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Abstract—Landmark-based morphometric analyses are used
by anthropologists, developmental and evolutionary biologists to
understand shape and size differences (eg. in the cranioskeleton)
between groups of specimens. The standard, labor intensive
approach is for researchers to manually place landmarks on 3D
image datasets. As landmark recognition is subject to inaccura-
cies of human perception, digitization of landmark coordinates
is typically repeated (often by more than one person) and the
mean coordinates are used. In an attempt to improve efficiency
and reproducibility between researchers, we have developed an
algorithm to locate landmarks on CT mouse hemi-mandible data.
The method is evaluated on 3D meshes of 28-day old mice, and
results compared to landmarks manually identified by experts.
Quantitative shape comparison between two inbred mouse strains
demonstrate that data obtained using our algorithm also has
enhanced statistical power when compared to data obtained by
manual landmarking.

I. INTRODUCTION

Analysis of morphological variation requires quantifying
changes in size and shape. Of these, size changes are relatively
easy to measure whereas quantifying shape variation can be
challenging, especially when differences are subtle. Geometric
morphometrics encompasses a category of analytic techniques
aimed at studying shape variation between groups or organ-
isms, differing in either phylogeny or ontogeny. Traditional
morphometric methods are based on acquiring 2- or 3- dimen-
sional representation of specimens followed by manual anno-
tation of landmarks corresponding to anatomical structures of
interest. These landmarks are then used to obtain linear mea-
surements, angular measurements, derived measurements such
as ratios between inter-landmark distances, or principal com-
ponents of differences from overall landmark configurations.
Such methods have been instrumental in studying craniofa-
cial morphology by various fields including evolutionary and
developmental biology, anthropology, pediatric orthopedics,
orthodontics and forensic sciences. Coupled with other data,
morphometrics is useful for investigating specific contributions
of genetic, epigenitic, ecological and environmental factors on
normal craniofacial growth and dysmorphology.

Advances in 3-dimensional computer-aided tomographic
image acquisition (3D CT) as well as visualization and analytic
software, coupled with enhanced GPU-based data processing,
have greatly aided morphometric techniques. Nevertheless,
manual placement of multiple points on 3D renderings or
meshes derived from CT-scans can be exceptionally labor
intensive, and require training investigators on precise identi-
fication of points. This introduces inter- and intra-investigator
variability, which can impact quantitative comparisons by
potentially obscuring subtle, yet significant biological differ-
ences between groups. Methods that reduce this variability
can vastly improve the statistical power of performed analyses
and decrease the chances of Type II errors (i.e. incorrectly
accepting the null hypothesis of no difference), without the
need to dramatically increase sample size.

In this paper, we present an algorithm-based system to
automatically detect 17 landmarks on 3D meshes of mouse
mandibles, based entirely upon mathematically defined cri-
teria. This automated method is compared to the traditional
method of manual landmarking, with obtained inter and intra-
investigator measurement variability. Traditional, Procrustes
based shape analyses are also performed to compare landmarks
from manual and automated datasets, to validate the accuracy
of our technique.

II. RELATED WORK

Automated landmarking of 3dMD datasets has been at-
tempted by a few groups [1], [2] and improved upon by using
deformable registration [3]. Nowinski et.al. [4] utilized 3D
magnetic resonance volumetric neuroimages to localize land-
marks (curvature extrema, inter-sectional and terminal) using
a semi-global segmentation and point-anchored registration
approach. Tautz et. al.[5] describe a semi-automated approach
to landmark a query image that relies on the presence of a
manually annotated training set. Limited user input is required
to first identify four landmarks, following which, the query
image is registered to the training image using a hierarchical



multi-stage patch-based approach. Each image in the training
set yields an estimated location of a landmark, from which
a final estimate is output utilizing an array-based voting
system. This method demonstrated comparable accuracy with
improved repeatability over the traditional, manual annotation
method.

III. DATA AND PREPROCESSING

Two highly inbred wildtype strains were used in this study;
C57BL/6 mice and AJ(stock #000664 and #000646; Jackson
Laboratories, ME). Littermates of each strain can be con-
sidered genetically identical and thus phenotypic variability
can be attributed to epigenetic effects and/or somatic genetic
changes. To eliminate differences due to sexual dimorphism,
only male mice were used for the analyses. The mice were
bred in a controlled environment at Seattle Children’s Research
Institute (Seattle, WA) and euthanized by CO2 inhalation at
postnatal day 28 (~1 month of age). Crania were imaged
using a Skyscan 1076 micro Computed Tomography (mi-
croCT) scanner at 35um and all data reconstructed using
consistent parameters. Because of its relatively simple shape,
the mandible has long been the focus of morphometric studies
and was chosen as a starting point to validate our methodology.
Moreover, the two halves of the mouse mandible (hemi-
mandibles) are symmetrically positioned about the midline and
are readily segmented (either in a unit or as hemi-mandibles)
from the rest of the craniofacial skeleton in CT data. Seg-
mentation was performed and a surface mesh with ~17K
points generated for each scan using Analyze 10.0 (Mayo
Clinic, Rochester, MN) utilizing the Adaptive Deformation
algorithm. Rapidform XOR (INUS Technology) was used to
mirror the left hemi-mandible surfaces to the right hemi-
mandible conformation. A total of 14 individual C57BL/6J
and 10 AJ mice were used to obtain the samples for our study.

Morphometric studies have broadly classified landmarks as
either Biological, Constructed, or Fuzzy [6], [7]. Biological
landmarks (Type-B) are based purely on anatomic features and
can be identified independent of orientation. Constructed land-
marks (Type-C) are determined by constructing a line tangent
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Fig. 1. Schematic of the medial surface of the right mandible showing
landmarks used in this study. (Note LM 14, LM 15 and LM 16 are not seen
in this view).

to other structures or bony edges and hence, are dependent on
appropriate orientation of the rendering. Several landmarks are
considered Fuzzy (Type-F), in that their definitions encompass
areas larger than a single point within the investigators range
of view. We used a total of 17 landmarks which encompass all
types of points (B, C and F) following the standard definition
as described in Table I and illustrated in a schematic shown
in Fig.1.

IV. METHODOLOGY
A. Manual Landmarking

Landmarking was performed manually on the 3D surface
mesh files using IDAV Landmark (UC Davis). Each of
the C57BL/6J hemi-mandible was manually landmarked 3
times by one investigator. The Euclidean distance between
two points that represent the same landmark at separate
instances was measured as intra-investigator error. Hence
each C57BL/6J hemi-mandible provided three such distances
which were analyzed over all the 28 hemi-mandible dataset,
to compute intra-investigator variability (precision) for each
landmark. Two additional investigators manually marked the
points for C57BL/6J dataset, for the purpose of calculating
inter-investigator variability. In this instance, the Euclidean
distance between the points that were deemed to represent
the same landmark by the three investigators represented inter-
investigator error. The dataset comprised of AJ hemi-mandible
was manually landmarked by one investigator. All investiga-
tors were trained to identify the landmarks with the standard
definitions (Table I and Fig.1) and worked independent of one
another.

B. Automated Landmarking

The automated landmarking method detects 17 landmarks
on the 3D mesh surface of mouse hemi-mandible data. The
initial orientation views the right hemi-mandible from the
medial surface (the surface naturally facing the midline of the
animal) with the incisor pointing to the left (anterior) and the
condylar process pointing superiorly to the right (posterior)

TABLE 1
DEFINITION OF LANDMARKS IDENTIFIED IN THIS STUDY CATEGORIZED
AS BIOLOGICAL (B), Fuzzy (F) AND CONSTRUCTED (C).

LM Abbr  Description Typel
1 cor Most prominent point on the tip of coronoid process B
2 sgn Deepest (anteor-inferior) point on sigmoid notch C
3 cda Most antero-superior point on condylar process F
4 cdi Most postero-inferior point on condylar process F
5 pra Deepest point on posterior border of ramus C
6 g Most prominent point on tip of angular process B
7 iap Most prominent point on inferior margin of angular process C
8 mpp Deepest point on inferior border of the ramus C
9 gn Most prominent postero-inferior point on mental process F
10 mmp  Most prominent point on middle protusion of mental process  F
11 m Most prominent antero-inferior point on mental process F
12 lit Tip of manidbular incisor B
13 lil Midpoint on alveolar ridge lingual to incisor F
14 men Deepest point on posterior margin of mental foramen B
15 mtr Masseteric tubercle F
16 urm Intersection of coronoid process and body of mandible F
17 lig Deepest point on anterior margin of lingual foramen B




as shown in Fig. 1. In this orientation, the most prominent
anterior point on the inferior surface of the mental process
points downward. Our geometric detection method is initially
used to normalize the surface meshes. This alignment aids
in detecting constructed landmarks, which require a defined
orientation for standardized recognition.

Our method requires the surface mesh of the mandible to
be normalized such that antero-posterior dimension is along
the x-axis, supero-inferior dimension is along the y-axis and
medio-lateral dimension is along the z-axis as shown in Fig.
1. This requires manual input from the user, with an accuracy
range of ~12 degrees in any direction. Since the definitions
of Biological and Fuzzy landmarks are locally defined, they
are essentially independent of image orientation. However,
constructed points are dependent entirely on orientation of
user view. The mesh is oriented by applying an affine trans-
formation to the projection matrix such that the projection of
the Euclidean distance between points LM6 and LM11 was
maximal with respect to the world view, defining orientation
around the y-axis. To define the rotation around the z-axis, the
line LM6-LM11 was made parallel to the x-axis. Finally, the
mesh was rotated around the z-axis such that the projection
of the euclidean distance between points LM6 and LM 1 was
maximal with respect to the world view.

Data bounds are calculated in the (z,y, 2) directions and
(z¢,Ye,2c) represent the coordinates for the computed center of
mesh. The surface normal vector for each point and the angle
between the two neighboring triangles on the mesh (torsion
angle) are computed. A set of sharp edge points E can be
obtained for all the points on the edges with torsion angle
greater than 25° as shown in black in Fig. 2 and is described by
equation (1) where /(x,y, 2) is the surface normal difference
angle of point (z,y, 2).

E={(z,y,2)|/(x,y,2) >25°} (1)

1) Biological Landmarks: The tip of coronoid process
(LM1), angular process (LM6) and incisor (LM12) are
considered biological landmarks. The coronoid process lies in
the postero-superior region of the mandible and the angular
process lies in the postero-inferior; hence the regions of
interest are restricted accordingly. LM 1 and LM6 project
away from the ramus (posteriorly) and have the maximum
value of surface normal vector in the z-direction. Similarly,
LM12 points superiorly and has the maximum value of the
surface normal vector in the y-direction. LM 6 and LM 12 are
defined by equations (2) and (3) respectively.

LM6: g ={(z,y,2)|argmaxz,y <y, (2,y,2) € E} (2)
x,Y,%
LM12 : lit = {(z,y, z)| argmax y, z < x., (z,y,2) € E}
T,Y,z
3)
The most prominent point on the tip of the coronoid

process (L M1) can be detected in the same way as LM6, by
restricting the region of interest to y > 1.5y, along the y-axis.

In the same orientation plane, the deepest point on the anterior
margin of the lingual foramen (LM17) and the deepest point
on the posterior margin of the mental foramen (LM 14) are
identified as the points on the ridge surface [8] from the edge
candidate point set F in the appropriate restricted regions of
interest. LM 3 and LM 14 are shown in Fig. 2 as identified by
our method.

2) Fuzzy Landmarks: To locate the two points on the
condylar surface, the region of interest is restricted as © > X,y
along the x-axis and y > y. along the y-axis. Among the
candidate points with the sharp edges on the articular surface
of the condyle, the point with the largest y value is selected
as the most antero-superior point on the condylar process
(LM 3) and the most posterior point with the minimum ¥ value
is idenfied as (LM4). The fuzzy landmarks identified using
equations (4) and (5) and an example for LM 3 are shown in
Fig. 2.

LM3: cda = {(z,y, z)| arg max y, £ > Zeor,

T,Y,z

Y >ye (x,y,2) € B} (4)

LMA4 : cdi = {(z,y, z)| argminy, © > Tcor,

T,Y,z
Y >ye, (v,y,2) € E} (5)

Three points on the mental process are identified by clipping
the region of interest as x < x. along the x-axis and y < y.
along the y-axis.The deepest point with the minimum value in
the y direction in each cluster is selected as the most prominent
postero-inferior point (LM9), the most prominent point on
middle prominence (LM10) and the most prominent antero-
inferior point (LM 11), respectively, moving postero-anteriorly
on the medial surface of mandible.

To find the midpoint on alveolar ridge lingual to incisor
(LM13), the region is restricted to 1.2x;; < x < x,, along
the x-axis, and the landmark is identified as the furthest
posterior point to the incisor when viewed superiorly having
the maximum curvature on the ridge surface in the y direction
(upwards).

The peak of the curvature from the candidate edge point
set E/ between the region of interest (LM 14) and (LM16)
along the x-axis is identified as the masseteric tubercle given
by equation (6) such that H < 0 & K > 0, where H is the
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Fig. 2. Automated detection of Type-B (LM1, LM14), Type-C (LM2),

and Type-F (LM3, LM13, LM15 and LM16) landmarks (red) selected from
identified candidate edge points (green).



Mean curvature and K is the Gaussian curvature [8].

LM15 : mitr = {(z,y, z)| arg min z, Tmen < T < Turm,

T,Y,z

(z,y,2) € E} (6)

Following a similar geometric approach, the intersection
of the coronoid process and body of mandible is marked as
(LM 16) by finding the minimum curvature point in the region
T > T along the z-axis and y > y. along the y-axis.

3) Constructed Landmarks: To find the deepest point on
the sigmoid notch (LM 2), the region is restricted as & < Zcqq
along the x-axis and y > y.q; along the y-axis, and the point
with the minimum value in the y-direction is chosen as (LM ?2).
For the landmark on the posterior border of the ramus, the
region * > x4, along the z-axis and y < y.q; along the y-
axis is extracted and the minimum value in the z-direction is
selected as the deepest (anterior) point on the posterior border
of the ramus (LM5). These are defined by equations (7) and
(8). An example of constructed LM?2 is shown in Fig. 2.

LM2: sgn = {(z,y,2)|argminy, z < Tcda,

z,Y,z

y>ycdl7('rﬂy7z) EE} (7)

LMS5 : pra = {(z,y, z)|argminy, z > zgn,

x,Y,z

) < Yediy (367?/7 Z) € E} (8)

The most prominent point on the middle protrusion of the
angular process (LMT7) is chosen from the candidate points
for which the y has the minimum value in the region v < xs4n,
and y > Y. Similarly, the point having the maximum value
in the y direction in the region from = > x4, and ¥y < Y,y is
the deepest point on the inferior border of the ramus (LA 10).
Both points are selected from the sharp edge point set £ and
are computed as shown in equations (9) and (10).
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Fig. 3. Representative mandible mesh with 17 automated landmarks (red).

LMT7 :iap = {(z,y,2)| argminy, x < ZTsgn,

z,Y,2

y>ypm,(m,y,z) GE} (9)
LM10 : mpp = {(z,y, 2)| argmax y, z > xgn,

z,Y,2

Y < Yiap, (xvyvz) € E} (10

V. RESULTS AND DISCUSSION

Precision of landmark identification is a measure of repeata-
bility, i.e. the degree to which the landmark is identified at
the same place multiple times; while accuracy reflects the
truth of the outcome, i.e. whether the landmark is at the
correct position. Random human errors are introduced during
manual annotation, which results in variability of landmark
identification, affecting both precision and accuracy (intra-
and inter observer variability respectively). In our study, the
overall median intra-investigator variability was ~0.05 mm,
with the greatest error being 0.61 mm (Q1=0.03 mm, Q3=0.09
mm). As expected, the median inter-investigator variability
was larger, ~0.09 mm, with the greatest error measured at 0.85
mm (Q1=0.04 mm, Q3=0.21 mm). These values are similar to
those obtain by Tautz et.al. [S] who assessed errors in manual
annotation of consomic Mus musculus mandibles.

Fig.3 is a representative output from our algorithm-based
landmark identification, which shows that all points closely
match their description and adhere to the definitions (Fig.1,
Table I). Our algorithm returns the same output between trials,
when repeated on the same specimen and hence shows no
variation (and infinite precision). Lacking a gold-standard (i.e.
error-free set of landmarks), we used manual landmarks to
assess accuracy of our algorithm. Landmark positions from the
first investigator were considered the reference set and errors
obtained by our automated method and by another investigator
(manual) to this set, were compared. Table II shows these
median errors with the first and the third quartiles for each

TABLE II
MEDIAN ERRORS WITH Q1 AND Q3 FOR MANUAL AND AUTOMATED
METHODS COMPARED TO THE REFERENCE LANDMARK SET

LM | Manual - Ref (mm) Automated - Ref (mm) Type
# Median QI Q3 Median QI Q3

1 0.023  0.013  0.037 0.030  0.019  0.045 B
2 0.138  0.050  0.235 0.233  0.108  0.251 C
3 0.110  0.082  0.227 0.176  0.116 0394 | F
4 0.387 0275  0.527 0.101 0.064  0.135 F
5 0.066  0.045 0.126 | 0.077 0.065 0.112 | C
6 0.034 0.022 0.056 | 0.028 0.013 0.043 B
7 0374 0292 0477 0.064 0053 0132 | C
8 0.441 0.368  0.526 | 0.214 0.119  0.277 C
9 0.056 0.034  0.079 0.114  0.058 0.179 | F
10 0.085  0.041 0.129 0.197  0.158  0.297 F
11 0.043  0.023 0.060 | 0.099 0.053 0.152 | F
12 0.123  0.069 0.206 | 0.163 0.106 0.196 | B
13 0.051 0.031 0.071 0.121 0.072  0.148 F
14 0.072  0.053  0.092 | 0.121 0.078 0.150 | B
15 0.358  0.230  0.599 0359 0290 049 | F
16 0.084 0.042 0.102 | 0.105 0.072  0.127 F
17 0.049  0.027  0.101 0.049  0.037  0.083 B




Fig. 4. Superimposition of Procrustes mean coordinates from manual (blue)
and automated (red) landmarks obtained from C57BL6/J mandibles (Top).
Representative mandible mesh annotated with LM 2 identified by the algo-
rithm (red) and three investigators (blue, Bottom).

landmark. A similar distribution of errors was found with
no statistically significant difference between groups [Mann-
Whitney U=104384.5, Up=101250, U0c=3899.28, Z=0.804,
P(one-tailed)=0.421]. We also performed a Procrustes fit of
landmarks in each set (i.e. reference, manual and automated)
following which co-variance matrices were derived and com-
pared using Morpho J [9]. The co-relation between the co-
variance matrices of the manual and reference set was 0.670
while that between the automated and reference set was 0.653
(p-values < 0.0001), suggesting an equivalent degree of shape
similarity between the three sets of landmarks. It should be
noted that our reliance on manual landmarks to estimate
accuracy of the automated method reflects the baseline errors
inherent to the manual method. Hence, greater accuracy of
the automated method cannot be demonstrated, however, there
is clear indication that it is not less accurate than manual
annotation.

By definition, landmarks are anatomically relevant points
that can be reproducibly recognized. Humans rely on per-
ception and interpretation of anatomic features to aid in this
recognition, which as demonstrated, is prone to error. In
comparison, the accuracy of the automated method is inherent
to the definitions used to construct the algorithm and the
mathematical parameters imposed upon landmark selection
criteria. A wireframe diagram of the Procrustes mean shape
(Fig.4, top) of the reference (blue) and automated (red) sets
superimposed at the centroids, shows that most landmarks are
very close, with some differences in identification of Type-C
landmarks (LM ?2) and Type-F (LM 3 and LM 16) landmarks.
This is not surprising, since the largest errors in the manual

Fig. 5. Shape differences between mandibles from AJ and C57BL/6 strains.
Procrustes superimposition of mean coordinates from manual annotation of
C57BL/6 (blue) and AJ (green) mandibles (Top), and automated annotation
of C57BL/6 (red) and AJ (black) mandibles (Bottom).

method are found in Type-C and Type-F landmarks (Table
I), in line with earlier reports [7]. Fig.4 (bottom) shows
a representative mandible mesh annotated with the Type-C
landmark LM 2 identified by three investigators (blue) as well
as our algorithm (red). As can be seen, the location chosen
by the algorithm fits the description in Table I closely, while
each investigator has some error. Such errors highlight the
subjective nature of the manual method, validating the need
for an automated method.

Our initial, manually landmarked data also contained a few
extreme outliers resulting from swapping of landmarks by one
investigator. Another such commonly found systematic error
in symmetrical datasets (such as whole skull) is transposition
of points across the plane of symmetry. Since these do not
constitute random errors, they are not commonly reported in
studies (and were not included here), yet they are invariably
encountered and can cost investigators significant time and
effort to identify and rectify. Such errors are also eliminated
if the annotation process is automated.

We also compared the Procrustes mean shapes of mandibles
of mice belonging to the C57BL/6 and AJ strains (age and
sex matched). The inferred shape differences between these
mandibles when analyzed using manual landmark coordinates
(Fig.5, top) are similar to using automated landmarks (Fig.5,
bottom), i.e., a larger angular process with flattening of the
mental process in the AJ mandibles. Discriminate function
analysis performed using Procrustes mean coordinates for each
strain mis-classifies ~12% mandibles into incorrect groups
upon cross-validation, if manually obtained landmarks are
used. In contrast, using automated landmarks resulted in the



correct allocation of all mandibles to the appropriate groups
upon cross validation, suggesting reduced variability in the
data. Additionally, we performed Euclidean Distance Matrix
Analysis (EDMA), on the automated and manually obtained
landmark sets for the two strains. This analysis computes
ratios of all corresponding interlandmark distances in the
groups being analyzed, from which shape differences between
groups can be localized to anatomical sub-regions. Statistically
significant differences in scale and shape between the AJ
and C57BL/6 mandibles were identified by both the manual
and automated methods. However, the data obtained from the
automated method returns a higher number of statistically
different ratios compared to the manually annotated sets (data
not shown), presumably due to reduction in random errors
encountered during manual annotation. Together, these data
demonstrate that commonly used shape analyses methods
provide statistically superior results when utilizing data from
the automated method. This can enhance the power of ge-
ometric morphometric studies aimed at analyzing biological
variability due to genetic/epigenetic/environmental influences
on growth. Furthermore, it has the potential to decrease sample
sizes, hence reducing cost associated with sample acquisition.
Finally, our automated method has the additional benefit of
significantly reducing the labor involved in landmark collec-
tion.

Our algorithm can handle moderate anatomical variations,
which are typical and expected in studies investigating mor-
phological differences within a species, or closely related
species. For example, all landmarks were successfully iden-
tified on a mandible of Acomys cahirinus, which belongs to
the same family as the Mwus musculus (data not shown).
If application to different species or anatomical regions of
interest is desired, algorithms would need to be modified
or new ones would have to be developed. In contrast, the
recently described semi-automated approach [5] can be applied
to any 3D structure. However, this method requires the prior
creation of a manually annotated training set from which
landmark locations on query images are estimated. Hence,
their output incorporates the inherent variability in the training
set, while our method has no variability (since it follows
strict mathematical criteria) except that which occurs naturally
(biological variation).

A major limitation of landmark-based geometric morpho-
metrics is the inability to capture or describe shape changes
between chosen points. In part, this can be overcome by
using semi-landmarks, which represent equally spaced surface
points between two established landmarks. Semi-landmarks
are typically generated after initial landmark placement and
therefore, inherit the variability associated with manual land-
marking. Automated landmarking can eliminate this variability
and hence improve the efficiency of semi-landmark-based
techniques.

VI. CONCLUSION

The automated landmark detection algorithm presented in
this study offers an efficient and arguably superior alternative

to the manual method used currently to identify landmarks for
geometric morphometric analyses. Our ultimate goal is to es-
tablish efficient, versatile and standardized tools for detection
of craniofacial landmarks and streamlining downstream analyt-
ical applications. Currently, our method requires minimal user
input to orient the mandibles in a rough initial configuration;
however this process will be facilitated by providing a quick,
template based graphical interface in the final application.
Additionally, the algorithms presented here will be extended to
locate additional landmarks on the mandible as well as other
bones of the craniofacial skeleton. Our lab is also working
to develop deformable registration based methods to analyze
overall shape differences independent of coordinate data. This
method relies on initial registration on few established, user-
defined landmarks. Applying the methods described here for
landmark identification will aid in initial registration, com-
pletely automating this process [10].
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