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ABSTRACT 

Content-based image retrieval has been applied to many different biomedical applications1. In almost all cases, retrievals 
involve a single query image of a particular modality and retrieved images are from this same modality.  For example, 
one system may retrieve color images from eye exams, while another retrieves fMRI images of the brain. Yet real 
patients often have had tests from multiple different modalities, and retrievals based on more than one modality could 
provide information that single modality searches fail to see. In this paper, we show medical image retrieval for two 
different single modalities and propose a model for multimodal fusion that will lead to improved capabilities for 
physicians and biomedical researchers. We describe a graphical user interface for multimodal retrieval that is being 
tested by real biomedical researchers in several different fields. 
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1. INTRODUCTION 
The term CBIR (content-based image retrieval) designates the retrieval of images based on their visual similarity to a 
user-supplied query image or to a set of user-specified image features. CBIR has been, and can be widely used in many 
areas, such as photograph archives, medical diagnosis, the military, retail catalogs, and remote sensing systems. 
Common methods for extracting content from images usually make use of color, texture and shape features. There are 
many CBIR systems that have been developed for use in industry, such as the IBM QBIC system7, or in research labs, 
such as VisualSeek8and Photobook9.  
CBIR is also useful in medical applications, where it can be used for teaching, research, or as a diagnostic aid. There are 
a large number of projects on developing CBIR systems for medical research, using melanoma images, pathology slides, 
CT images and other venues. Our previously-developed systems3 aid biologists and doctors in biomedical research by 
retrieving similar eye images, similar skull images, or similar fMRI exams. This kind of system may even help doctors 
with diagnosis in the future. This can lead to new knowledge and eventually better medical techniques. 

Patients at today’s medical centers encounter a variety of imaging modalities, as more and more tests are accomplished 
through digital imaging. At various times in life and spanning various different medical problems or just routine 
examinations, a patient may accumulate many different types of images. For example, our research group has worked 
with slit-lens images of subjects’ eyes, 3D meshes from CT scans of children’s skulls, 3D meshes from 6-camera stereo 
of children’s heads, 3D fMRI activation images and 4D raw fMRI images of the human brain, and 3D head and neck 
images of cancer patients.  For each of these applications, each with its own modality, we have developed distance 
measures that allow a given patient’s image data to be compared to a database of image data of the same type from other 
patients in order to retrieve similar ones.  Our retrieval systems can then use these similarity measures plus simple hard 
constraints, such as “EYE=LEFT” to retrieve patients with similar images.  Such systems can be used to help with 
diagnosis, to look at the effects of treatments, or to fuel research studies that hope to correlate either genetic factors or 
outcomes with the appearance of the phenotype. Figure 1 shows a user interface from a (mouse) eye retrieval system that 
we built for researchers at the UW Eye Lab who study the lens of the eye and are looking at how genetic variation affects 
the development of cataracts. It includes four distance measures related to three different types of features: 1) the ring 
pattern, 2) the intensity profile of a horizontal line through the center, and 3) the histogram of the western quadrant2.  
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Fig. 1. The graphical user interface for the mouse eye retrieval system. The user has selected a query image, no constraints, a 
linear combination of the distance measures, and the attributes to be returned. 

 

In this web-based interface, the user selects an eye image, sets constraints as desired for which eye (left or right) and the 
allowable genetic strains (classes) of mice to be retrieved (SPARC (Secreted Protein Acidic and Rich in Cysteine 
Knockout), SC1 (Synaptic Cleft Knockout), and WT (Wild Type)), sets weights from 0 to 100 on each of the four 
distance measures, chooses a method for combining the selected distance measures, and checks the attributes (including 
images) that should be returned.  The methods available for combining the distance measures are 1) weighted linear 
combinations, 2) weighted minimum, 3) weighted maximum, and 4) concatenation of all (46) attributes of the four 
distance measures into a single vector with Euclidean distance. In Figure 1, the user has selected an image, chosen no 
constraints, selected the lower bound combination of the four distance measures, and asked for the attributes ImageID, 
Class, Mouse Number, Image Filename, Left/Right Eye, Image, and Distance to be returned. Figure 2a shows the first 
five results for this query, while Figure 2b shows results of a query to a similarly-structured skull retrieval system. 

 

              
Fig. 2. a) Results of the mouse eye query of Figure 1. b) Results of a skull retrieval query showing 3 planes of skull CT scans. 



 

 

The mouse eye retrieval system and the skull retrieval system have a simple design similar to the designs of most 
content-based image retrieval systems in the literature, but they are unusual in that they combine similarity-based 
retrieval with traditional database retrieval in a single system3.  They allow multiple distance measures, but they are 
limited to single modalities and to a small number of fixed hard constraints.   

Given that real patients will have images of their eyes, skulls, brains, and other anatomical entities, a more general 
retrieval system that can handle multiple types of images and retrieve patients based on similarity over multiple 
modalities is needed.  For this purpose, we have built a prototype multimedia information retrieval system. In this paper 
we will describe the design of the system, justify the design choices, and give examples of anticipated use. 

 

2. SYSTEM FRAMEWORK 
A new patient comes to the hospital with a complaint that must be diagnosed. He/she is given several exams involving 
images, such as CT, MRI, fMRI, PET or ultrasound. For each modality, the patient may have more than one exam, at 
different times. The doctor or medical researcher would like to retrieve from the patient database those former patients 
that have similar exam results to the new patient, and use their information as a reference to help analyze or study the 
condition of the new patient. 

For this scenario, we need a multi-modality system, which can measure the similarity between two patients considering 
all their exam images. The system needs to be able to measure similarity of multiple images pairs, multiple exams, and 
multiple modalities.  We have developed a multi-modality system that can implement such retrieval tasks. Our system 
stores in its database all exam data of existing patients. Each time a new query comes in with a set of exam images, it 
automatically measures the similarity of these images to images in the database, and combines the similarity values at 
multiple levels. It determines the similarity of the query patient to all patients in the database, ranks them and outputs the 
results. 

            
        Fig. 3. Structure of the system 

Figure 3 is a diagram showing the framework of the system. As is shown in the diagram, the multi-modality system has 
four levels: combining image feature similarity into image similarity; combining image similarity into exam similarity; 
combining exam similarity into modality similarity; and combining modality similarity into patient similarity.  

At the bottom level, features of the exam image are extracted, and feature similarity between two exam images (coming 
from two patients) is measured respectively using the different features. Then, this module combines the feature 
similarity of the two images into one combined image similarity value. At the next level, with image similarity values 
calculated, similarity of two exams (each consisting of several exam images) is measured by combining the similarity 
values of each image pair from these two exams. Then at the next level, the system measures similarity of the same 



 

 

modality of two patients. This modality similarity is calculated by combining similarity values of all exam pairs coming 
from the same modality of two patients. Last, at the highest level, the similarity of two patients is computed by 
combining the similarity values of all their modalities, which is calculated in the last level. 

 

3. DATA STORAGE 
Our test databases are implemented using the Postgres database system10. The database consists of two parts. The first 
part is a relational database with relations for patient information, such as age and gender, and for each of the different 
imaging studies that can be performed. Figure 4 shows a sample of the relational schemas that such a system might 
contain. Images are kept outside the database system and are referenced through their file names, which are stored in the 
relations. The Skull_Exam relation contains file names for both a full CT image of the skull and three 2D slices that were 
extracted at medically-defined planes and are used by some of our distance measures. 

  Fig. 4. Sample relational schemas for the multimodality system. 

The second part includes feature values for all exam images of the existing patients, which is pre-computed and imported 
into the system before a retrieval task is run. Figure 5 shows a sample of the data file storing feature values for the 
existing exam image. 

 

 

 

 

 

 

 

 

 

  Fig. 5. Sample image feature schemas for the multimodality system. 

  

Path to File Image 

R or L  Side 

date Exam_dat

Ref to patient Patient_id 

Unique identifier Exam_id 

M or F   Gender 

Integer years Age 

Pseudonym  Name 

Unique 
identifier 

Patient_id 

Path to File M_plane 

Path to File F_plane 

Path to File A_plane 

Path to file Image 

CT/MRI Modality 

date Exam_date 

Ref to patient Patient_id 

Unique 
identifier 

Exam_id 

Patient 

Numeric vector LeSquare 

Numeric vector Histogram 

Numeric vector Intensity 

Numeric vector Ring 

Unique identifier Image_id 

Skull_Exam Eye_Exam 



 

 

 

4. SIMILARITY MEASURES 
4.1 Image distance measures 

In previous work, Yuen et al. 2 proposed four vector-valued features for comparison of eye images: ring description, 
intensity profile, histogram of western quadrant of the lens, and segmented least squares fit to the intensity profile. The 
features were used to discriminate between the different known genotypes of mice whose lenses were being studied. Lin 
et al.6 developed features for comparing the shape similarity of skull images. The features were scaphocephaly severity 
indices, polar representation, cranial spectrum, and symbolic shape descriptors. Details are given in the referenced 

papers. These and other biomedical image distance measures motivated our current work and are used to illustrate our 
multimodality retrieval system. 

4.2 The probabilistic method 

Similarity measures in our work are calculated under a probabilistic framework. Results from distance measures are 
converted to similarity values, producing numbers between 0 and 1 that can be thought of as probabilities.  The system 
(at any level) is given n probabilities and n associated weights.  At the single instance level, the probabilities come from 
the values assigned by the different distance measures.  At the multiple instance level, the probabilities come from 
different examinations with the same modality. At the multiple modality level, the probabilities come from the different 
data modalities.   

A straightforward approach to combining two or more probabilities (coming from similarity values) at a lower level into 
one probability value at a higher level, is the following probabilistic rule:  

C(p1,..., pk) = 1 - ∏i=1…k (1- pi) 

in which p1,..., pk are similarity values from the lower level, and C(p1,..., pk) is the combined similarity value. However, 
this general rule to calculate the combined similarity value does not allow the user to specify weights on the probabilities 
being combined as is common in CBIR systems for computer vision applications. Thus, we included additional factors in 
order to account for the weights. 

4.3 Fagin’s algorithm 

A scoring rule is an assignment of a value to every tuple. Fagin’s algorithm5, which was proposed in 2000, is concerned 
with the issue of how to modify a scoring rule to apply to the case where weights are assigned to the importance of each 
argument. It provides an explicit formula for incorporating weights that can be applied no matter what the underlying 
scoring rule is. Here, the underlying scoring rule for the un-weighted case would be our probabilistic formula. 

We chose to apply Fagin’s weighting formula for fuzzy queries in our work for several reasons. First, when all of the 
weights are equal, the combination function reduces to the probabilistic framework for the unweighted case: C(p1,..., pn) 
= 1 - ∏i=1…k (1- pi). Second, if a particular argument has zero weight, then the argument can be dropped without affecting 
the value of the result. Last, the value of the result is a continuous function of the weights. 

4.4 Fagin’s algorithm applied to the probabilistic formula 

A significant feature of our system is that the user is allowed to assign weights to different part of the similarity measures 
that are to be combined into one. Based on the probabilistic equation in part 2 and the scoring rule in part 3, we 
incorporate weights into the probabilistic scoring rules: 

Let P = {p1, p2, …, pn} be the sequence of probabilities and W = {w1, w2, …, wn} be the corresponding weights, where 
w1≥ w2≥...≥ wn. The weighted probabilistic combination function, motivated by the work of Fagin5, is defined by  

C(W, P) = (w1- w2)f(p1) + 2(w2- w3)f(p1, p2) + 3(w3- w4)f(p1, p2, p3) +...+ n wn f(p1, p2,... pn),  

where f(p1,..., pk) = 1 - ∏i=1…k (1- pi). 

4.5 Image, exam, modality, and patient distances 

Using the weighted probabilistic combination function in the last section, the distances for image, exam, modality, and 
patient are defined with respect to a weight assignment W = (w1, . . .,wn) at each level.  



 

 

The image distance combines all its distance measures d1, d2, . . ., dn: 

I = (w1- w2) d1 + 2(w2- w3) (1-(1- d1)(1- d2)) +...+ n wn (1 - ∏i=1…k (1- di)). 

For both the eye image and skull image database, n=4, and the values for the four image feature distance measures are d1, 
d2, d3 and d4 (with weights from the largest to the smallest w1≥ w2≥ w3≥ w4); then image distance I combines the four 
distance measures: 

I = (w1- w2) d1 + 2(w2- w3)(1-(1- d1)(1- d2)) + 3(w3- w4) (1-(1- d1)(1- d2) (1- d3)) + 4 w4 (1-(1- d1)(1- d2) (1- d3) (1- d4)). 

The eye exam distance combines distance measures for both the left and right eye images I1 and I2: 

EEye = (w1- w2) I1 + 2w2 (1-(1- I1)(1- I2)). 

The skull exam distance combines distance measures for the three image slices that we extract from the full CT exam I1, 
I2, I3: 

ESkull = (w1- w2) I1 + 2(w2- w3)(1-(1- I1)(1- I2)) + 3w3 (1-(1- I1)(1- I2) (1- I3)). 

The modality distance combines distance measures for all three exams E1, E2, E3 over a single modality: 

M = (w1- w2) E1 + 2(w2- w3)(1-(1- E1)(1- E2)) + 3w3 (1-(1- E1)(1- E2)(1- E3)). 

The patient distance combines distance measures for all three modalities. Right now, we only have eye and skull data, so 
the patient distance here combines distance measures for the eye modality and the skull modality M1 and M2: 

P = (w1- w2) M1 + 2w2 (1-(1- M1)(1- M2)). 

Once we have all three modalities M1, M2 and M3 , the combination will become: 

P = (w1- w2) M1 + 2(w2- w3)(1-(1- M1)(1- M2)) + 3w3 (1-(1- M1)(1- M2) (1- M3)). 

The relationship among image distance (I), exam distance (E), modality distance (M) and patient distance (P) is shown in 
Figure 6. 

  
       Fig. 6. Image, exam, modality and patient distance 

 

5. IMAGE INDEXING METHOD 
Our image retrieval system uses an efficient image indexing scheme4 and returns a similarity relation in which the 
returned images are ordered by similarity to the query.  The indexing scheme takes advantage of the triangle inequality to 
reduce the number of direct comparisons in a threshold style database search. Given a query image, it outputs a value for 
each database image corresponding to a lower bound on the distance between that image and the query image. The 



 

 

system then sequences the images in increasing order of their calculated lower bounds. Experimental evidence suggested 
that the first images in such a sequence are the ones most likely to be the best matches to the query.  

In our work, we use this indexing scheme for all image retrieval tasks. Each time that an image is compared to other 
images in the database, the bounds of their similarity calculated from the triangle inequality are used to take the place of 
the real distance values.  

 

6. GRAPHICAL USER INTERFACE DESIGN 
The user interacts with our system through a sequence of graphical user interfaces. The system initiates with a main GUI 
to start patient retrieval, as shown in Figure 7.  The left part of the main GUI is composed of “Input Information” and 
“Output Information”. In “Input Information”, a user will first choose a patient ID (ie “1” in the figure), and basic 
information about the patient ID he/she chooses will show up. In “Output Information”, the user can choose items that 
he/she wants to view in the retrieval results. The middle part of the main GUI “Image Constraints” shows part of the 
exam images of the patient, as well as links to other GUI pages which are used to edit weights for different modules, 
exams, and image features. In the right part of the main GUI “Relational Constraints”, the user can impose some 
constraints on the patient’s attributes, such as age, gender, etc. The images shown in Fig 7 come from one eye exam and 
one skull exam of the patient (in this prototype system the eye exams are actually from mouse data). If the user wants to 
view more exam images of the patient, he/she can click on the button “More Images” to go to the image GUI to see them 
(Figure 8). 

 

 
        Fig. 7. Main GUI of the system interface after choosing a patient 

 

Next, the weights for all modules, exams, and image features can be edited. By clicking “Choose Exam Modules”, the 
next GUI page will show up to allow the user to specify weights for different modules, as is shown in Figure 9.  In this 
interface, weights for different image modules can be assigned using the sliders. After a weight combination is specified, 
the user can click on the “Preview” button to see the order in which patients would be returned under the current weight 
combination, as illustrated in the figure. The user can click on the circular button below each image pair (an eye image 
and a skull image) to view more images of the patient. 

 



 

 

 

 
         Fig. 8. GUI showing exam images of a patient 

 

 
       Fig. 9. GUI for setting modality weights after “Preview” 

 

At this point, if the user is satisfied with the weight combination and wants to reserve it for future use, he/she can click 
on the button “Save Weights” and save it with a specific name, as in Figure 10. 



 

 

      
         Fig. 10. GUI for saving weight combination 

He or she can also load a weight combination that has been previously saved in the database (Figure 11). 

      
         Fig. 11. GUI for loading weight combination 

 

After the weights are set in this GUI, the user can choose a modality and proceed to the next level to assign weights for 
different exams in that modality. For example, when “Choose Eye Exams” is selected, the interface of Figure 12 comes 
up. As in the previous level, the user can also adjust weights using the sliders, save and load weight combinations, 
preview on the patient ordering to see one of the exam images of this module of the ordered patients, and click on the 
circular button below each image to view more images of the patient, as shown in the figure. 

 
    Fig. 12. GUI for setting modality weights after “Preview” 

 

By choosing an exam date (one exam within this modality of the query patient), and clicking on the button “Choose 
Image Features”, the user goes to the last level to edit weights for different image features (Figure 13).  At this level, the 



 

 

user will first choose an image for this exam (such as “left/right eye” for eye images, “A/F/M plane” for skull images), 
and then edit weights for different image features using the sliders. “Preview”, “Save Weights” and “Load Weights” are 
also applied here. 

 
    Fig. 13. GUI for setting feature weights after “Preview” 

 

Each time that weights are set in a level, the user can either go to the next level, or go back to the previous level. After all 
the weights are edited, the user can return to the main GUI, and run the query. 

 
       Fig. 14. Resultant GUI showing ranked items  



 

 

Selected output information for the patients will be shown on the query GUI (Figure 14), and the user can click on the 
circular button in front of each patient to view more images of the patient. After viewing the results, the user can also go 
back to adjust the weights to try again. 

 

7. EVALUATION 
Our evaluation was done with a group of 5 users. The users were first given instructions on how to use the system and 
then asked to perform a series of query tasks. After that, they were asked to fill out a questionnaire with questions 
concerning complexity, efficiency and capabilities of the system. 

The tasks consist of queries that require a user to adjust weights in all levels, save and load weight combinations, and try 
the preview function. Figure 15 shows the set of tasks the users were asked to perform. The questionnaire asks the user 
to evaluate the system on several aspects: system complexity, system capabilities, task capabilities, and user suggestions. 
In the system complexity part, we asked the user to rate the complexity of learning to operate the system, ease of use, 
and ability to construct queries from 1 to 5 (from difficult to easy). According to feedback from the users, our system 
received an average of 4~4.5 in all the three aspects, which shows that it is a relatively easy to use system. 

 
     Fig. 15. User tasks for evaluation  

 

In the system capabilities part, the users were asked to rate the system speed from 1 to 3 (from slow to fast) and to rate 
the system reliability from 1 to 3 (from unreliable to reliable). In the task capabilities part, the users were asked to 
estimate whether the tasks that the system solves would be useful, rating from 1 to 3 in several aspects, such as the 
“save/load” ability, the “preview” ability, etc. Average scores on these questions were 1.5, indicating a need for some 
improvement. We note that this was only a pre-evaluation test of our system in which the subjects were computer science 
graduate students, rather than the biologists, psychologists and doctors for whom the system was designed. Our formal 
testing will involve both groups. 



 

 

In the suggestion part, the users gave a lot of suggestions for possible improvements to our system. Most of them were 
focused on how to make the interface more understandable and easier to use.  

 

8. CONCLUSION 
This work is novel in its approach to multimodality fusion in medical image retrieval. It is the first system we know of to 
retrieve patients based on multiple imaging modalities, multiple instances of each modality, and multiple distance 
measures for each.  The use of Fagin’s combination method for weighted probabilities is new to the image retrieval 
community.  Our unified methodology for organization and retrieval of biomedical data from scientific experiments that 
makes use of both the similarity-based retrieval methodology of CBIR systems and the efficiency of relational database 
systems is another advantage of the work. 

There are still places where the system can be improved. For example, according to the users’ feedback, the interface can 
be more convenient if a user can run the query from any point of the sub-GUIs, rather than having to “go back” to the 
main GUI to run the query. It would also be better if more illustration is accessible through the interface about what each 
button means and how to adjust setting. We can also develop methodology to calculate modality similarity between 
patients with different number of exams, rather than merely with the same number of exams. 

In the future, we will also try to use the system for real patient exam images, and we will also try to apply the idea of 
multimodality fusion in other applications. 
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