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Bilkent University

I Founded in 1984 as the first

private university in Turkey

I 1,200-acre campus located in

Ankara

I 13,000 students

I 1,000 faculty members from

40 different countries
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Bilkent University
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RETINA Vision and Learning Group

I 2 faculty members

I 10+ graduate students

I Research on

I Computer vision

I Pattern recognition

I Machine learning

I Data mining

I Funding sources:

I Scientific and Technological Research Council of Turkey

I State Planning Agency

I European Commission
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Part I

Automatic Detection of Geospatial

Objects Using Multiple Hierarchical

Segmentations
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Pattern recognition in remote sensing

I Development of new pattern recognition techniques for the

analysis of data collected from satellites and airborne sensors has

been a popular research topic for several decades.

I Large volumes of data acquired from the last generation sensors

require new advanced algorithms and techniques for automatic

analysis.

I This data volume, together with new applications require new

interdisciplinary work involving the application of novel pattern

recognition techniques to unsolved problems in remote sensing

image analysis.
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Motivation

https://www.e-education.psu.edu/geog883kls/node/463 http://dx.doi.org/10.1109/JSTARS.2012.2194696

Figure 1: Multispectral and hyperspectral imaging.
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Image segmentation

I Most of the segmentation work in remote sensing literature are

based on merging neighboring pixels according to user-defined

thresholds on their spectral similarity.

I Our segmentation algorithm consists of the following steps:

1. Principal components analysis

2. Morphological profile extraction

3. Hierarchical segment extraction

4. Segment selection

Joint work with Gökhan Akçay, Bilkent University
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Image segmentation
Principal components analysis

(a) Orig. (b) 1st PC (c) 2nd PC (d) 3rd PC

Figure 2: DC Mall image and its PCA bands.
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Image segmentation
Principal components analysis

(a) Original (b) 1st PC (c) 2nd PC (d) 3rd PC

Figure 3: Pavia Centre image and its PCA bands.
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Image segmentation
Morphological profiles

I Opening by reconstruction isolates structures that are brighter

than their surroundings.

I Closing by reconstruction isolates structures that are darker than

their surroundings.

I These operations are applied using increasing structuring

element (SE) sizes to generate morphological profiles.
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Image segmentation
Morphological profiles

(a) Grayscale image (b) SE

(c) 3D representation (d) Opening by rec. (e) Closing by rec.

Figure 4: Opening and closing by reconstruction example.
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Image segmentation
Morphological profiles

(a) Grayscale (b) SE (c) Opening MP (d) Derivative MP

Figure 5: Example morphological profile (MP) and its derivative (DMP).

October 23, 2013 c©2013, Selim Aksoy (Bilkent University) 14 / 128



Image segmentation
Morphological profiles

I Our idea: Each neighboring group of pixels with a positive DMP

is a candidate segment for the final segmentation.

(a) Opening DMP

(b) Thresholding at DMP > 0

Figure 6: Example connected components with DMP > 0.
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Image segmentation overview

1. Apply o/c by reconstruction using SEs in increasing sizes.

2. Apply connected component analysis to the thresholded DMP at

each scale.

I Each connected component is a candidate meaningful segment.

I Connected components are contained within each other in a

hierarchy.

I Using these candidate segments, construct a hierarchical tree.

3. Search for the most meaningful connected components in the

tree.
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Image segmentation
Hierarchical segment extraction

Figure 7: An example tree where each node is a candidate segment.
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Image segmentation
Segment selection

I A segment must be as homogeneous as possible.

I Homogeneity (D): the difference between the standard deviation

of the spectral information of a node and its parent.

I We expect a significant increase in the standard deviation when

a structure merges with another.

I However, only the homogeneity factor will favor small structures.
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Image segmentation
Segment selection

I As a competing factor, we want to select segments that are as

large as possible: number of pixels in the segment (C).

I The goodness measure M for a node n is defined as

M(n) = D(n, parent(n))× C(n).

I The components that optimize this measure are selected using a

two-pass algorithm on the tree.
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Image segmentation
Segment selection

Figure 8: An example run of the two-pass algorithm.
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Image segmentation
Segment selection
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Image segmentation
Examples

Figure 9: Example segmentation results for the DC Mall data set: false color,
result of the proposed approach, result of Pesaresi-Benediktsson, result of
watershed segmentation.
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Image segmentation
Examples

Figure 10: Example segmentation results for the DC Mall data set: false color,
result of the proposed approach, result of Pesaresi-Benediktsson, result of
watershed segmentation.
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Image segmentation
Examples

Figure 11: Example segmentation results for the Pavia Centre data set: false
color, result of the proposed approach, result of Pesaresi-Benediktsson, result of
watershed segmentation.

October 23, 2013 c©2013, Selim Aksoy (Bilkent University) 23 / 128



Image segmentation
Examples

Figure 12: Example segmentation results for the Pavia Centre data set: false
color, result of the proposed approach, result of Pesaresi-Benediktsson, result of
watershed segmentation.
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Image segmentation
Examples

Figure 13: Example segmentation results for the DC Mall data set: first, second
and third PCA bands.
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Grouping segments for object detection

I Different structures appear more clearly in different principal

components.

I Information from multiple PCA components must be combined

for better overall detection.

I Assumption: for a particular structure (e.g., building),

I the “good” segments (i.e., the ones containing a building) will

all have similar features,

I the “bad” segments (i.e., the ones containing multiple objects)

will be described by a random mixture of features.
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Grouping segments for object detection

I The selection process is formulated as a grouping problem within

the space of a large number of candidate segments obtained

from multiple segmentations.

I The grouping problem is solved using the probabilistic Latent

Semantic Analysis (PLSA) algorithm.

I The resulting groups correspond to different types of objects in

the image.

I The overall object detection algorithm is automatic.
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Grouping segments for object detection

I Each segment is modeled using the statistical summary of its

pixel content (e.g., quantized spectral values).

k−means−−−−−−−→
quantization

histogram−−−−−−→
of pixels

P (x|t)P (s)

building

s t x
P (t|s)

I The generative model for the joint probability of segments and

their features is learned using the Expectation-Maximization

(EM) algorithm.
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Experiments

(a) False color (b) Buildings (c) Roads (d) Vegetation (e) Water

Figure 14: Examples of object detection for the DC Mall data set.
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Experiments

(a) False color (b) Buildings (c) Roads (d) Vegetation

Figure 15: Examples of object detection for the Pavia Centre data set.
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Experiments

(a) RGB (b) Buildings (c) Roads

(d) Vegetation

Figure 16: Examples of object detection for the Ankara data set.
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Part II

Automatic Mapping of Agricultural

Objects Using Very High Spatial

Resolution Satellite Imagery
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Introduction

I Remote sensing has been a valuable tool for the planning,

control, maintenance, and monitoring of agricultural sites.

I Generalizability and robustness of automatic techniques are

particularly important when the analysis goes beyond local sites

to cover a wide range of landscapes.
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Introduction

I The goal of this study is to develop automatic methods for

mapping of target landscape features in very high spatial

resolution images.

I The target objects of interest in this talk are

I hedges that are linear strips of woody vegetation, and

I orchards that are composed of regular plantation of individual

trees.

Joint work with Gökhan Akçay and Zeki Yalnız, Bilkent University
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Hedge detection
Overview

(a) Baden-Württemberg, Germany (b) Decin, Czech Republic

Figure 17: Example Quickbird images containing hedges.
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Hedge detection
Overview

(a) Paphos, South Cyprus (b) Paphos, South Cyprus

Figure 18: Example Quickbird images containing hedges.
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Hedge detection
Feature extraction

(a) Multispectral (b) NDVI (c) Gabor - scale 1 (d) Gabor - scale 6

(e) Multispectral (f) NDVI (g) Gabor - scale 1 (h) Gabor - scale 6

Figure 19: Features for example images.
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Hedge detection
Identification of candidate objects

I The next step was to find the image areas that gave high

responses to the extracted features.

I A two-step decision process was employed:

1. A threshold on NDVI was used to separate green vegetation

from the rest of the land cover.

2. Classifiers trained on multispectral values and texture features

were used to label pixels as belonging to woody vs. non-woody

vegetation.
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Hedge detection
Identification of candidate objects

(a) (b)

Figure 20: Woody vs. non-woody vegetation classification.
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Hedge detection
Identification of candidate objects

(a) (b)

Figure 21: Woody vs. non-woody vegetation classification.
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Hedge detection
Identification of candidate objects

(a) (b)

Figure 22: Woody vs. non-woody vegetation classification.
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Hedge detection
Detection of target objects

I Given the candidate objects, object level shape information was

used so that the objects could be labeled as target or rejected.

I The detection method used

I morphological filtering to locate the woody vegetation areas

that fell within the width limits of an acceptable hedge, and

I skeletonization and an iterative least-squares fitting procedure

that quantified the linearity of the objects.

I Aspect ratio (length/width) was computed as the shape feature.
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Hedge detection
Detection of target objects

(a) (b)

Figure 23: Elimination of large woody areas using morphological filtering.
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Hedge detection
Detection of target objects

(a) (b)

Figure 24: Iterative least-squares line fitting based segment selection.
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Hedge detection
Detection of target objects

(a) (b)

Figure 25: Iterative least-squares line fitting based segment selection.
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Hedge detection
Detection of target objects

(a) (b)

Figure 26: Final set of segments selected as linear.
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Hedge detection
Performance evaluation

(a) Reference objects (b) Output objects

Figure 27: Example results for hedge detection.
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Hedge detection
Performance evaluation

(a) Reference objects (b) Output objects

Figure 28: Example results for hedge detection.
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Hedge detection
Performance evaluation

(a) Reference objects (b) Output objects

Figure 29: Example results for hedge detection.
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Hedge detection
Performance evaluation

(a) Reference objects (b) Output objects

Figure 30: Example results for hedge detection.
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Orchard detection
Overview

I It may not be possible to discriminate between certain terrain

classes such as orchards, vineyards, forests, and fields using only

spectral information.

I Texture analysis is a promising technique because of its potential

for modeling the image data in terms of texture primitives

appearing in a repetitive arrangement.

I Our texture model for the orchards involved individual trees and

the regularity of their planting patterns.
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Orchard detection
Overview

(a) Giresun, Turkey (b) Giresun, Turkey

Figure 31: Example Quickbird images containing orchards.
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Orchard detection
Overview

(a) Izmir, Turkey (b) Izmir, Turkey

Figure 32: Example Google Earth images containing orchards.
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Orchard detection
Pre-processing

I The first step was the enhancement of tree-like objects using

multi-scale isotropic filters.

(a) Gran. 2 (b) Gran. 3 (c) Gran. 4 (d) Gran. 5

(e) Gran. 6 (f) Gran. 7 (g) Gran. 8 (h) Gran. 9

Figure 33: Spot filters for different granularities.
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Orchard detection
Pre-processing

(a) Granularity (scale) 3 (b) Granularity (scale) 6

Figure 34: Example spot filter outputs.
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Orchard detection
Projection profiles and regularity detection

I The pixels corresponding to local maxima in the filter responses

indicated possible locations of such objects.

I In a neighborhood with a regular structure, the locations of local

maxima along a scan line with an orientation that matched the

dominant direction of this structure also had a regular pattern.

I We used projection profiles to quantify the regularity of the trees

along different orientations.

I The scores for a particular pixel for all orientations and all

granularities were denoted as the regularity spectrum of that

pixel.
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Orchard detection
Projection profiles and regularity detection

(a) A window cropped from the spot filter response of a QuickBird image

(b) Vertical projection profile of the window

(c) Segmentation of the profile into its peaks and valleys

(d) Regularity scores

(e) Periodic intervals located according to the largest values in (d)

Figure 35: Periodicity analysis of the projection profile of an image window.
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Orchard detection
Multi-orientation and multi-granularity regularity analysis
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Figure 36: Example windows for computing the projection profiles.
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Orchard detection
Multi-orientation and multi-granularity regularity analysis

1

2 3

4

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

1 2 3 4 5 6

Point 1:

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

1 2 3 4 5 6

Point 2:

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

1 2 3 4 5 6

Point 3:

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

1 2 3 4 5 6

Point 4:

Figure 37: Example regularity spectra for pixels belonging to different structures.
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Orchard detection
Regularity spectrum and texture segmentation

I Pixels having very high regularity scores were used as seeds.

I A region growing process was run to extend these seeds toward

neighboring pixels having similar spectra.

I A second growing process that involved merging regions was

used to obtain the final segmentation.
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Orchard detection
Regularity spectrum and texture segmentation

(a) Reference data (b) Seeds for τh = 0.85 (c) Candidates for τl = 0.80

(d) Growing results for τd =

0.05

(e) Merging results for τd =

0.05

(f) Merging results for τd =

0.06
Figure 38: Illustration of the segmentation process.
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Orchard detection
Performance evaluation

(a) Multispectral image

Figure 39: Example results for orchard detection in the Giresun data set.
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Orchard detection
Performance evaluation

(a) Multispectral image (b) Reference data (c) Regularity scores

Figure 39: Example results for orchard detection in the Giresun data set.
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Orchard detection
Performance evaluation

(a) Multispectral image (b) Reference data (c) Detection results

Figure 39: Example results for orchard detection in the Giresun data set.
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Orchard detection
Performance evaluation

(a) Multispectral image

Figure 40: Example results for orchard detection in the Izmir data set.
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Orchard detection
Performance evaluation

(a) Multispectral image (b) Reference data

Figure 40: Example results for orchard detection in the Izmir data set.
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Orchard detection
Performance evaluation

(a) Multispectral image (b) Reference data (c) Regularity scores

Figure 40: Example results for orchard detection in the Izmir data set.
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Orchard detection
Performance evaluation

(a) Multispectral image (b) Reference data (c) Detection results

Figure 40: Example results for orchard detection in the Izmir data set.
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Orchard detection
Performance evaluation

(a) (b)

Figure 41: Local details of orchard detection in the Giresun data set.
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Orchard detection
Performance evaluation

(a) (b)

Figure 42: Local details of orchard detection in the Izmir data set.
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Orchard detection
Performance evaluation

(a) (b)

Figure 43: Local details of orchard segmentation in the Giresun data set.
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Orchard detection
Performance evaluation

(a) (b)

Figure 44: Local details of orchard segmentation in the Giresun data set.
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Orchard detection
Performance evaluation

(a) (b)

Figure 45: Local details of orchard segmentation in the Izmir data set.
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Orchard detection
Performance evaluation

(a) (b)

Figure 46: Local details of orchard segmentation in the Izmir data set.
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Part III

Detection of Compound Structures in

Very High Spatial Resolution Images
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Introduction

I A common approach for object recognition is to segment the

images into homogeneous regions.

I However, such homogeneous regions often correspond to very

small details in very high spatial resolution (VHR) images.

I An alternative is to model the spatial arrangements of simple

image regions to identify complex region groups.

I Examples of such region groups, also called compound

structures, include different types of residential, commercial,

industrial, and agricultural areas.
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Introduction

Figure 47: An Ikonos image of Baltimore, and some compound structures of
interest: residential, commercial, park, marina, housing project, etc.
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Introduction

I Compound structures are comprised of different spatial

arrangements of primitive objects.

I Our framework involves statistical modeling of the features of

primitive objects and structural modeling of their arrangements

using graphs.

I We have developed methods that use

I graph-based knowledge discovery,

I graph-based texture analysis,

I hierarchical clustering.
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Detection using graph-based knowledge discovery

I Compound structures can be defined in terms of frequent

occurrences of primitive region types in particular spatial

arrangements.

I Given a segmentation, features of neighboring region pairs are

incorporated in a spatial co-occurrence space.

I Density estimation in the co-occurrence space identifies groups

of related region pairs.

Joint work with Daniya Zamalieva, Bilkent University, and James C. Tilton, NASA Goddard

Space Flight Center
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Detection using graph-based knowledge discovery

Figure 48: A 2D illustration of the spatial co-occurrence space.
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Detection using graph-based knowledge discovery

I A graph is used to encode the spatial structure where there is a

vertex for each primitive region and the edges connect the vertex

pairs that correspond to the modes of the density estimate.

I Finally, a frequent subgraph discovery algorithm produces parts

of high-level compound structures.
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Detection using graph-based knowledge discovery

Figure 49: Example substructures obtained by graph analysis, and the
corresponding region groups in a multispectral Ikonos image of Antalya.
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Detection using graph-based knowledge discovery

Figure 50: Example substructures obtained by graph analysis, and the
corresponding region groups in a multispectral Ikonos image of Antalya.
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Detection using graph-based knowledge discovery

Figure 51: Example segmentation obtained by clustering the subgraph
histograms within sliding image windows.
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Detection using graph-based texture analysis

I Another model that encodes the spatial arrangements of

primitive regions uses relative angles.

I After finding the neighbors of each primitive, the goal is to

group these primitives into clusters so that they can be

automatically classified as regular or irregular.

I To determine the most important neighbors of each primitive,

the minimum spanning tree of the graph is constructed using the

distances of Voronoi neighbors.

Joint work with Emel Doğrusöz, Bilkent University
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Detection using graph-based texture analysis

Figure 52: Example for modeling neighboring objects using Voronoi tessellation
of a map of buildings detected in an Ikonos image of Ankara.
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Detection using graph-based texture analysis

I When the angles between primitives are examined, it can be seen

that in organized neighborhoods the angle distribution has peaks

around 90 and 180 degrees.

I On the other hand, when there is no specific arrangement of

primitives, random angle distributions are observed with no

considerable peaks.
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Detection using graph-based texture analysis

(a) Example image with differ-

ent settlement patterns

(b) Minimum spanning tree (c) Labeled clusters

Figure 53: Example graphs and labeling of clusters (green: organized, red:
unorganized).
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Detection using graph-based texture analysis

Figure 54: Example results for the detection of organized versus unorganized
settlements in a pan-sharpened Ikonos image of Ankara.
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Detection using graph-based texture analysis

Figure 54: Example results for the detection of organized versus unorganized
settlements in a pan-sharpened Ikonos image of Ankara.
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Detection using hierarchical clustering

I Our final model uses attributed relational graphs where the

primitive objects form the vertices.

I We connect every neighboring vertex pair with an edge.

I We use a threshold on the distance between the centroids of

object pairs to determine the neighbors.

Joint work with Gökhan Akçay, Bilkent University
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Detection using hierarchical clustering

Figure 55: Examples of graph construction. The vertices considered as
neighbors based on proximity analysis are connected with red edges.
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Detection using hierarchical clustering

Figure 55: Examples of graph construction. The vertices considered as
neighbors based on proximity analysis are connected with red edges.
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Detection using hierarchical clustering

I The statistical features that summarize the spectral content and

the shape of each individual object consist of

I mean values of the pixels within the object for each spectral

band,

I area,

I eccentricity, and

I centroid location.
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Detection using hierarchical clustering

I The structural features represent the spatial layout of each

object with respect to its neighbors.

I Aligned groups of objects are found by checking all possible

subsets having at least three objects.
I The set of structural features computed for each object group

consists of
I orientation of the fitted line, and

I mean of the centroid distances.

Figure 56: Illustration of object alignment.
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Detection using hierarchical clustering

(a) Building mask (b) Alignment detection

Figure 57: Examples of alignment detection in an image with 418 buildings. All
groups of buildings satisfying the alignment criteria are shown in (b).
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Detection using hierarchical clustering

I After each vertex is assigned statistical and structural features,

the next step is to group these objects via clustering.

I Once the statistical and structural distances are computed for

each neighboring object pair, agglomerative hierarchical

clustering iteratively groups these objects.
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Detection using hierarchical clustering

(a) Ankara image (b) Combined clustering

Figure 58: Example clustering results on a multispectral WorldView-2 image of
Ankara. Different groups are shown in different colors.
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Detection using hierarchical clustering

I Each group is modeled using a Markov random field that uses

area, eccentricity, and orientation of individual regions, and

proximity and relative orientation of region pairs.

I Given a query region group, the distribution of its features is

learned, and retrieval is performed by ranking other groups

according to their probabilities under this distribution.
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Figure 59: Example retrieval results on a WorldView-2 image of Ankara. The
query window is shown as red and the top 100 results are shown as blue.
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Figure 60: The query window and the top 15 results in the WorldView-2 Ankara
image.
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Figure 61: Example retrieval results on a WorldView-2 image of Ankara. The
query window is shown as red and the top 100 results are shown as blue.
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Figure 62: The query window and the top 15 results in the WorldView-2 Ankara
image.
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Part IV

Segmentation and Classification of

Cervical Cell Images
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Motivation

I Cervical cancer has a worldwide significant impact with nearly

500, 000 new cases and nearly 250, 000 deaths reported annually.

I However, cervical cancer is a preventable disease.

I It develops during a long duration.

I It can be treated if detected early.

Joint work with Aslı Gençtav, Bilkent University, and Sevgen Önder, Hacettepe University
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Motivation

I Pap smear test is a manual screening procedure to detect

cervical cancer by grading cervical cells based on the properties

of their nuclei and cytoplasms.

I There is a possibility of inaccurate diagnosis because of human

errors resulting from intra- and inter-observer variability.

I A computer-assisted screening system can be used for aiding the

early diagnosis of cervical cancer.

I The key step of such a system is the accurate segmentation of

cells along with their nuclei and cytoplasms.
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Motivation

Figure 63: Example pap smear images involving multiple overlapping cells with
inconsistent staining and poor contrast.
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Figure 64: Overview of the approach.
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Data sets
Herlev data

I This data set was developed by the Department of Pathology at

Herlev University Hospital and the Department of Automation at

Technical University of Denmark to provide benchmark data for

comparing classification methods.

I The data set consists of 917 images of single cells.

I Cyto-technicians and doctors manually classified each cell into

one of 7 classes.
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Data sets
Herlev data

(a) (b) (c)

(d) (e) (f) (g)

Figure 65: Examples from the Herlev data set. The cells belong to (a) superficial
squamous, (b) intermediate squamous, (c) columnar, (d) mild dysplasia, (e)
moderate dysplasia, (f) severe dysplasia, and (g) carcinoma in situ classes. The
classes in the first row are considered to be normal and the ones in the second
row are considered to be abnormal. Average image size is 156× 140 pixels.
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Data sets
Hacettepe data

I This data set was prepared by Dr. Sevgen Önder at the

Department of Pathology, Hacettepe University Hospital in

Ankara.

I The data was collected from the Pap test slides of 18 different

patients.

I There are 82 images taken at 20× magnification.

I The size of each image is 2048× 2048 pixels.
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Data sets
Hacettepe data

Figure 66: Example Pap smear test images from the Hacettepe data set.
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Segmentation of cervical cells
Background extraction

I The first step is to identify the cell regions in the image.

I This can be performed by removing the white areas by

thresholding.

I However, choosing a threshold is difficult due to inhomogeneous

illumination.

I We developed an automatic procedure using the minimum-error

thresholding criterion.
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Segmentation of cervical cells
Background extraction

(a) (b) (c)

Figure 67: (a) Pap smear image in RGB color space. (b) L channel of the image
in CIE Lab color space. (c) Histogram of the L channel.
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Segmentation of cervical cells
Background extraction

(a) (b) (c)

Figure 68: Black top-hat transform for eliminating inhomogeneous illumination.
(a) L channel of the image. (b) Closing with a large structuring element. (c)
Illumination-corrected L channel.
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Segmentation of cervical cells
Background extraction

(a) (b)

Figure 69: (a) Histogram of the illumination-corrected L channel. (b) Criterion
for automatic thresholding.
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Segmentation of cervical cells
Background extraction

(a) (b)

Figure 70: (a) Pap smear image. (b) Regions found by thresholding at 0.03.
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation

I The next step is to obtain an accurate separation of nuclei from

cytoplasm within the cell regions.

I There are important constraints such as inconsistent staining,

unknown number of nuclei, and overlapping cells.

I Therefore, we focused on the segmentation of nuclei from the

rest of the image by applying multi-scale watershed

segmentation based on dynamics.
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation
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Figure 71: One-dimensional synthetic signal (blue) and watersheds (black) after
iterative elimination of local minima (red). The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation

(a) (b)

Figure 72: (a) Cell image. (b) Gradient of the L channel that is used for
computing the dynamics.
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation

(a) (b)

Figure 73: Candidate segments obtained by multi-scale watershed segmentation.
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation

I The goal is to select the nuclei among all regions appearing at

different levels of the hierarchy.

I We define a goodness measure for each node as

homogeneity × circularity .

I Homogeneity : spectral similarity between a node and its parent

node measured using an F-statistic based on mean and variance.

I Circularity : inverse of the eccentricity of the node.

I The nodes that optimize this measure are selected using a

two-pass algorithm on the hierarchical tree.
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Segmentation of cervical cells
Nucleus and cytoplasm segmentation

(a) (b)

Figure 74: Segmentation result of the example cell image.
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Segmentation of cervical cells
Nucleus and cytoplasm classification

I Finally, we classify the segments as nucleus or cytoplasm based

on their size, mean intensity, circularity, and homogeneity

attributes.

I The classification is performed using a combination of a

Bayesian classifier, a decision tree, and an SVM classifier.

I The final cytoplasm region is calculated as the union of all

segments classified as cytoplasm.
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Segmentation of cervical cells
Nucleus and cytoplasm classification

(a) (b)

Figure 75: (a) Segmentation result. (b) Classification of the example cell image
into nuclei and cytoplasm regions.
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Segmentation of cervical cells
Experiments

Figure 76: Example segmentation results for the Hacettepe data.
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Segmentation of cervical cells
Experiments

Figure 77: Example segmentation results for the Hacettepe data.
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Segmentation of cervical cells
Experiments

Figure 78: Example segmentation results for the Hacettepe data.
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Figure 64: Overview of the approach.

October 23, 2013 c©2013, Selim Aksoy (Bilkent University) 123 / 128



Classification of cervical cells

I The classification step aims to obtain an unsupervised ordering

of the cells in a Pap smear image according to their abnormality

degree.

I The ordered cells can be used for fast browsing of the image

content.

I Sufficiently large and representative training data may not be

available for supervised classification.

I We rank the nuclei in the image by a linear ordering of the

leaves of the dendrogram resulting from hierarchical clustering of

cell features.

I Then, this ranking is improved using an optimal leaf ordering

algorithm.

October 23, 2013 c©2013, Selim Aksoy (Bilkent University) 124 / 128



Classification of cervical cells
Feature extraction

1. Nucleus area
2. Nucleus brightness
3. Nucleus longest diameter
4. Nucleus shortest diameter
5. Nucleus elongation
6. Nucleus roundness
7. Nucleus perimeter
8. Nucleus maxima
9. Nucleus minima

10. Cytoplasm area
11. Nucleus/cytoplasm ratio
12. Cytoplasm brightness
13. Cytoplasm maxima
14. Cytoplasm minima

Figure 79: Example nuclei (green)
surrounded by cytoplasm (blue).
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Classification of cervical cells
Ranking of cervical cells

Figure 80: The binary tree resulting from hierarchical clustering of 30 cells
randomly selected from the Herlev data (normal superficial (1− 5), normal
intermediate (6− 10), mild dysplasia (11− 15), moderate dysplasia (16− 20),
severe dysplasia (21− 25), carcinoma in situ (26− 30)).
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Classification of cervical cells
Ranking of cervical cells

(a)
1 2 63 4 5

f
(b)

1 2 64 5 3

f

Figure 81: (a) An example binary tree T . (b) A linear leaf ordering consistent
with T obtained by flipping the node marked by the red circle. An optimal leaf
ordering algorithm can be used for finding the flips required for maximizing the
sum of similarities between adjacent leaves.
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Classification of cervical cells
Ranking of cervical cells

(a)

(b) (c)

Figure 82: (a) Random ordering of 30 cells.

(b) Initial linear ordering of the
leaves of the original tree. (c) Result of the optimal leaf ordering algorithm.
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Classification of cervical cells
Ranking of cervical cells

(a) (b)

(c)

Figure 82: (a) Random ordering of 30 cells. (b) Initial linear ordering of the
leaves of the original tree.

(c) Result of the optimal leaf ordering algorithm.
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Classification of cervical cells
Ranking of cervical cells

(a) (b) (c)

Figure 82: (a) Random ordering of 30 cells. (b) Initial linear ordering of the
leaves of the original tree. (c) Result of the optimal leaf ordering algorithm.
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