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Abstract

We present and empirically test a novel approach for categorizing 3-D free form object
shapes represented by range data. In contrast to traditional surface-signature based systems
that use alignment to match specific objects, we adapted the newly introduced symbolic-
signature representation to classify deformable shapes [12]. Our approach constructs an
abstract description of shape classes using an ensemble of classifiers that learn object class
parts and their corresponding geometrical relationships from a set of numeric and symbolic
descriptors. We used our classification engine in a series of discrimination experiments
on two well defined classes that share many common distinctive features. The experimen-
tal results suggest that our method is, to the best of our knowledge, the first capable of
classifying shape classes that are difficult to discriminate by human standards.

1 Introduction

Categorizing objects from their shape is an unsolved problem in computer vision that en-
tails the ability of a computer system to represent and generalize shape information on the
basis of a finite amount of prior data. For automatic categorization to be of practical value,
a number of important issues must be addressed. As pointed out in [12], how to construct
a quantitative description of shape that accounts for the complexities in the categorization
process is currently unknown. From a practical prospective, human perception, knowledge,
and judgment are used to elaborate qualitative definitions of a class and to make distinctions
among different classes. Nevertheless, categorization in humans is a standing problem in
Neurosciences and Psychology, and no one is certain what information is utilized and what
kind of processing takes place when constructing object categories [9]. Consequently, the
task of classifying object shapes is often cast in the framework of supervised learning.

Researchers working with range data have mostly focused on designing surface represen-
tations that use an alignment-verification method [6] for recognizing and locating specific
objects in the context of industrial machine vision. The number of successful approaches is
rather diverse and spans many different axes [13]. However, to the best of our knowledge,
only a handful of studies have addressed the problem of categorizing shape classes contain-
ing a significant amount of shape variation and missing information frequently found in real
range scenes. Recently, Osada et al. [11] developed a shape representation to match similar
objects. The so-called shape distribution encodes the shape information of a complete 3-D
object as a probability distribution sampled from a shape function. The assumption is that
objects belonging to the same class will have similar shape distributions. Discrimination
between classes is attempted by comparing a deterministic similarity measure based on a
L, norm. Funkhouser et al. [2] extended the work on shape distribution by developing a
representation of shape for object retrieval from multi-modal queries. The representation is
based on a spherical harmonics expansion of the points of a polygonal surface mesh raster-
ized into a voxel grid aligned to the center of mass of the object. Query objects are matched



Figure 1: The spin image for point P is constructed by accumulating in a 2-D histogram the co-
ordinates « and 8 of a set of contributing points (such as Q) on the mesh representing the object.

to the database by using a nearest neighbor classifier. Shape distributions and harmonic de-
scriptors can operate on degenerate surface mesh models but they lack robustness to scene
clutter and occlusion due to its global character. Golland [3] introduced the discriminative
direction for kernel classifiers for quantifying morphological differences between classes
of anatomical structures. The method utilizes the distance-transform representation to char-
acterize shape, but it is not directly applicable to range data due to the dependence of the
representation on the global structure of the objects. In [12], we developed a shape nov-
elty detector for recognizing classes of 3-D object shapes in cluttered scenes. The detector
learns the components of a shape class and their corresponding geometric configuration
from a set of surface signatures embedded in a Hilbert space. The numeric signatures
encode characteristic surface features of the components. The symbolic signatures, their
corresponding spatial arrangement.

The encouraging results obtained with our novelty detector motivated us to take a step fur-
ther and extend our algorithm to accommaodate classification by developing a 3-D shape
classifier to be described in the next section. We were also motivated by applications in
medical diagnosis and human interface design where 3-D shape information plays a signif-
icant role. Detecting congenital abnormalities from craniofacial features [4], identifying of
cancerous cells using microscopic tomography [10], and discriminating 3-D facial gestures
are some of the driving applications.

The paper is organized as follows. Section 2 describes our proposed method. Section 3 is
devoted to the experimental results. Section 4 discusses relevant aspects of our work and
concludes the paper.

2 Our Approach

We developed our shape classifier in this section. For the sake of clarity we concentrate
on the simplest architecture capable of performing binary classification. Nevertheless, the
approach admits a straightforward extension to a multi-class setting. The basic architecture
consists of a cascade of two classification modules. Both modules have the same structure
(a bank of novelty detectors and a multi-class classifier) but operate on different input
spaces. The first module processes numeric surface signatures and the second, symbolic
ones. These shape descriptors characterize our classes at two different levels of abstraction.

2.1 Surface signatures

The surface signatures developed by Johnson and Hebert [7] are used to encode surface
shape of free form objects. In contrast to the shape distributions and harmonic descriptors,
they are robust against the clutter and occlusion generally present in range data. Experi-
mental evidence has shown that the spin image and some of its variants are the preferred
choice for encoding surface shape whenever the normal vectors of the surfaces of the ob-
jects can be accurately estimated [13]. The symbolic signatures developed in [12] are used
at the next level to describe the spatial configuration of labeled surface regions.



Numeric surface signatures. A spin-image [7] is a two-dimensional histogram computed
at an oriented point P of the surface mesh of an object (see Figure 1). The histogram accu-
mulates the coordinates o: and S of a set of contributing points ¢ on the mesh. Contributing
points are those that are within a specified distance of P and for which the surface normal
forms an angle of less than the specified size with the surface normal N of P. This angle is
called the support angle. As shown in Figure 1, the coordinate « is the distance from P to
the projection of () onto the tangent plane T'p at point P; 3 is the distance from ) to this
plane. We use spin images as the numeric signatures in this work.

Symbolic surface signatures Symbolic surface signatures (Fig. 2) are somewhat related
to numeric surface signatures in that they also start with a point P on the surface mesh and
consider a set of contributing points ), which are still defined in terms of the distance from
P and support angle. The main difference is that they are derived from a labeled surface
mesh (shown in Figure 2a); each vertex of the mesh has an associated symbolic label ref-
erencing a surface region or component in which it lies. The components are constructed
using a region growing algorithm to be described in Section 2.2. For symbolic surface
signature construction, the vector PQ in Figure 2b is projected to the tangent plane at P
where a set of orthogonal axes v and & have been defined. The direction of the § — -y axes is
arbitrarily defined since no curvature information was used to specify preferred directions.
This ambiguity is resolved by the methods described in Section 2.2. The discretized version
of the 4 and § coordinates of P() are used to index a 2D array, and the indexed position of
the array is set to the component label of P to be defined below. The resultant array is the
symbolic surface signature at point P. Note that the signature captures the relationships
among the labeled regions on the mesh. The signature is shown as a labeled color image in
Figure 2c.

Labeled Coordinate Symbolic
Surface Mesh System Surface Signature

b) 0)
Figure 2: The symbolic surface signature for point P on a labeled surface mesh model of a human
head. The signature is represented as a labeled color image for illustration purposes.

2.2 Classifying shape classes

We consider the classification task for which we are given a set of [ surface meshes
C = {C4,---,C;} representing two classes of object shapes. Each surface mesh is la-
beled by y € {%1}. The problem is to use the given meshes and the labels to construct an
algorithm that predicts the label y of a new surface mesh C. We let C; (C—;) denote the
shape class labeled with y = +1 (y = —1, respectively). We start by assuming that the
correspondences between all the points of the instances for each class C,, are known. This
can be achieved by using a morphable surface models technique such as the one described
in [15].

Finding shape class components

Before shape class learning can take place, one has to specify salient feature components
associated with C,; and C_; . Each component of a class is identified by a particular region
located on the surface of the class members. For each class of the classes C41 and C_; the
components are constructed according to the following algorithm.



Figure 3: The component R was grown around the critical point p using the algorithm described
in the text. Six typical models of the training set are shown. The numeric signatures for the critical
point p of five of the models are also shown. Their image width is 70 pixels.

Step | (Region Growing) . The input of this phase is a set of surface meshes that are samples of an
object class Cy.

1. Select a set of critical points on a training object for class C,. Let m, be the number of critical
points per object. The number m, and the location of the critical points is chosen by the experimenter
at this time. Note that the number and location of critical points chosen for class C can differ from
the number and location of critical points chosen for class C—.

2. Use known correspondences to find the corresponding critical points on all training instances in C
belonging to C,, .

3. For each critical point p of a class C,, compute the numeric signatures at the corresponding points
of every training instance of C,; this set of signatures is the training set T}, for critical point p of
class Cy.

4. For each critical point p of class C,, train a component detector (implemented as a v-SVM
novelty detector [14]) to learn a component about p, using the training set T3 ,. The component
detector will actually grow a region about p using the shape information of the numeric signatures
in the training sample. The growing phase is as follows. Let p be one of the m critical points. The
performance of the component detector for point p can be quantified by calculating a bound on the
expected probability of error E on the target set as E = #SV,,/|C,|, where #SV,, is the number
of support vectors in the component detector for p, and |C,| the number of elements with label y in
C. Using the classifier for point p, perform an iterative component growing operation to expand the
component about p. Initially, the component consists only of point p. An iteration of the procedure
consists of the following steps. 1) Select a point that is an immediate neighbor of one of the points in
the component and is not yet in the component. 2) Retrain the classifier with the current component
plus the new point. 3) Compute the error E’ for this classifier. 4) If the new error E' is lower than
the previous error E, add the new point to the component and set E = E’. 5) This continues until no
more neighbors can be added to the component. This region growing approach is related to the one
used by Heisele et al. [5] for categorizing objects in 2-D images. Figure 3 shows an example of a
component grown by this technique about critical point p on a training set of 200 human faces from
the USF database developed in [1].

At the end of step I, there are m,, component detectors, each of which can identify the com-
ponent of a particular critical point of the object shape class C,,. That is, when applied to
a surface mesh, each component detector will operate as a filter that determines which ver-
tices it thinks belong to its learned component (positive surface points), and which vertices
do not.

Step I1. The input of this step is the training set of numeric signatures and their corresponding labels
for each of the m = m41 + m_; components. The labels are determined by the step-1 component
detectors previously applied to C4+1 and C_1. The output is a component classifi er (multi-class v-
SVM) that, when given a positive surface point of a surface mesh previously processed with the bank
of component detectors, will determine the particular component of the m components to which this
point belongs.



Learning spatial relationships

The ensemble of component detectors and the component classifier described above define
our classification module mentioned at the beginning of the section. A central feature
of this module is that it can be used for learning the spatial configuration of the labeled
components just by providing as input the set C of training surface meshes with each vertex
labeled with the label of its component or zero if it does not belong to a component. The
algorithm proceeds in the same fashion as described above except that the classifiers operate
on the symbolic surface signatures of the labeled mesh. The signatures are embedded in
a Hilbert space by means of a Mercer kernel that is constructed as follows. Let A and
B be two square matrices of dimension N storing arbitrary labels. Let A x B denote a
binary square matrix whose elements are defined as [A * B];; = match ([A];;, [Bli;) ,
where match(a,b) = 1 if a = b, and 0 otherwise. The symmetric mapping < A, B >=
(1/N?) >i;14 * Bli;, whose range is the interval [0, 1], can be interpreted as the cosine
of angle 8 45 between two unit vectors on the unit sphere lying within a single quadrant.
The angle 6 4 is the geodesic distance between them. Our kernel function is defined as
k(A, B) = exp(—0%5/0?).

Since symbolic surface signatures are defined up to a rotation we use the virtual SV method
for training all the classifiers involved. The method consists of training a component detec-
tor on the signatures to calculate the support vectors. Once the support vectors are obtained,
new virtual support vectors are extracted from the labeled surface mesh in order to include
the desired invariance; that is, a number r of rotated versions of each support vector is gen-
erated by rotating the 6 — ~y coordinate system used to construct each symbolic signature
(see Fig. 2).

A classification example

An architecture capable of discriminating two shape classes consists of a cascade of two
classification modules. The first module identifies the components of each object shape
class while the second verifies the geometric consistency (spatial relationships) of the com-
ponents. Figure 4 illustrates the classification procedure on two sample surface meshes
from a testing set of 200 human heads. The first mesh (Figure 4 a) belongs to the class
of healthy individuals while the second (Figure 4 e) to the class of individuals with a con-
genital syndrome that produces a pathological craniofacial deformation. The input classi-
fication module was trained with a set of 400 surface meshes and 4 critical points per class
to recognize the eight components shown in Figure 4 b and f. The first four components
are associated with healthy heads and the rest with the malformed ones. Each of the test
surface meshes was individually processed as follows. Given an input surface mesh to the
first classification module, the classifier ensemble (component detectors and components
classifier) is applied to the numeric surface signatures of its points (Figure 4 a and €). The
output of this phase is a labeled surface mesh (Figure 4 b and f) that is further processed
by a filtering algorithm that corrects some of the classification errors of the component
classifier. A connected components algorithm is then applied to the result and components
of size below a threshold (10 mesh points) are discarded. After this process the resulting
labeled mesh is fed to the second classification module that was trained with 400 labeled
meshes and two critical points to recognize two new components. The first component was
grown around the point P in Figure 4 a. The second component was grown around point
Q in Figure 4 e. The symbolic signatures inside the region around P encode the geometric
configuration of three of the four components learned by the first module (healthy heads),
while the symbolic signatures around Q encode the geometric configuration of three of the
remaining four components (malformed heads), Figure 4 b and f . Consequently, the points
of the output mesh of the second module will be set to “+1” if they belong to learned sym-
bolic signatures associated with the healthy heads (Figure 4 ¢) , and “-1” otherwise (Figure
4 g). Finally, the filtering algorithms described above are applied to the output mesh. Fig-



ure 4 ¢ (g) shows the region found by our algorithm that corresponds to the shape class
model of normal (respectively abnormal) head.

Normalized
Margin

Figure 4: Binary classification example. a) and ) Mesh models of normal (respectively, abnormal)
heads. b) and f) Output of the first classification module. Components 1-4 are associated with
healthy individuals while components 5-8, with unhealthy ones. Labeled points outside the bounded

regions correspond to false positives. ¢) and g) Output of the second classification module. d) and
h) Normalized classifier margin of the components associated with the second classification module.
Red points represent high confidence values while blue points represent low values.

3 Experiments

We used our classifier in a series of discrimination tasks with deformable 3-D human heads
and faces. All data sets were split into training and testing samples. For classification with
human heads the data consisted of 600 surface mesh models (400 training samples and
200 testing samples). The models had a resolution of 1 mm (~ 30,000 points) . For the
faces, the data sets consisted of 300 surface meshes (200 training samples and 100 testing
samples). The corresponding mesh resolution was set to about 0.8 mm (~ 70, 000 points).
All the surface models considered here were obtained from range data scanners and all the
deformable models were constructed using the methods described in [12], [15] and [1].

We tested the stability in the formation of shape-class components using the faces data
set. This set contains a significant amount of shape variability. It includes models of real
subjects of different gender, race, age (young and mature adults) and facial gesture (smil-
ing vs. neutral). Typical samples are shown in Figure 3. The first module of our classifier
must generate stable components to allow the second module to learn and discriminate their
corresponding geometric configurations. We trained the first classification module with a
set of 200 faces using critical points arbitrarily located on the cheek, chin, forehead and
philtrum of the surface models. The trained module was then applied to the testing faces to
identify the corresponding components. The component associated with the forehead was
correctly identified in 86% of the testing samples. This rate is reasonably high consider-
ing the amount of shape variability in the data set (Fig. 3). The percentage of identified
components associated to cheek, chin and philtrum were 86%, 89% and 82%, respectively.

We performed classification of normal versus abnormal human heads, a task that often oc-
curs in medical settings. The abnormalities considered are related to two genetic syndromes
that can produce severe craniofacial deformities . Our goal was evaluate the performance
of our classifier in discriminating examples with two well defined classes between which
a very fine distinction line exists. In our set up, the classes share many common features.

Test samples were obtained from models with craniofacial features based upon either the Greig
cephalopolysyndactyly (A) or the trisomy 9 mosaic (B) syndromes [8].



This makes the classification difficult even for a trained physician. In Task I, the classifier
attempted to discriminate between test samples that were 100% normal or 100% affected
by each of the two model syndromes (Tasks | A and B). Task Il was similar, except that
the classifier was presented with examples with varying degrees of abnormality. The sur-
face meshes of each of these examples were convex combinations of normal and abnormal
heads. The degree of collusion between the resulting classes made the discrimination pro-
cess more difficult. Our rationale was to drive a realistic task to its limit in order to evaluate
the discrimination capabilities of the classifier. High discrimination power could be use-
ful to quantitatively evaluate cases that are otherwise difficult to diagnose, even by human
standards. The results of the experiments are summarized in Table 1. Our shape classifier
was able to discriminate with high accuracy between normal and abnormal models. It was
also able to discriminate classes that share a significant amount of common shape features
('see I1-B* in Table 1).

We compared the performance of our approach with a signature-based method [13] that
uses alignment for matching objects and is robust to scene clutter and occlusion. As we ex-
pected, a pilot study showed that the signature-based method performs poorly in the tasks
I A and B with an average classification rate close to 43%. The methods cited in the intro-
duction where not considered for direct comparison. They use global shape-representations
that were designed for classifying complete 3-D models in contrast to our approach that can
operate on real range data sets containing partial model information [12].

I-A (100% normal - 0% abnormal) | 98 11-B (50% normal - 50% abnormal) 97
I-B (100% normal - 0% abnormal) | 100 | 1I-B * (25% normal - 75% abnormal) | 92
11-B (65% normal - 35% abnormal) | 98 I1-B (15% normal - 85% abnormal) 48

Table 1: Classification accuracy rate (%) for test sample versus 100% abnormal classifica-
tion task (model syndromes A and B).

4 Discussion and Conclusion

We presented a supervised approach to classification of 3-D shapes represented by range
data that learns class components and their geometrical relationships from surface descrip-
tors. We performed preliminary classification experiments on models of human heads (nor-
mal vs. abnormal) and studied the stability in the formation of class components using a
collection of real face models containing a large amount of shape variability. We obtained
promising results. The classification rates were high and the algorithm was able to grow
consistent class components despite the variance.

We want to stress which parts of our approach are essential as described and which mod-
ifiable. The numeric and symbolic shape descriptors considered here are important. They
are locally defined but they convey a certain amount of global information. For example,
the spin image defined on the forehead (point P) in Figure 3 encodes information about
the shape of most of the face (including the chin). As the image width increases, the spin
image becomes more descriptive. Spin images and some of its variants [13] are reliable for
encoding surface shape in the present context. Other descriptors such as curvature-based or
harmonic signatures are not descriptive enough or lack robustness to scene clutter and oc-
clusion. In the classification experiments described above, we did not perform any kind of
feature selection for choosing the critical points. Nevertheless, the shape descriptors cap-
tured enough global information to allow a classifier to discriminate between the distinctive
features of normal and abnormal heads.

The structure of the classification module (bank of novelty detectors and multi-class clas-
sifier) is important. The experimental results showed us that the output of the novelty
detectors is not always reliable and the multi-class classifier becomes critical for construct-
ing stable and consistent class components. In the context of our medical application, the
performance of our novelty detectors can be improved by incorporating prior information



in the classification scheme. Maximum entropy classifiers or an extension of the Bayes
point machines to the one class setting are being investigated as a possible alternatives.

The region-growing algorithm for finding class components is not critical. The essential
point consists of generating groups of neighboring surface points whose shape descriptors
are similar but distinctive enough from the signatures of other components.

There are several issues to investigate. 1) Our method is able to model shape classes con-
taining significant shape variance and can absorb about 20% of scale changes. A multi-
resolution approach could be used for applications that require full scale invariance. 2)
We used large range data sets for training our classifier. However, larger sets are required
in order to capture the shape variability of the abnormal craniofacial features due to race,
age and gender. We are currently collecting data from various medical sources to create
a database for implementing and testing a semi-automated diagnosis system. The data in-
cludes 3-D models constructed from range, CT and MRI scanners. The usability of the
system will be evaluated by a panel of expert geneticists.
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