Another Descriptor

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
CVPR 2005

Overview

- 1. Compute gradients in the region to be described
- 2. Put them in bins according to orientation
- 3. Group the cells into large blocks
- 4. Normalize each block
- 5. Train classifiers to decide if these are parts of a human

Details

Gradients

 $[-1\ 0\ 1]$ and $[-1\ 0\ 1]^T$ were good enough.

Cell Histograms

Each pixel within the cell casts a weighted vote for an orientation-based histogram channel based on the values found in the gradient computation. (9 channels worked)

Blocks

Group the cells together into larger blocks, either R-HOG blocks (rectangular) or C-HOG blocks (circular).

More Details

Block Normalization

They tried 4 different kinds of normalization. Let υ be the block to be normalized and e be a small constant.

L2-norm:
$$f = \frac{v}{\sqrt{\|v\|_2^2 + e^2}}$$

L2-hys: L2-norm followed by clipping (limiting the maximum values of v to 0.2) and renormalizing,

$$\text{L1-norm: } f = \frac{v}{(\|v\|_1 + e)}$$

L1-sqrt:
$$f=\sqrt{rac{v}{(\|v\|_1+e)}}$$

R-HOG compared to SIFT Descriptor

- R-HOG blocks appear quite similar to the SIFT descriptors.
- But, R-HOG blocks are computed in dense grids at some single scale without orientation alignment.
- SIFT descriptors are computed at sparse, scale-invariant key image points and are rotated to align orientation.

Standard HOG visualization shows orientations

onsidering an example input image:

An example image.

uted by calling the vl_hog function:

```
= 8 ;
hog(im, cellSize, 'verbose') ;
```

nction can also be used to generate a pictorial rendition of the features, although this uname of the information contained in the feature itself. To this end, use the render command:

```
rl_hog('render', hog, 'verbose') ;
agesc(imhog) ; colormap gray ;
```

produce the following image:

Standard HOG features with a cell size of eight pixels.

Some guy named Juergen's visualizations shows gradient vectors

Pictorial Example of HOG for Human Detection

- (a) average gradient image over training examples
- (b) each "pixel" shows max positive SVM weight in the block centered on that pixel
- (c) same as (b) for negative SVM weights
- (d) test image
- (e) its R-HOG descriptor
- (f) R-HOG descriptor weighted by positive SVM weights
- (g) R-HOG descriptor weighted by negative SVM weights

Gory Details from More Recent Work

- A cell is of 8x8 pixels. A block is of 2x2 cells.
- For each cell, construct a 9-bin orientation histogram.
- Contrast normalize each histogram using 4 adjacent/overlapping blocks, giving 36 numeric values for cell.
- Total descriptor size depends on what template size you want.
- If your template (say for a car) is 8 x 10 cells, the descriptor size would be 8x10x36 = 2880 values per window.
- For whole images, they are typically resized to 100 x 100 pixels, discretized to 10 x 10 cells, so 10x10x36 = 3600 values.
- Visualizations tend to plot only the first 9 dimensions of the 36 dimensions per cell.
- ---email from Santosh Divvala, postdoc