY
0 iy *"* \ “i} 05

el .‘ o
e S Je et A
S o e e S
‘-:i:'t:#:':i?-:
R

= 2

Figure 2 2-D Gaussian distribution with mean (0,0) and &=1

2. Gaussian Blur

The second task is to code a Gaussian blur
which can be done by calling the Convolution
method with the appropriate kernel.

void GaussianBlurlmage(double **image,
double sigma)

Let the radius of the kernel be 3 times o
The kernel size is then (2 * radius) + 1

3. First Derivatives of the Gaussian

* void FirstDerivative x(double **image, double
sigma) takes the image derivative in the x
direction using a 1*3 kernel of {-1.0, 0.0, 1.0 }
and then does a standard Gaussian blur.

* void FirstDerivative y(double **image, double
sigma) takes the derivative in the y direction and
then does a standard Gaussian blur

* All of these add 128 to the final pixel values in
order to see negatives. This is done in the call to
Convolution().

10

4. Sobel Edge Detector

Implement the Sobel operator, produce both the
magnitude and orientation of the edges, and display them.

void Sobellmage(double **image)
Use the standard Sobel masks:
_1) Or 1)

11

