Object Recognition with Interest Operators

ECE P 596 Autumn 2019

Linda Shapiro

Object Recognition with Interest Operators

- Object recognition started with line segments.
 - Roberts recognized objects from line segments and junctions.
 - This led to systems that extracted linear features.
 - CAD-model-based vision works well for industrial.
- An "appearance-based approach" was first developed for face recognition and later generalized up to a point.
- The interest operators have led to a new kind of recognition by "parts" that can handle a variety of objects that were previously difficult or impossible.

Object Class Recognition by Unsupervised Scale-Invariant Learning

R. Fergus, P. Perona, and A. Zisserman Oxford University and Caltech

CVPR 2003
won the best student paper award
CVPR 2013
won the best 10-year award

Goal:

 Enable Computers to Recognize Different Categories of Objects in Images.

Cars (Rear)

Approach

- An object is a constellation of parts (from Burl, Weber and Perona, 1998).
- The parts are detected by an interest operator (Kadir's).
- The parts can be recognized by appearance.
- Objects may vary greatly in scale.
- The constellation of parts for a given object is learned from training images

Components

Model

- Generative Probabilistic Model including
 Location, Scale, and Appearance of Parts
- Learning
 - Estimate Parameters Via EM Algorithm
- Recognition
 - Evaluate Image Using Model and Threshold

Model: Constellation Of Parts

Fischler & Elschlager, 1973

Yuille, 91
Brunelli & Poggio, 93
Lades, v.d. Malsburg et al. 93
Cootes, Lanitis, Taylor et al. 95
Amit & Geman, 95, 99
Perona et al. 95, 96, 98, 00

Parts Selected by Interest Operator

Kadir and Brady's Interest Operator. Finds Maxima in Entropy Over Scale and Location

Representation of Appearance

121 dimensions was too big, so they used PCA to reduce to 10-15.

605

Learning a Model

- An object class is represented by a generative model with P parts and a set of parameters θ.
- Once the model has been learned, a decision procedure must determine if a new image contains an instance of the object class or not.
- Suppose the new image has N interesting features with locations X, scales S and appearances A.

Probabilistic Model

$$\begin{split} p(\mathbf{X}, \mathbf{S}, \mathbf{A} | \, \theta) &= \sum_{\mathbf{h} \in H} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} | \, \theta) = \\ \sum_{\mathbf{h} \in H} \underbrace{p(\mathbf{A} | \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{Appearance} \underbrace{p(\mathbf{X} | \mathbf{S}, \mathbf{h}, \theta)}_{Shape} \underbrace{p(\mathbf{S} | \mathbf{h}, \theta)}_{Rel. \ Scale} \underbrace{p(\mathbf{h} | \theta)}_{Other} \end{split}$$

- X is a description of the shape of the object (in terms of locations of parts)
- S is a description of the scale of the object
- A is a description of the appearance of the object
- θ is the (maximum likelihood value of) the parameters of the object
- h is a hypothesis: a set of parts in the image that might be the parts of the object
- H is the set of all possible hypotheses for that object in that image.
- For N features in the image and P parts in the object, its size is O(N^P)

Appearance

The appearance (A) of each part p has a Gaussian density with mean c_p and covariance V_P.

Background model has mean c_{bg} and covariance V_{bg} .

Gaussian Part Appearance PDF

Gausian Appearance PDF

13

Object Background

Shape as Location

Object shape is represented by a joint Gaussian density of the locations (X) of features within a hypothesis transformed into a scale-invariant space.

Gaussian Shape PDF

Uniform Shape PDF

14

Object Background

Scale

The relative scale of each part is modeled by a Gaussian density with mean $t_{\rm p}$ and covariance $U_{\rm p}$.

Occlusion and Part Statistics

This was very complicated and turned out to not work well and not be necessary, in both Fergus's work and other subsequent works.

Learning

- Train Model Parameters Using EM:
 - Optimize Parameters
 - Optimize Assignments
 - Repeat Until Convergence

$$\theta = \{ \underbrace{\mu, \Sigma, \mathbf{c}, V}, \underbrace{M, p(\mathbf{d}|\theta)}, \underbrace{t, U} \}$$
 location occlusion appearance scale

$$\hat{\theta}_{ML} = \underset{\theta}{arg \, max} \, p(\mathbf{X}, \mathbf{S}, \mathbf{A} | \, \theta)$$

Learns which small regions are important to being a face.

Recognition

Make this likelihood ratio:

$$R = \frac{p(\text{Object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}{p(\text{No object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}$$
 Is it the Object or not?

$$= \frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{Object}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{No object}) p(\text{No object})}$$

$$\approx \frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta_{bg}) p(\text{No object})}$$

greater than a threshold.

RESULTS

- Initially tested on the Caltech-4 data set
 - motorbikes
 - faces
 - airplanes
 - cars
- Now there is a much bigger data set: the Caltech-101
- And many more http://www.vision.caltech.edu/archive.html

Motorbikes Equal error rate: 7.5% Motorbike shape model

Background Images

It learns that these are NOT motorbikes.

Frontal faces Face shape model Equal error rate: 4.6% - Det:5e-21 + 0.45 + 0.67 + 0.92 Correct Correct - Det:9e-25 Correct Background - Det:2e-19

Equal error rate: 9.8%

Airplanes

Equal error rate. Scale-Invariant Cars (rear) scale-invariant shape model

Accuracy

Initial Pre-Scaled Experiments

Dataset	Ours	Others	Ref.
Motorbikes	92.5	84	[17]
Faces	96.4	94	[19]
Airplanes	90.2	68	[17]
Cars(Side)	88.5	79	[1]