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ABSTRACT

Given a set of labeled 3D meshes acquired from stereo imag-
ing of heads, the goal of this research is to develop a success-
ful methodology for discriminating between 22q11.2 Dele-
tion Syndrome affected individuals and the general popula-
tion and for quantifying the degree of dysmorphology of fa-
cial features. Although many approaches for such discrimi-
nation exist in the medical and computer vision literature, the
goal is to develop methods that focus on shape-based mor-
phological differences of facial features.

Index Terms— biomedical image processing, biomedical
measurements, medical expert systems, medical information
systems

1. INTRODUCTION

22q11.2 deletion syndrome (22q11.2DS) is a common ge-
netic condition with an estimated prevalence between 1:2000
and 1:6000 live births in the United States [1]. It is associ-
ated with more than 180 clinical features, including over 25
dysmorphic craniofacial features. No single feature occurs
in every individual with 22q11.2DS, and there are no indi-
viduals who have most or all of the clinical features. Ad-
ditionally, the expression of a specific feature may be quite
varied. For example, palatal anomalies can range from an ob-
vious cleft palate to dysfunction of the palatal muscles in a
normal-appearing palate [2]. Finally, while many individuals
with 22q11.2DS have a characteristic facial appearance, even
experts have difficulty in diagnosing 22q11.2DS from frontal
facial photographs alone [3].

Quantification of the facial dysmorphology observed in
22q11.2DS provides an objective way of characterizing subtle
anomalies. Demonstration of an association between specific
facial features and genetic variants will allow for better un-
derstanding of the etiology of craniofacial malformations and
pathogenesis of 22q11.2DS, provide insight into the genetic
contribution to typical craniofacial development, and facili-
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tate discovery of an association between facial features and
other physical anomalies (such as cardiac defects).

In this paper we describe a new methodology for quanti-
fying the phenotypic variations associated with 22q11.2DS.
Our method takes a 3D surface image of a head, and ap-
plies noise cleaning and pose normalization and then extracts
three different representations of the 3D data: 3D snapshots,
2.5D depth images, and curved lines. Classification is per-
formed on feature vectors comprised of the principal com-
ponents analysis (PCA) coefficients of these representations.
This paper describes our methodology and the classification
experiments we have run.

2. RELATED WORK

Traditionally, the clinical approach to identify and study an
individual with facial dysmorphism has been through physical
examination combined with craniofacial anthropometric mea-
surements [4]. These measurements are based on anatomic
landmarks, which are located by visual inspection and/or pal-
pation of the underlying skull.

Newer methods of craniofacial assessment involve using
data from computerized tomography, magnetic resonance
imagining, ultrasound studies, and stereoscopic imaging [5].
As the information in these data types is often hand mea-
sured, or at least hand-labeled, human effort in the use of
these newer systems remains significant.

With respect to 22q11.2DS, craniofacial anthropomet-
ric measurements prevail as the standard manual assesment
method. Automated methods for 22q11.2DS analysis are
limited to just two. Boehringer et al. [6] applied a Gabor
wavelet transformation to 2D photographs of individuals with
ten different facial dysmorphic syndromes. The generated
data sets were then transformed using principal component
analysis (PCA) and classified using linear discriminant anal-
ysis (LDA), support vector machines (SVM), and k-nearest
neighbors. The best prediction accuracy for 22q11.2DS was
found to be 96% using LDA, dropping to 77% when using a
completely automated system.

The second automated method is the Dense Surface
Model (DSM) approach [7], which aligns training samples
according to point correspondences and is thus able to pro-
duce an “average” face for each population being studied.



(a) 3D snapshot (b) 2.5D depth image (c) curved line

Fig. 1: Three data representations used in our experiments.

Once the average is computed, PCA is used to represent
each face by a vector of coefficients. Multiple classifiers
were tested, and the best sensitivity and specificity results
for 22q11.2DS (0.83 and 0.92, respectively) were obtained
using support vector machines [8]. Studying discrimination
abilities of local features (face, eyes, nose, mouth) achieved
a correct 22q11.2DS classification rate of 89% [9]. Neither
Boehringer’s method or the Dense Surface Models methods
are fully automatic; both require manual landmark placement.

3. METHOD

The 3D data used in our study was collected by the Cran-
iofacial Center of Seattle Children’s Hospital (SCH) using
the 3dMDcranialTMimaging system. All participants had a
laboratory-confirmed 22q11.2 deletion. The SCH Institu-
tional Review Board approved study procedures. The demo-
graphics of the study participants were age 0.8 - 39 (median
4.75) years, 51% female. Due to human subjects require-
ments, the data used in this research are 3D meshes without
facial texture maps. An automated system to align the pose
of each mesh was developed, using symmetry to align the
yaw and roll angles and a height differential to align the pitch
angle.

Symmetry between the left and right sides of face was
used to determine the most central position of the face, with a
misalignment error of 1%. Although faces are not truly sym-
metrical, the pose alignment procedure can be cast as finding
the angular rotations of yaw and roll that minimized the differ-
ence between the left and right side of the face. The original
3D double precision mesh was interpolated to a 2.5D ordered
grid. The resulting image was divided down the middle pro-
ducing a left true image and a right mirrored image. These
images were then overlaid and the difference was calculated
by

Diff =

heightX
y=0

width/2X
x=0

|Imagex,y − Imagewidth−x−1,y | (1)

Table 1: Line positions. Position (125,150) is the location of
the nose tip in each individual.

Line type # lines Line coordinates
Vertical 1 125 (middle of width)
Vertical 3 75, 125, 175
Vertical 5 75, 100, 125, 150, 175
Vertical 7 50, 75, 100, 125, 150, 175, 200

Horizontal 1 150 (below middle of height)
Horizontal 3 100, 150, 200
Horizontal 5 100, 125, 150, 175, 200
Horizontal 7 75, 100, 125, 150, 175, 200, 225

The pitch of the head was aligned by minimizing the dif-
ference between the height of the chin and the height of the
forehead. Note that if the rotation angle for pitch is set too
wide, the top of the head can be selected as the optimal so-
lution causing misalignment in 15% of the cases. One it-
eration of alignment for yaw/roll and pitch will not always
yield a final alignment. This is solved by a second iteration
of both yaw/roll and pitch alignment, with a much smaller
search space; often 5◦ is sufficient.

3.1. Data Representation

Three representations (Fig. 1) were chosen: (1) frontal snap-
shots of the 3D meshes, (2) 2.5D depth images, and (3) 1D
curved line segments. Snapshots of the 3D images were used
as a starting point, while 2.5D depth images were used to re-
tain the 3D aspect of the original mesh. Lastly, curved line
segments obtained from the depth images were used to deter-
mine if there was any affected signal in the subsampled face
data. For each individual, in all three data types, the informa-
tion was normalized to the same height and width, and image
size was set to 250x380 pixels.

The motivation for using 3D snapshots came from the
eigenfaces [10] approach in computer vision. After neutral
pose alignment, a set of frontal photographs of the 3D meshes
was generated (Fig. 1a) using the visualization library VTK
[11].

2.5D images are represented as pixels (Fig. 1b), where the
original mesh data is rasterized to an integer-precision struc-
tured grid with the highest Z-value (the tip of the nose) placed
at high illumination. The final width and height of each face is
given by the X and Y axes, with final depth of the face given
by Z. In order to properly scale in the Z direction, all of the
data was hand clipped at the ears. For the X axis normaliza-
tion, the face of each individual was scaled to be exactly 200
units wide; the Y axis information was unchanged.

Using the 2.5D images, curved lines can be extracted that
may turn out to be descriptive of faces. For example, a vertical
line down the middle of the face (Fig. 1c) becomes a wave-



Table 2: Choosing an appropriate data set. All data used is in
3D snapshot with ear cutoff threshold format classified using
Naive Bayes.

Data Set ALL A106 AS106 W86 WR86
F-measure 0.53 0.65 0.66 0.68 0.60
Precision 0.56 0.74 0.78 ◦ 0.82 ◦ 0.71
Recall 0.52 0.60 0.61 0.62 0.56
Accuracy 0.75 0.69 0.71 0.74 0.66
◦, • statistically significant improvement or degradation

form (depth as a function of height) that can be analyzed. As
seen in Table 1, four versions for both vertical and horizontal
lines were selected for signal testing. Odd numbers of lines
were used to maintain symmetry in the data. Finally, a com-
bination of the horizontal and vertical lines was used to create
grids of sizes 1x1, 3x3, 5x5, and 7x7.

4. EXPERIMENTS AND RESULTS

Each of the three data representations was transformed using
Principal Components Analysis (PCA), which converted its
original representation into a feature vector comprised of the
coefficients of the principal component vectors. Since there
were 189 individuals in our full data set, this allowed for a
maximum 189 attribute representation for the entire data set.
The attributes were assessed as to their ability to distinguish
between affected and control individuals. The WEKA suite
of classifiers [12] was used for all classification experiments.
10-fold cross validation was used for all classifiers and each
training/testing set was executed ten times, for a result of 100
runs per data set per classifier.

4.1. Data Set Selection

Although testing on a balanced set is common practice in data
mining, our data set only included a small number of affected
individuals. The full data set included 189 individuals (53
affected, 136 control). Set A106 matched each of the 53 af-
fected individuals to a control individual of closest age. Set
AS106 matched each of the 53 affected individuals to a con-
trol individual of same sex and closest age. Set W86 matched
a subset of 43 affected self-identified white individuals to a
control individual of same ethnicity, sex and closest age. Set
WR86 matched the same 43 affected white individuals to a
control individual of same ethnicity, sex and age, allowing
repeats of controls where same-aged subjects were lacking.

The W86 dataset was chosen as the most appropriate to
this work for the following reasons (Table 2). The racial
and ethnic background influences the morphology of the face
much more significantly than the effects of 22q11.2DS, caus-
ing a source of noise for the ethnically mixed sets (A106 and

Table 3: Attribute selection of PCA vectors for data separa-
tion for sex, age and affected. Each attribute is named after
it’s eigenvalue rank, i.e. 5 is the 5th eigenvector.

Data # top 5 next 5
separation attributes PCs PCs

sex 64 1, 7, 8, 9, 10 11, 12, 14, 15, 16
age 47 2, 3, 5, 6, 9 13, 18, 20, 22, 23

affected 11 1, 5, 8, 15, 25 63, 66, 73, 75, 81

Table 4: Checking for data loss between data representations.
All data shown here is from the W86 dataset classified using
Naive Bayes. Standard deviations shown.

Data Set 3Dsnap 3Dsnap 2.5D
cut

F-measure 0.71±0.18 0.68±0.20 0.72±0.20
Precision 0.88±0.18 0.82±0.20 0.80±0.20
Recall 0.63±0.22 0.62±0.24 0.69±0.22
Accuracy 0.76±0.14 0.74±0.13 0.76±0.16

AS106). The performance of WR86 as compared to W86 is
adversely influenced by the repetition of five control individ-
uals (12% of the control dataset).

4.2. Attribute Selection

Since 22q11.2DS is associated with a subtle facial appearance
and the data is varied in age and sex, the simple solution of ex-
amining only the top 10 principle components fails. This can
be illustrated by using WEKA’s Select Attributes capability to
find the attributes which best predict age, sex and affected in
data set W86. Attributes used to best predict affected span the
entire principle component list (Table 3).

4.3. Classifier Selection

Using the WEKA package, the performance of several classi-
fiers was compared. The classifiers used were: Naive Bayes,
decision trees, nearest neighbor classifier, neural networks,
and support vector machines. The analysis of the results
yielded Naive Bayes, one of the simplest classifiers, out-
performing all other classifiers. Although surprising, such
performance can be explained by the small size of the data set
and the large number of descriptors for each individual [13].

4.4. Original 3D Snapshot versus 2.5D

For the human viewer, the 3D snapshot holds much more in-
formation than the 2.5D depth image. Additionally, since ears



Table 5: Classification of vertical curved lines using Naive
Bayes on the W86 data set compared to 2.5D depth image.

2.5D 1 line 3 lines 5 lines 7 lines
F-measure 0.72 0.71 0.76 0.78 0.67
Precision 0.80 0.81 0.88 0.88 0.79
Recall 0.69 0.68 0.70 0.73 0.62
Accuracy 0.76 0.75 0.80 0.82 0.72

are known as a signal carrier for 22q11.2DS and 2.5D does
not include ears, it necessary to check if data loss is present.

The accuracy of the results ranged from 74% to 76%, and
there were no statistically significant differences between the
performance of the three data representations (Table 4). When
the ear data is absent (3Dsnap cut), there is a slight decline
in both precision and recall which would follow the intuition
that ear data is important in assessing 22q11.2DS. Examining
the trend 3Dsnap→ 3Dsnap cut→ 2.5D, precision decreases
while recall increases, implying that classification of affected
individuals has improved.

4.5. Curved Lines

The purpose of this subanalysis was to discover if subsets
of the data, such as curved lines, contain 22q11.2DS signal.
The 3 and 5 vertical curved line representations performed
the best, outperforming the more detailed 2.5D depth image
(Table 5). Generally, horizontal lines performed poorly. Grid
lines of 3x3 and 5x5 showed insignificant improvement over
2.5D, but with F-measure and recall both degrading as com-
pared to vertical line performance, it is likely that the hori-
zontal line aspect is introducing noise.

5. CONCLUSIONS

This paper has discussed a new methodology for quantifying
3D face data for research in 22q11.2DS. Two methods were
designed to normalize the pose of each 3D head as part of
image preprocessing. Three separate data types were cho-
sen to represent information for each 3D head. The data set
was examined for aspects of age, sex and race, data set con-
sistency, and the quality of information gathered from each
of the three data types selected. The 2.5D depth image was
found to be a suitable representation, although 3 and 5 ver-
tical curved lines outperformed it in classification. Based on
known 22q11.2DS signals such as a hooded appearance of
the eyes, prominent forehead profile, relatively flat midface
or general hypotonic facial appearance, there is promise in
using sparse vertical lines to describe one or more of these
anthropometric features.

Although the focus of this work is on individuals with
22q11.2DS, the methods developed for the 22q11.2DS phe-

notype should be widely applicable to the shape-based quan-
tification of other conditions associated with craniofacial dys-
morphology.
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