Learning II

Linda Shapiro ECE P 596

More on Learning

- Neural Nets
- Support Vectors Machines
- Unsupervised Learning (Clustering)
 - K-Means
 - Expectation-Maximization

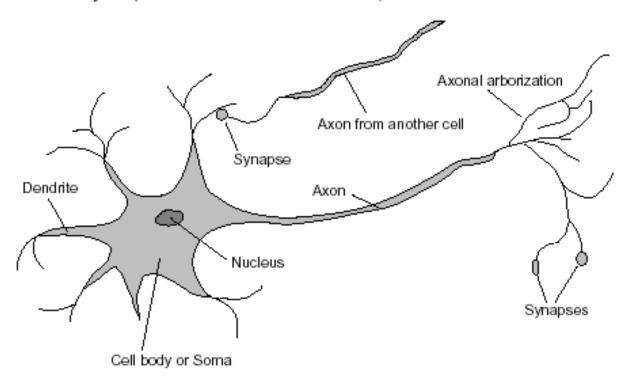
Neural Net Learning

- Motivated by studies of the brain.
- A network of "artificial neurons" that learns a function.
- Doesn't have clear decision rules like decision trees, but highly successful in many different applications. (e.g. face detection)
- We use them frequently in our research.
- I'll be using algorithms from

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf

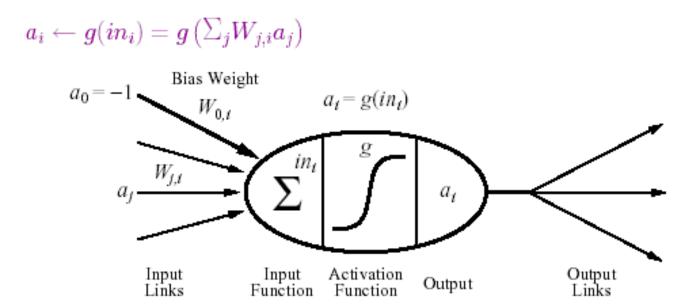
Brains

 10^{11} neurons of >20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential



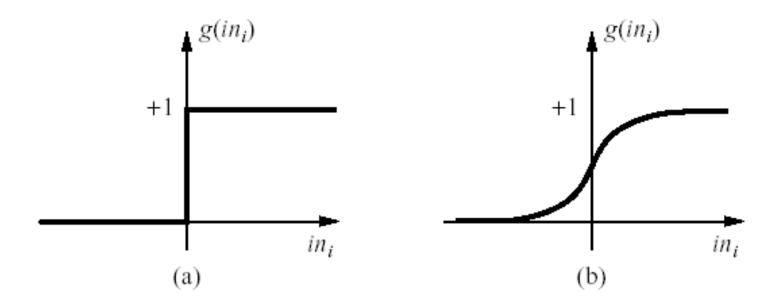
McCulloch-Pitts "unit"

Output is a "squashed" linear function of the inputs:



A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

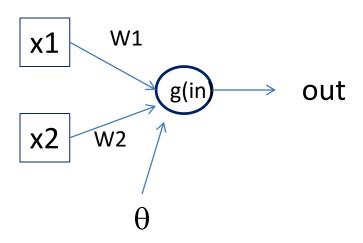
Activation functions



- (a) is a step function or threshold function
- (b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Simple Feed-Forward Perceptrons



The sigmoid function is differentiable and can be used in a gradient descent algorithm to update the weights.

in =
$$(\sum W_j x_j) + \theta$$

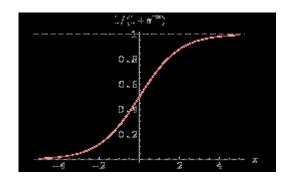
out = g[in]

g is the activation function

It can be a step function:

$$g(x) = 1 \text{ if } x >= 0 \text{ and } 0 \text{ (or -1) else.}$$

It can be a sigmoid function: g(x) = 1/(1+exp(-x)).

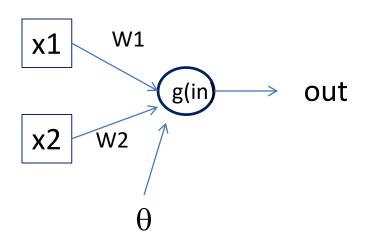


Gradient Descent

takes steps proportional to the **negative** of the gradient of a function to find its local minimum

- Let X be the inputs, y the class, W the weights
- in = $\sum W_j x_j$
- Err = y g(in)
- E = ½ Err² is the squared error to minimize
- $\partial E/\partial W_j = Err * \partial Err/\partial W_j = Err * \partial/\partial W_j(g(in))(-1)$
- = -Err * g'(in) * x_i
- The update is $W_j <- W_j + \alpha * Err * g'(in) * x_j$
- α is called the learning rate.

Simple Feed-Forward Perceptrons



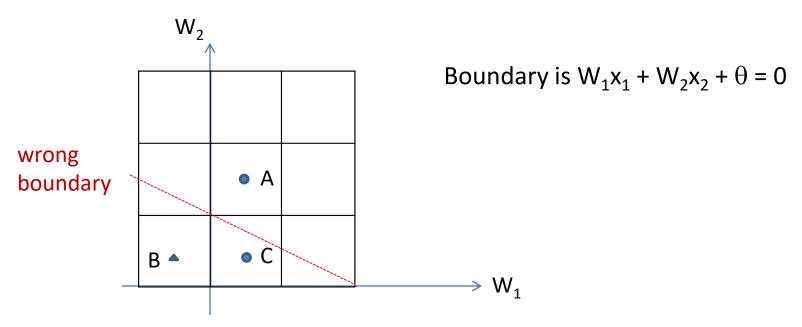
```
repeat
for each e in examples do
in = (\sum W_j x_j) + \theta
Err = y[e] - g[in]
W_j = W_j + \alpha \text{ Err } g'(in) x_j[e]
until done
```

```
Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]
```

```
Note1: when g is a step function, the g'(in) is removed.
Note2: later in back propagation, Err * g'(in) will be called \Delta
We'll let g(x) = 1 if x >=0 else -1
```

Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]



Examples:

Learning

```
repeat for each e in examples do in = (\sum W_j x_j) + \theta

Err = y[e] - g[in]

W_j = W_j + \alpha \ Err \ g'(in) \ x_j[e]

until done
```

```
A=[(.5,1.5),+1]

in = .5(1) + (1.5)(2) -2 = 1.5

g(in) = 1; Err = 0; NO CHANGE

B=[(-.5,.5),-1]

In = (-.5)(1) + (.5)(2) -2 = -1.5

g(in) = -1; Err = 0; NO CHANGE
```

Let
$$\alpha$$
=.5

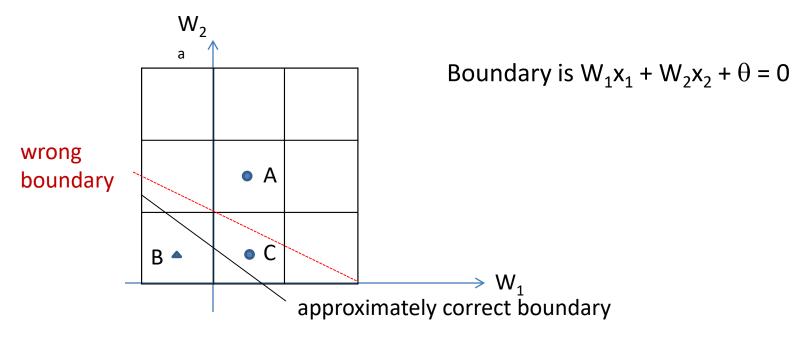
W1 <- W1 + .5(2) (.5) leaving out g'
<- 1 + 1(.5) = 1.5

W2 <- W2 + .5(2) (.5)
<- 2 + 1(.5) = 2.5

 θ <- θ + .5(+1 - (-1))
 θ <- -2 + .5(2) = -1

Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]



Back Propagation

- Simple single layer networks with feed forward learning were not powerful enough.
- Could only produce simple linear classifiers.
- More powerful networks have multiple hidden layers.
- The learning algorithm is called back propagation, because it computes the error at the end and propagates it back through the weights of the network to the beginning.

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(*examples, network*) **returns** a neural network

inputs:

examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y} . network, a multilayer network with L layers, weights $W_{j,i}$, activation function g local variables: Δ , a vector of errors, indexed by network node

for each weight $w_{i,j}$ in network do

 $w_{i,j} \leftarrow \text{a small random number}$

repeat

for each example (x,y) in examples do

/* Propagate the inputs forward to compute the outputs. */

for each node *i* in the input layer **do**

// Simply copy the input values.

Let's break it

into steps.

 $a_i \leftarrow x_i$

for l=2 to L **do** // Feed the values forward.

for each node j in layer l do

$$in_j \leftarrow \sum_i w_{i,j} \ a_i$$
$$a_j \leftarrow g(in_j)$$

for each node j in the output layer **do**

// Compute the error at the output.

$$\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$$

/* Propagate the deltas backward from output layer to input layer */

for
$$l = L - 1$$
 to 1 do

for each node i in layer l do

$$\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$$
 // "Blame" a node as much as its weig

/* Update every weight in network using deltas. */

for each weight $w_{i,j}$ in network do

$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$$
 // Adjust the weights.

until some stopping criterion is satisfied

return network

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.

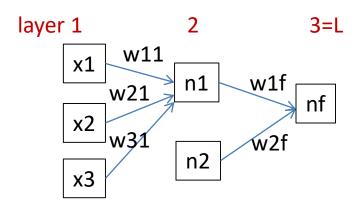
function BACK-PROP-LEARNING(*examples, network*) **returns** a neural network

inputs:

examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y} .

network, a multilayer network with L layers, weights $W_{j,i}$, activation function g local variables: Δ , a vector of errors, indexed by network node

for each weight $w_{i,j}$ in *network* do $w_{i,j} \leftarrow$ a small random number

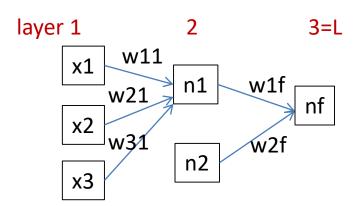


Forward Computation

repeat

```
for each example (x,y) in examples do 

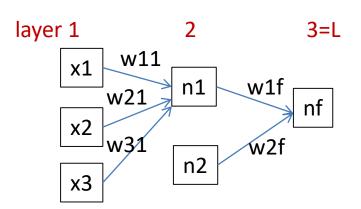
/* Propagate the inputs forward to compute the outputs. */
for each node i in the input layer do // Simply copy the input values. a_i \leftarrow x_i for l=2 to L do // Feed the values forward. for each node j in layer l do in_j \leftarrow \sum_i w_{i,j} \ a_i a_j \leftarrow g(in_j)
```



Backward Propagation 1

for each node j in the output layer do // Compute the error at the output. $\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$

- Node nf is the only node in our output layer.
- Compute the error at that node and multiply by the derivative of the weighted input sum to get the change delta.



Backward Propagation 2

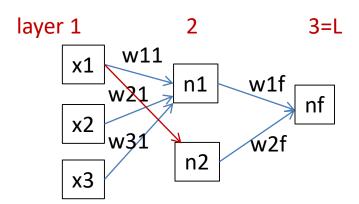
```
/* Propagate the deltas backward from output layer to input layer */

for l = L - 1 to 1 do

for each node i in layer l do

\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j] \qquad \text{"Blame" a node as much as its weight)}
```

- At each of the other layers, the deltas use
 - the derivative of its input sum
 - the sum of its output weights
 - the delta computed for the output error

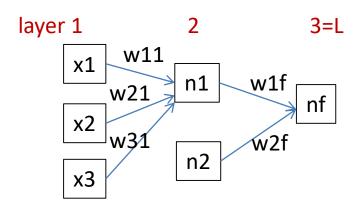


Backward Propagation 3

```
/* Update every weight in network using deltas. */

for each weight w_{i,j} in network do
w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j] \qquad // \text{Adjust the weights.}
```

Now that all the deltas are defined, the weight updates just use them.



Back Propagation Summary

- Compute delta values for the output units using observed errors.
- Starting at the output-1 layer
 - repeat
 - propagate delta values back to previous layer
 - update weights between the two layers
 - till done with all layers
- This is done for all examples and multiple epochs, till convergence or enough iterations.

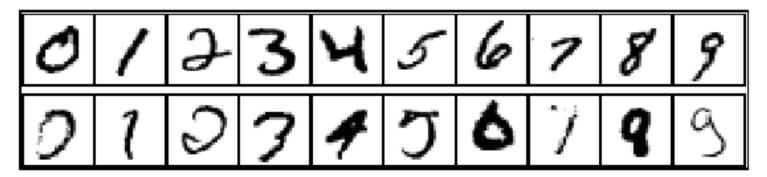
Time taken to build model: 16.2 seconds

Correctly Classified Instances 307 80.3665 % (did not boost) **Incorrectly Classified Instances** 19.6335 % 75 Kappa statistic 0.6056 Mean absolute error 0.1982 Root mean squared error 0.41 Relative absolute error 39.7113 % Root relative squared error 81.9006 % Total Number of Instances 382

	TP Rate	FP Rate	Precisio	n Recal	l F-Mea	sure RC	C Area	Class
	0.706	0.103	0.868	0.706	0.779	0.872	cal	
	0.897	0.294	0.761	0.897	0.824	0.872	dor	
W Avg.	0.804	0.2	0.814	0.804	0.802	0.872		

=== Confusion Matrix ===

Handwritten digit recognition



3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Kernel Machines

- A relatively new learning methodology (1992) derived from statistical learning theory.
- Became famous when it gave accuracy comparable to neural nets in a handwriting recognition class.
- Was introduced to computer vision researchers by Tomaso Poggio at MIT who started using it for face detection and got better results than neural nets.
- Has become very popular and widely used with packages available.

Support Vector Machines (SVM)

- Support vector machines are learning algorithms that try to find a hyperplane that separates the different classes of data the most.
- They are a specific kind of kernel machines based on two key ideas:
 - maximum margin hyperplanes
 - a kernel 'trick'

The SVM Equation

• $y_{SVM}(x_q) = \operatorname{argmax} \Sigma \alpha_{i,c} K(x_i, x_q)$

- x_q is a query or unknown object
- c indexes the classes
- there are m support vectors x_i with weights
 α_{i,c}, i=1 to m for class c
- K is the kernel function that compares x_i to x_a

*** This is for multiple class SVMs with support vectors for every class; we'll see a simpler equation for 2 class.

Maximal Margin (2 class problem)

In 2D space, a hyperplane is a line.

In 3D space, it is a plane.

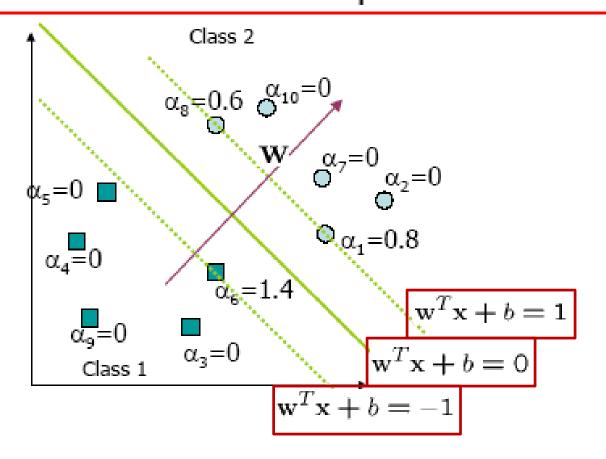


Find the hyperplane with maximal margin for all the points. This originates an optimization problem which has a unique solution.

Support Vectors

- The weights α_i associated with data points are zero, except for those points closest to the separator.
- The points with nonzero weights are called the support vectors (because they hold up the separating plane).
- Because there are many fewer support vectors than total data points, the number of parameters defining the optimal separator is small.

A Geometric Interpretation



Kernels

 A kernel is just a similarity function. It takes 2 inputs and decides how similar they are.

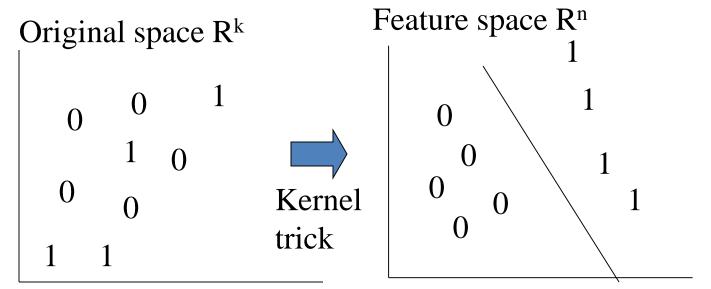
 Kernels offer an alternative to standard feature vectors. Instead of using a bunch of features, you define a single kernel to decide the similarity between two objects.

Kernels and SVMs

- Under some conditions, every kernel function can be expressed as a dot product in a (possibly infinite dimensional) feature space (Mercer's theorem)
- SVM machine learning can be expressed in terms of dot products.
- So SVM machines can use kernels instead of feature vectors.

The Kernel Trick

The SVM algorithm implicitly maps the original data to a feature space of possibly infinite dimension in which data (which is not separable in the original space) becomes separable in the feature space.

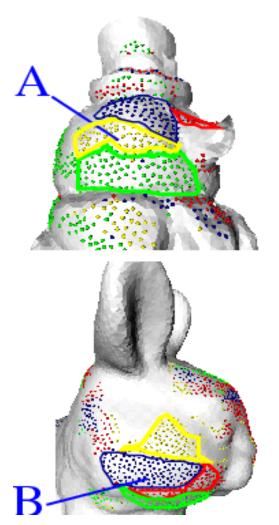


Kernel Functions

- The kernel function is designed by the developer of the SVM.
- It is applied to pairs of input data to evaluate dot products in some corresponding feature space.
- Kernels can be all sorts of functions including polynomials and exponentials.
- Simplest is just the plain dot product: xi•xj
- The polynomial kernel K(xi,xj) = (xi•xj + 1)p, where p is a tunable parameter.

Kernel Function used in our 3D Computer Vision Work

- $k(A,B) = \exp(-\theta^2_{AB}/\sigma^2)$
- A and B are shape descriptors (big vectors).
- θ is the angle between these vectors.
- σ^2 is the "width" of the kernel.



What does SVM learning solve?

- The SVM is looking for the best separating plane in its alternate space.
- It solves a quadratic programming optimization problem

$$\underset{\alpha}{\operatorname{argmax}} \sum_{j} \alpha_{j} - 1/2 \sum_{j,k} \alpha_{k} y_{j} y_{k} (\mathbf{x}_{j} \bullet \mathbf{x}_{k})$$

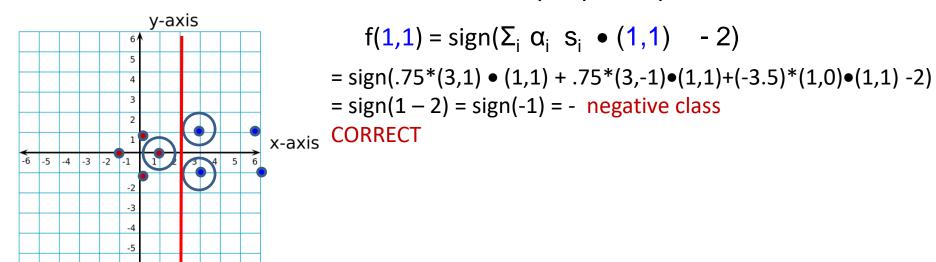
subject to $\alpha_i > 0$ and $\Sigma \alpha_i y_i = 0$.

• The equation for the separator for these optimal α_i is

$$h(\mathbf{x}) = sign(\Sigma \alpha_j y_j (\mathbf{x} \bullet \mathbf{x}_j) - \mathbf{b})$$
j

Simple Example of Classification

- $K(A,B) = A \bullet B$
- known positive class points {(3,1),(3,-1),(6,1),(6,-1)}
- known negative class points {(1,0),(0,1),(0,-1),(-1,0)}
- support vectors: $s = \{(1,0),(3,1),3,-1\}$ with weights $\alpha = 3.5, .75, .75$
- classifier equation: $f(x) = sign(\Sigma_i [\alpha_i^* K(s_i, x)] b)$



Time taken to build model: 0.15 seconds

Correctly Classified Instance	s 319	83.5079 %
Incorrectly Classified Instanc	ces 63	16.4921 %
Kappa statistic	0.6685	
Mean absolute error	0.1649	
Root mean squared error	0.4061	
Relative absolute error	33.0372 %	
Root relative squared error	81.1136 %	1
Total Number of Instances	382	

TP Rate	FP Rate	Precision	n Recall	F-Meas	sure	ROC Area	Class
	0.722	0.056	0.925	0.722	0.81	1 0.833	cal
	0.944	0.278	0.78	0.944	0.85	4 0.833	dor
W Avg.	0.835	0.17	0.851	0.835	0.83	3 0.833	

=== Confusion Matrix ===

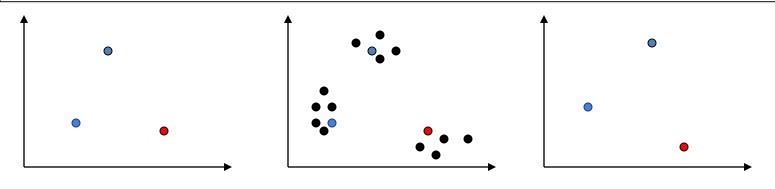
Unsupervised Learning

- Find patterns in the data.
- Group the data into clusters.
- Many clustering algorithms.
 - K means clustering
 - EM clustering
 - Graph-Theoretic Clustering
 - Clustering by Graph Cuts
 - etc

Clustering by K-means Algorithm

Form K-means clusters from a set of *n*-dimensional feature vectors

- 1. Set *ic* (iteration count) to 1
- 2. Choose randomly a set of K means $m_1(1), ..., m_K(1)$.
- 3. For each vector x_i , compute $D(x_i, m_k(ic))$, k=1,...K and assign x_i to the cluster C_i with nearest mean.
- 4. Increment ic by 1, update the means to get $m_1(ic), ..., m_K(ic)$.
- 5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.



K-Means Classifier (shown on RGB color data)

original data one RGB per pixel



color clusters

K-Means \rightarrow EM

The clusters are usually Gaussian distributions.

- Boot Step:
 - Initialize K clusters: C_1 , ..., C_K

 (μ_{j}, Σ_{j}) and $P(C_{j})$ for each cluster j.



- Iteration Step:
 - Estimate the cluster of each datum

$$p(C_j | x_i)$$

Expectation

Re-estimate the cluster parameters

$$(\mu_j, \Sigma_j), p(C_j)$$
 For each cluster j

The resultant set of clusters is called a **mixture model**; if the distributions are Gaussian, it's a Gaussian mixture.

EM Algorithm Summary

Boot Step:

- Initialize K clusters: C_1 , ..., C_K

 (μ_i, Σ_i) and $p(C_i)$ for each cluster j.

• <u>Iteration Step</u>:

Expectation Step

$$p(C_j \mid x_i) = \frac{p(x_i \mid C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i \mid C_j) \cdot p(C_j)}{\sum_{i} p(x_i \mid C_j) \cdot p(C_j)}$$
To virgination Step.

Maximization Step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

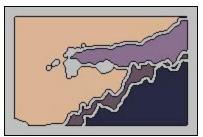
Normal Probability Density Function

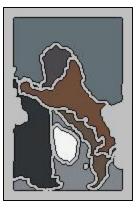
$$F(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

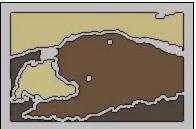
$$f(\mathbf{x}) = rac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \expigg(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})igg)$$

EM Clustering using color and texture information at each pixel

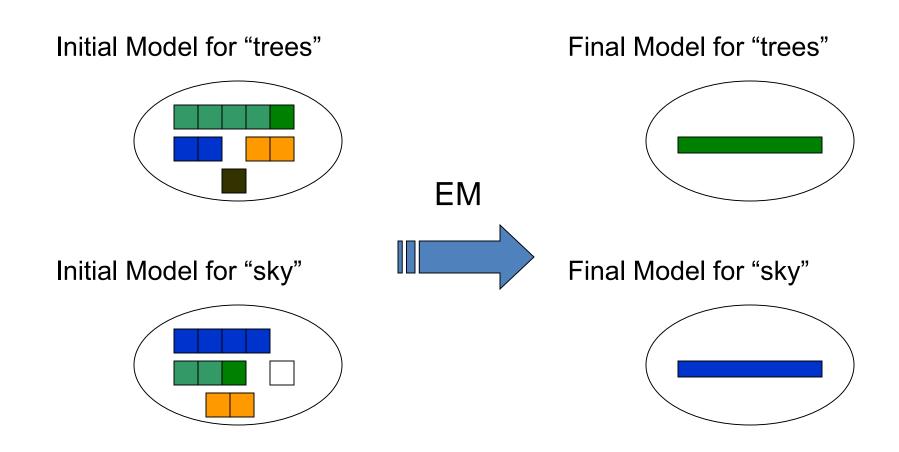
(from Blobworld)







EM for Classification of Images in Terms of their Color Regions



Sample Results

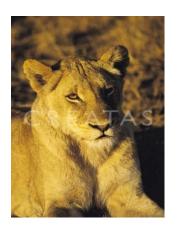
cheetah

Sample Results (Cont.)

grass

Sample Results (Cont.)

lion





Haar Random Forest Features Combined with a Spatial Matching Kernel for Stonefly Species Identification

Natalia Larios*

Bilge Soran*

Linda Shapiro*

Gonzalo Martinez-Munoz^

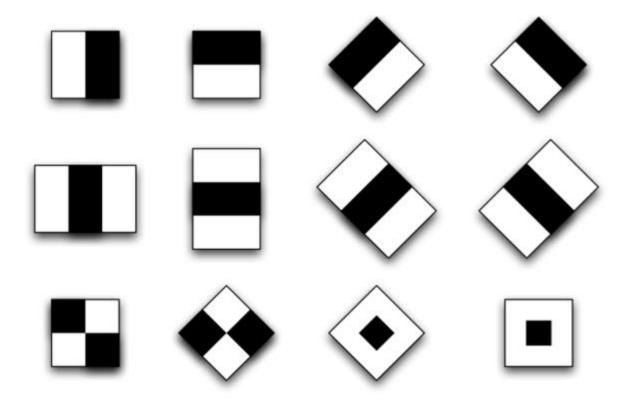
Jeffrey Lin+

Tom Dietterich+

*University of Washington +Oregon State University ^Universidad Autónoma de Madrid

Goal: to identify the species of insect specimens rapidly and accurately

Haar-like Features



Value =

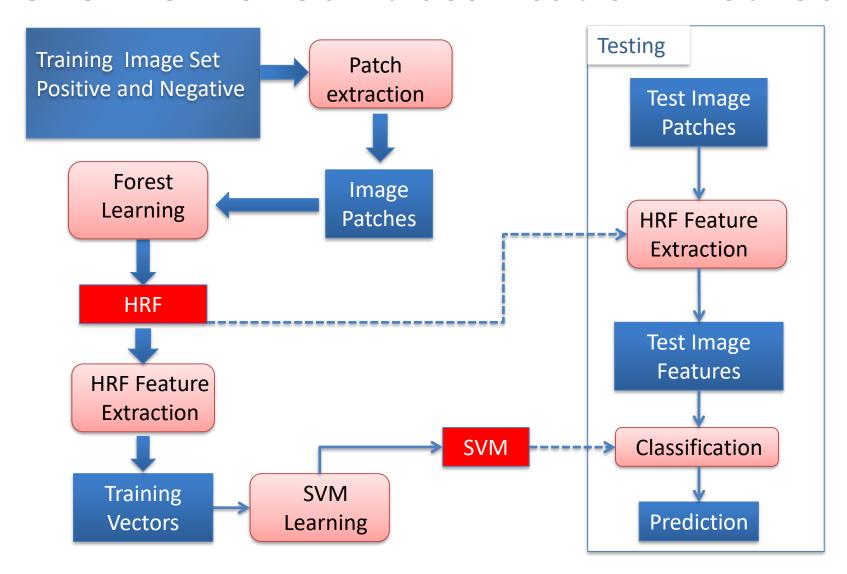
 \sum (pixels in white area) –

∑ (pixels in black area)

There can be hundreds or even thousands of them.

So the classifier has to choose.

Overview of our Classification Method



RESULTS: Stonefly Identification: Classification Error [%]

Task	SET	CIELAB color	CIELAB+G
Cal vs Dor	6.26	10.16	4.60 96.4% accuracy
Hes vs Iso	3.74	9.05	3.55
Pte vs Swe	2.71	8.75	2.80
Dor vs Hes	2.25	8.09	2.20
Mos vs Pte	2.06	7.95	1.92
Yor vs Zap	1.52	6.89	1.60
Zap vs Cal	1.52	7.02	1.76
Swe vs Yor	1.44	6.85	1.50
Iso vs Mos	1.29	6.90	1.30
Average	2.53	7.96	2.25

Finale

- We have looked at
 - decision trees
 - random decision forests
 - boosting (and other metaclassifiers)
 - neural nets
 - SVMs
 - unsupervised learning
- We will now go into object recognition of different types, ending with deep neural nets called Convolutional Neural Networks.