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Abstract. In this paper we describe our 3D object signature for 3D
object classification. The signature is based on a learning approach that
finds salient points on a 3D object and represent these points in a 2D
spatial map based on a longitude-latitude transformation. Experimen-
tal results show high classification rates on both pose-normalized and
rotated objects and include a study on classification accuracy as a func-
tion of number of rotations in the training set.

Key words: 3D Object Classification, 3D Object Signature

1 Introduction

Advancement in technology for digital acquisition of 3D models has led to an
increase in the number of 3D objects available in specific application databases
and across the World Wide Web. This has motivated recent research in two
major areas. The first research area is 3D object retrieval where the goal is to
retrieve 3D objects from a database that are similar in shape to a given 3D
object query. The second research area is 3D object classification where previ-
ously unseen objects are assigned to one of a set of previously defined object
classes. Classification helps in labeling new unseen objects and can be applied
to a number of fields including engineering, architecture, and medical field. The
two research areas are complementary as 3D object classification helps in orga-
nizing and retrieving objects from a database. Classifying a query object before
retrieving similar objects from the database helps to speed up and potentially
improve the retrieval process.

Classification of 3D objects requires them to be represented in a way that
captures the global and local characteristics of the object. This is achieved by
creating a 3D descriptor or signature that summarizes the important shape prop-
erties of the object that can be used in classification. In this paper, we describe
our method of representing a 3D object and using the representation for 3D
object classification. Our 3D object signature is based on a learning approach
that finds the salient points on a 3D object and represent these points in a 2D
spatial map based on longitude-latitude transformation. A classifier is trained
on the signatures of the objects for a number of classes and can then be used to
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classify new unseen objects. Motivated by our work on medical applications [2],
we wanted to explore the performance of the signatures in classifying objects
that have a similar global shape. For the experiments in this paper, we chose
to classify head shapes including human, dog, cat, rabbit, horse, wild cats, and
bear heads.

The rest of the paper is organized as follows. We first discuss existing classi-
fication methods and existing 3D object signatures. We then describe our data
acquisition process. Next we describe our method for learning the salient points
of a 3D object and then describe the longitude-latitude map signature that cap-
tures the patterns of the salient points. Finally, we explain and analyze the
results results from our experiments and provide a summary and suggestions for
future work.

2 Related Work

Biasotti et al. [3] presented a comparative evaluation study for 3D shape classifi-
cation. In their work, they compared the performance of five similarity measures
on four different shape descriptors in classifying 3D objects, and concluded that
using the nearest neighbor similarity measure performed the best for all four dif-
ferent shape descriptors. Huber et al. [4] presented a parts-based method for 3D
object classification. Their method extracted parts from an object and learned
part classes and a mapping from the part classes to the object classes using
probability.

Lee et al. [9] used the curvature information at every mesh vertices to find
the salient points.Their method then computed the difference between mean
curvature at different scales. The final saliency value was the aggregate of the
saliency at all scales with a non-linear normalization. Ohbuchi et al. [11] rendered
multiple views of a 3D model and extracted local features from each view image
using the SIFT algorithm. The local features are then integrated into a histogram
using the bag-of-features approach. Novatnack et al. [10] derived corner and edge
detectors to extract salient points at each scale.

Assfalg et al. [1] captured the shape of a 3D object using the curvature map
of the object’s surface. The model surface is first warped into a sphere, and the
curvature information is then mapped onto a 2D image using the Archimedes
projection. Retrieval of 3D objects is performed by comparing the 2D map of
the query object against the 2D maps of the database models using a histogram-
based search as one method and a weighted walk-through of the map regions as
another. Our method differs from theirs in that it does not use curvature directly,
but instead uses a classifier to find salient points and labels them according to
the classifier prediction score. It then uses the longitude and latitude position of
the salient points on the object’s surface to create a 2D map signature. A second
classifier is trained on these 2D map signatures for object classification.
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3 Data Acquisition

The 3D objects used in our experiments were obtained by scanning hand-made
clay toys using a Roldand-LPX250 laser scanner with a maximal scanning reso-
lution of 0.008 inches for plane scanning mode [6]. Raw data from the scanner
consisted of clouds of 3D points that were further processed to obtain smooth
and uniformly sampled triangular meshes of 0.9-1.0 mm resolution.

To increase the number of objects for training and testing our method, new
objects were created by deforming the original scanned 3D models in a controlled
fashion using 3D Studio Max [5]. Global deformations of the models were gen-
erated using morphing operators such as tapering, twisting, bending, stretching
and squeezing. The parameters of each of the operators were randomly chosen
from given ranges that were determined empirically. Each deformed model in-
cluded at least five different deformations applied in a random sequence. Figure 1
shows an example of an original scanned human head model and two different
morphed versions. The first morphed model was generated by squeezing the orig-
inal model resulting in a slimmer head, while the second morphed model was
generated by twisting the original model resulting in a slightly asymmetrical
face.

(a) (b) (c)

Fig. 1. (a) Original scanned human head model and (b,c) two different morphed ver-
sions of the model.

Fifteen objects were originally scanned to create a 7-class database. In this
work we focus on heads of different classes and shapes to emphasize the re-
peatability of the method. The seven classes are: cat head, dog head, human
head, rabbit head, horse head, tiger head and bear head. Each of the fifteen
original objects were randomly morphed to increase the database size. A total
of 250 morphed models per original object were created. For this work, we used
75 morphed models from each of the original objects for training and testing
the classifier. Points on the morphed models are in full correspondence with the
original models from which they were constructed.
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4 Learning Salient Points

Our methodology starts by applying a low-level operator to every point on the
surface mesh. The low-level operators extract local properties of the surface
points by computing a single feature value vi for every point pi on the mesh
surface. Five different low-level operators were implemented to test the algo-
rithm’s performance. The five low-level features are Gaussian curvature, mean
curvature, shape index, normal magnitude, and curvedness. In this work, we
will use the absolute values of the Gaussian curvature for our experiments. The
low-level feature values are convolved with a Gaussian filter to reduce the noise.
Figure 2a shows an example of the absolute Gaussian curvature values of a 3D
model, and Figure 2b shows the results of applying a Gaussian filter over the
low-level values.

(a) (b)

Fig. 2. (a) Absolute Gaussian curvature low-level feature value and (b) Smooth low-
level feature values after convolution with the Gaussian filter.

After this first step, every point pi on the surface mesh will have a low-
level feature value vi. The second step performs mid-level feature aggregation
to compute an aggregate vector for a given neighborhood of every point pi on
the surface mesh. In this work, we use local histograms to aggregate the low-
level feature values of each point. The histograms are computed by taking a
neighborhood around each point and accumulating the low-level features in that
neighborhood. The size of the neighborhood is determined by multiplying a
constant c, 0 < c < 1, with the diagonal of the object’s bounding box. This
ensures that the size of the neighborhood is scaled according to the object’s size
and that the results are comparable across objects. The aggregation results in
a d-dimensional vector fi for every point pi on the surface mesh where d is the
number of histogram bins. For our experiments, we used d = 250 and c = 0.05.

Because we were not satisfied with the salient points computed by standard
interest operators (eg. Kadir’s entropy operator [7] or Lowe’s SIFT operator [8]
applied to 3D), we chose to teach a classifier the characteristics of points that
we regard as salient. Histograms of low-level features are used to train a Sup-
port Vector Machine (SVM) classifier [12] [13] to learn the salient points on
the 3D surface mesh. We used the SVM implemented in WEKA for our ex-
periments [14]. The training data for supervised learning for the classifier are
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obtained by manually marking salient and non-salient points on the surface of
each training object. An average of 12 salient points and 12 non-salient points
were marked on the training objects. Since our current database contains head
shapes (human heads, wildcat heads, bear heads, etc.), salient points that were
chosen included the tip of the nose, corner of the eyes, corner and midpoints of
the lips, etc. The histogram of low-level features of each of the marked points are
saved and used for the training. Figure 3 shows examples of manually marked
salient and non-salient points on the training data. Since the morphed models
were in total correspondence with the original model, we only had to manually
mark the original 15 models.

(a) (b) (c)

Fig. 3. Examples of manually marked salient (blue color) and non-salient (red color)
points on (a) cat head model, (b) dog head model, and (c) human head model.

A small training set was used to train the classifier to learn the salient points.
The training data for the classifier consisted of the histogram of low-level features
for the manually marked salient and non-salient points of 25 instances of the
cat head model, 25 instances of the dog head model and 50 instances of the
human head models. The classifier was trained with 10-fold cross validation.
The classifier does not learn the exact point positions, but instead learns the
characteristics of the salient training points in terms of the histograms of their
low-level features.

To test the classifier, the histogram of low-level features of all the points of
an object are given as its input. The classifier labels each of the points of the
3D object as either salient or non-salient and provides a confidence score for its
decision. A threshold T is applied to the confidence scores for the salient points.
In our experiments, we used T = 0.95 to keep only the salient points with high
confidence scores from the classifier. Figure 4 shows results of the salient points
predicted on instances of the cat, dog and human head class. The salient points
are colored according to the classifier confidence score assigned to the point.
Non-salient points are colored in red, while salient points are colored in different
shades of blue with dark blue having the highest prediction score.

The salient point prediction model was also tested using object classes that
were not included in the training phase. Figure 5 shows the predicted salient
points on these new object classes. The results show that the salient points
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(a) (b) (c)

Fig. 4. Salient point prediction for (a) cat head class, (b) dog head class, and (c) human
head class. The three different columns of models shows the repeatability of the salient
point prediction for models of the same class. Non-salient points are colored in red,
while salient points are colored in different shades ranging from green to blue, depending
on the classifier confidence score assigned to the point. A threshold (T = 0.95) was
applied to include only salient points with high confidence score.

predicted are repeatable across objects of the same class, and across objects of
different classes.

(a) (b) (c)

Fig. 5. Salient point prediction for (a) rabbit head class, (b) horse head class, and (c)
leopard head class. Even though all three classes were not included in the training, the
training model was able to predict repeatable salient points across the classes.
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5 2D Longitude-Latitude Map Signature

Most 3D object classification methods require the use of a 3D descriptor or
signature to describe the shape and properties of the 3D objects. Our signature
is based on the salient point patterns of the 3D object mapped onto a 2D plane
via a longitude-latitude transformation.

Before mapping the salient point patterns onto the 2D plane, the salient
points are assigned a label according to the classifier confidence score assigned
to the point. The classifier confidence score range is discretized into a number of
bins. For our experiments, at confidence level 0.95 and above, we chose to dis-
cretize the confidence score range into 5 bins. Each salient point on the 3D mesh
is assigned a label based on the bin into which its confidence score falls. Figure 6
shows the discretized salient point patterns on the 3D objects of Figure 4.

(a) (b) (c)

Fig. 6. Salient point patterns on 3D objects of Figure 4. Salient points with confidence
0.95−0.96: red, 0.96−0.97:green, 0.97−0.98: blue, 0.98−0.99: dark red and 0.99−1.0:
yellow. Gray points are non-salient points.

To obtain the 2D longitude-latitude map signature for an object, we calculate
the longitude and latitude positions of all the 3D points on the object’s surface.
Given point pi(pix, piy, piz), the longitude position θi and latitude position φi of
point pi are calculated as follows:

θi = arctan(
piz

pix

) φi = arctan(
piy

√

(p2

ix + p2

iz)
)

where θi = [−π, π] and φi = [−π
2
, π

2
]

A 2D map of the longitude and latitude positions of all the points on the
object’s surface is created by binning the longitude and latitude values of the
points into a fixed number of bins. A bin is labeled with the salient point label
of the points that fall into that bin. If more than one label is mapped to a bin,
the label with the highest count is used to label the bin. Figure 7 shows the 2D
map signature for the cat head, dog head, and human head model of Figure 6.
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(a) (b) (c)

Fig. 7. 2D longitude-latitude map signatures for (a) cat head, (b) dog head, and (c)
human head from Figure 6. All three objects were registered to face forward.

6 3D Object Classification

By creating a signature for each of the 3D objects, we are able to perform
classification for all the objects in the database. Our experiments fall into two
categories: pose normalized and rotation invariant.

6.1 Pose Normalized

For the first part of the classification experiments, all objects in the database
were rotated to face forward and have the same orientation. Classification of the
3D objects in the database was performed by training a SVM classifier on the
salient point patterns of each class using the 2D longitude-latitude signature of
the objects in the class. We trained the classifier with the signatures of 25 objects
from each class for all seven classes in the database and tested the classifier
model with a new training set consisting of 50 objects per class for each of
the seven classes. The classifier achieved 100% accuracy in classifying all the
pose-normalized objects in the database.

6.2 Rotation Invariant

Since 3D objects may be encountered in the world in any orientation, rotation
invariant classification is desirable. To achieve rotation invariance for classifica-
tion, we trained the classifier with a number of rotated versions of the 2D map
longitude-latitude signature for each training object. Due to WEKA space and
memory constraints, we reduced the database from 7 classes to 3 classes for these
tests: human head, wild cat head and bear head, and selected 5 objects per class
as the base training set.

For the rotation invariance study, we ran three sets of experiments. We first
tested the classification accuracy by training a classifier with rotated versions
of the training data signatures at 45 degree increments for all three axes. This
resulted in 8 × 8 × 8 rotated signatures for each object in the database. The
classifier was tested on four new objects per class. Rotated versions of the testing
data signatures were generated using the same rotation degree increments. The
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classifier achieved 100% classification accuracy when classifying objects that were
rotated in the same increments as the training data.

In the second experiment, the classification method was tested on 15 new
testing instances per class that were rotated randomly. For example, a rotation
of (250,4,187) was one of the random rotations that did not match any of the
training rotations. The classifier was still able to achieve 100% classification
accuracy.

Our third set of experiments was to explore the degradation in the classifica-
tion accuracy by varying the training rotation angle increment when generating
the signatures for the training data. Figure 8 shows the degradation in the clas-
sification accuracy as the training angle increment increases and the number of
rotated training signature instances decreases. The graph shows that the classi-
fication accuracy steadily decreases as the number of rotated training signature
decreases. In addition, there is a big dip in the classification performance when
the training signatures are generated at 90 degree angle increments. This is be-
cause the signatures produced at 90 degree increments are not representative
of angles in between the multiples of 90 degrees. Note that the classifier is still
able to achieve 91% classification accuracy with training signatures generated at
100 degree increments with only 3 × 3 × 3 = 27 rotated training signatures per
training object, which is much better than the 8 × 8 × 8 = 512 signatures that
we started with.
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Fig. 8. Classification accuracy vs training rotation angle increment.

7 Conclusions

We have described a methodology that uses a learning approach to identify
salient points on 3D objects. The patterns of these salient points are then used
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to train a classifier for object class recognition by transforming the patterns onto
a 2D map using longitude-latitude transformation. The first set of experiment
results show that the classifier is able to achieve high accuracy when classifying
objects that are pose normalized and are of the same orientation. We extended
the approach to achieve rotation invariance by generating a number of rotated
version of each of the training object signatures and trained a classifier on these
rotated signatures to learn possible rotation combination and their respective
maps. Experimental results show that the classifier was able to achieve 100%
classification accuracy when trained on rotated signatures generated at 45 degree
angle increments and can still achieve 91% classification accuracy when trained
on rotated signatures generated at 100 degree angle increments.

We are investigating clustering the rotated training signatures to further
reduce space usage and computation time so that we will be able to include many
more models in the database. By clustering the training signatures, we will be
able to reduce the training data by using only the cluster centroids. In addition,
we are also working on finding a mapping function between two signatures. This
will eliminate the need to generate rotated version of the signatures and will
greatly improve space and computation efficiency.
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