Generative Adversarial Networks

And Their Applications

Bindita Chaudhuri

Unsupervised Learning: Autoencoders

Unsupervised Learning: Autoencoders

Reconstructed data

Unsupervised Learning: Variational Autoencoders

Generative Adversarial Networks: Idea

Generator (Counterfeiter): Creates fake data from random input

Generative Adversarial Networks: Idea

Generator (Counterfeiter): Creates fake data from random input

Discriminator (Detective): Distinguish real data from fake data

Looks Real!

Looks Fake!

Generative Adversarial Networks

Generative Adversarial Networks

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for for real data x Discriminator output for generated fake data G(z)

Distributions during training

GAN: Sample Architecture (DC-GAN)

Generated Samples

MNIST

CIFAR 10

Bidirectional GAN (BiGAN)

Conditional GAN (cGAN)

Conditional GAN (cGAN)

Pix2Pix: Type of cGAN

CycleGAN: Unsupervised Pix2Pix

CycleGAN: Unsupervised Pix2Pix

CycleGAN Results

Progressive Growing of GANs

Progressive GAN Results

Celebrities

Bedrooms

Objects

Application: Neural Style transfer

Application: 3D GAN

My Project: Facial Motion Retargeting

My Project: Facial Motion Retargeting

2D-to-3D CycleGAN

• Compute facial landmarks:

2D-to-3D CycleGAN

• Compute facial landmarks:

• Convert 3D model to 2D position map:

2D-to-3D CycleGAN

• Compute facial landmarks:

• Convert 3D model to 2D position map:

& ENGINEERING

• Train CycleGAN:

COMPLI

R SCIENCE

Results

Input

Landmark only

CycleGAN

Results

Input

Landmark only

CycleGAN

Useful links

- GAN Zoo: <u>https://github.com/hindupuravinash/the-gan-zoo</u>
- GAN hacks: <u>https://github.com/soumith/ganhacks</u>
- Code Bases:
 - Tensorflow: <u>https://www.tensorflow.org/tutorials/generative/dcgan</u>
 - Keras: <u>https://github.com/eriklindernoren/Keras-GAN</u>
 - Pytorch: <u>https://github.com/pytorch/examples/tree/master/dcgan</u>
- References:
 - http://cs231n_stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
 - <u>https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec19.pdf</u>
 - <u>https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/slides/lec13.GAN.pdf</u>

