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Object Recognition with Interest Operators

» Object recognition started with line segments.

- Roberts recognized objects from line segments
and junctions.

- This led to systems that extracted linear features.

- CAD-model-based vision works well for industrial.

* An “appearance-based approach” was first developed
for face recognition and later generalized up to a point.

* The interest operators have led to a new kind of
recognition by “parts” that can handle a variety of
objects that were previously difficult or impossible.



Object Class Recognition
by Unsupervised Scale-Invariant Learning
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Goal:

« Enable Computers to
Recognize Different
Categories of Objects
In Images.
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Approach | ¢/

An object is a constellation of parts (from Burl, Weber
and Perona, 1998).

The parts are detected by an interest operator (Kadir’s).
The parts can be recognized by appearance.
Objects may vary greatly in scale.

The constellation of parts for a given object is learned
from training images



Components

 Model

— Generative Probabilistic Model including
Location, Scale, and Appearance of Parts

* Learning
— Estimate Parameters Via EM Algorithm
* Recognition
— Evaluate Image Using Model and Threshold



Model: Constellation Of Parts

MOUTH

Fischler & Elschlager, 1973

Yuille, 91

Brunelli & Poggio, 93

Lades, v.d. Malsburg et al. 93
Cootes, Lanitis, Taylor et al. 95
Amit & Geman, 95, 99

Perona et al. 95, 96, 98, 00




Parts Selected by
Interest Operator

Kadir and Brady's Interest Operator.
Finds Maxima in Entropy Over Scale and Location
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Representation of Appearance

Composite of features
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121 dimensions was too big, so they used PCA to reduce to 10-15.
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Learning a Model

* An object class Is represented by a generative
model with P parts and a set of parameters 0.

 Once the model has been learned, a decision
procedure must determine if a new image

contains an instance of the object class or not.

« Suppose the new image has N interesting
features with locations X, scales S and
appearances A.
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Probabilistic Model

p(X.8,Al0) = ) p(X,S.A.h|0) =
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X Is a description of the shape of the object (in terms of locations of parts)

S is a description of the scale of the object

A is a description of the appearance of the object

0 is the (maximum likelihood value of) the parameters of the object

h is a hypothesis: a set of parts in the image that might be the parts of the object
H is the set of all possible hypotheses for that object in that image.

For N features in the image and P parts in the object, its size is O(NP)
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Appearance

The appearance (A) of each part p
has a Gaussian density with
mean c, and covariance Vp.

Gaussian Part Appearance PDF

Background model has mean c,,
and covariance V.

Gausian Appearance PDF
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Shape as Location

Object shape is represented by a joint Gaussian density of the locations (X)
of features within a hypothesis transformed into a scale-invariant space.

Gaussian Shape PDF Uniform Shape PDF
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Scale

The relative scale of each part is modeled by a Gaussian density with
mean t;, and covariance U,

Prob. of detection
Gaussian

A Relative Scale PDF
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Occlusion and Part Statistics

This was very complicated and turned out to not work
well and not be necessary, in both Fergus’s work and
other subsequent works.
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Learning

 Train Model Parameters 0= {p, S0, V, M, p(dl6), 1, U}
Using EM: location ‘ occlusion

- scale
« Optimize Parameters appearance

* Optimize Assignments
* Repeat Until Convergence

Orrr = argmazr p(X,S, A|#d)
a

Learns which small regions are important to being a face.
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Recognition

Make this likelihood ratio:

p(Object| X, S, A)
p(No object| X, S, A}
p(X, S, A|Object) p(Object)

p(X, S, A|No object) p(No object)
p(X,S, Al #9) p(Object)
p(X,S, Alf,) p(No object)

greater than a threshold.

Is it the Object or not?
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RESULTS

* Initially tested on the Caltech-4 data set
— motorbikes
— faces
— airplanes
— cars

* Now there is a much bigger data set: the
Caltech-101

 And many more
http://
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http://www.vision.caltech.edu/archive.html
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Background Images

It learns that these are NOT motorbikes.
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Equal error rate: 4.6% FrO ntal faces Face shape model
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Equal error rate: 9.8% A| rplan es

Airplane shape model
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Scale-Invariant Cats

Eq ual error rate: 10.0% P
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e medal€-INvariant Cars

Cars (rear) scale—invariant shape model
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Accuracy

Initial Pre-Scaled Experiments

Dataset Ours Others Ref.
Motorbikes 92.5 84 [17]
Faces 96 4 04 [19]
Aarplanes 90.2 68 [17]
Cars(Side) 88.5 79 [1]




