Interest Points

Many slides from Steve Seitz, Larry Zitnick, Ali Farhadi
Preview: Harris detector

Interest points extracted with Harris (~ 500 points)
How can we find corresponding points?
Not always easy

NASA Mars Rover images
Answer below (look for tiny colored squares…)

NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely
Human eye movements

Yarbus eye tracking

What catches your interest?
Interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?
Intuition
Corners

- We should easily recognize the point by looking through a small window.
- Shifting a window in *any direction* should give a *large change* in intensity.

- **“flat” region:** no change in all directions
- **“edge”:** no change along the edge direction
- **“corner”:** significant change in all directions

Source: A. Efros
Let’s look at the gradient distributions
Principle Component Analysis

Principal component is the direction of highest variance.

Next, highest component is the direction with highest variance *orthogonal* to the previous components.

How to compute PCA components:

1. Subtract off the mean for each data point.
2. Compute the covariance matrix.
3. Compute eigenvectors and eigenvalues.
4. The components are the eigenvectors ranked by the eigenvalues.

\[Hx = \lambda x \]
Corners have …

Both eigenvalues are large!
Second Moment Matrix

\[M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:
\[I_x \Leftrightarrow \frac{\partial I}{\partial x} \quad I_y \Leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \]
The math

To compute the eigenvalues:

1. Compute the covariance matrix.

\[H = \sum_{(u,v)} w(u,v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

\[I_x = \frac{\partial f}{\partial x}, I_y = \frac{\partial f}{\partial y} \]

Typically Gaussian weights

\[\lambda_{\pm} = \frac{1}{2} \left((a + d) \pm \sqrt{4bc + (a - d)^2} \right) \]
Corner Response Function

• Computing eigenvalues are expensive
• Harris corner detector uses the following alternative

\[R = \det(M) - \alpha \cdot \text{trace}(M)^2 \]

Reminder:
\[\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \quad \text{trace} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d \]
Harris detector: Steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function (nonmaximum suppression)

Harris Detector: Steps
Harris Detector: Steps

Compute corner response R
Harris Detector: Steps

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Steps

Take only the points of local maxima of R
Harris Detector: Results
Properties of the Harris corner detector

- Translation invariant? Yes
- Rotation invariant? Yes
- Scale invariant? No

Corner!

All points will be classified as edges.
Let’s look at scale first:

What is the “best” scale?
Scale Invariance

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

\[f(I_{i_1...i_m}(x, \sigma)) = f(I_{i_1...i_m}(x', \sigma')) \]

K. Grauman, B. Leibe
Differences between Inside and Outside

Can use a Laplacian function
Scale

But we use a Gaussian.

Why Gaussian?

It is invariant to scale change, i.e., \(f \ast G_\sigma \ast G_{\sigma'} = f \ast G_{\sigma''} \) and has several other nice properties. Lindeberg, 1994

In practice, the Laplacian is approximated using a Difference of Gaussian (DoG).
Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe
DoG example

σ = 1

σ = 66
Scale invariant interest points

Interest points are local maxima in both position and scale.

\(L_{xx}(\sigma) + L_{yy}(\sigma) \)

Squared filter response maps

⇒ List of \((x, y, \sigma)\)
In practice the image is downsampled for larger sigmas.

Lowe’s Pyramid Scheme

\[\sigma_{s+1} = 2^{(s+1)/s} \sigma_0 \]

\[\sigma_i = 2^{i/s} \sigma_0 \]

The parameter \(s \) determines the number of images per octave.
Key point localization

Detect maxima and minima of difference-of-Gaussian in scale space

Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below.

For each max or min found, output is the **location** and the **scale**.

s+2 difference images. Top and bottom ignored. S planes searched.
Scale-space extrema detection: experimental results over 32 images that were synthetically transformed and noise added.

Sampling in scale for efficiency

How many scales should be used per octave? $S = ?$

More scales evaluated, more keypoints found

$S < 3$, stable keypoints increased too

$S > 3$, stable keypoints decreased

$S = 3$, maximum stable keypoints found
Results: Difference-of-Gaussian

K. Grauman, B. Leibe
How can we find correspondences?

Similarity transform
Rotation invariance

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.
Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]
What’s next?

Once we have found the keypoints and a dominant orientation for each, we need to describe the (rotated and scaled) neighborhood about each.

128-dimensional vector