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There is a growing need for the ability to query image databases
based on similarity of image content rather than strict keyword
search. As distance computations can be expensive, there is a need
for indexing systems and algorithms that can eliminate candidate
images without performing distance calculations. As user needs
may change from session to session, there is also a need for run-
time creation of distance measures. In this paper, we present FIDS,
“flexible image database system.” FIDS allows the user to query
the database based on complex combinations of dozens of prede-
fined distance measures. Using an indexing scheme and algorithms
based on the triangle inequality, FIDS can often return matches
to the query image without directly comparing the query image to
more than a small percentage of the database. This paper describes
the technical contributions of the FIDS approach to content-based
image retrieval. c© 1999 Academic Press
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There is a growing interest in image databases that ca
queried based on image content rather than just with keywo
Such queries are based on the use of distance measure-sc
functions that rate the similarity of two images based on pre
fined criteria. There are several challenges that arise from
approach. The first challenge is that of flexibility. The user’s d
nition of similarity may change from session to session, crea
a need for runtime creation of distance measures. Another c
lenge is that of speed. Distance measure computation req
accessing either the images being compared or precompute
sociated data. Furthermore, distance computation can be s
what expensive. Thus, a system that must compute the dist
from the query image to each image in a large database ma
hibit prohibitively unsatisfactory performance. For certain d
tance measures and data sets, indexing or clustering sch
can be used to reduce the number of direct comparisons
standard clustering or indexing schemes may not be efficien
some combinations of data sets and distance measures.

We have designed and implemented a prototype data
system that allows the user a great deal of flexibility in ru
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number of direct distance measure calculations between a g
query object and the database elements. FIDS, or “flexible
age database system,” has been tested on a database of
images and is being upgraded to handle 100,000 images.
allows the user to find approximate matches to query ima
using complex combinations of dozens of predefined dista
measures. FIDS can often return results without directly c
paring the query image to more than a small percentage o
original database.

There are algorithms in the literature based on the trian
inequality that can reduce the number of distance measure
culations [4, 6, 3, 10, 2] in object retrieval. These methods h
the advantage of being applicable to any distance measure
satisfies the triangle inequality. FIDS uses algorithms base
the triangle inequality that are extensions to the methods in
literature.

In certain application domains, objectfeaturescan be pre-
computed and stored. A system can take advantage of this
computation to speed up object searches at runtime. How
the cost of feature comparison by itself can still be prohibitive
this paper, we do not distinguish between “image compariso
and “feature comparisons.” Although FIDS does precomp
features of images in its database, it does not currently s
those features and does not use them directly. Thus, whe
state that a direct comparison is eliminated, the implicatio
that the feature comparison is also eliminated.

This paper describes the technical contributions of the F
approach to content-based image retrieval. Section 2 discu
related work in image retrieval. Section 3 discusses the us
multiple distance measures in user queries and the opera
that can be used to combine them. Section 4 describes the
indexing scheme, which employs the triangle inequality to r
out large portions of the image database from direct comp
son with the query, and Section 5 presents the FIDS interf
Section 6 gives experimental results of the basic retrieval a
rithm, while Section 7 discusses and presents results for
eral different methods for selecting keys to be used in index
Section 8 describes an additional data structure, the triangle
and presents experimental results on using it in conjunction
the basic FIDS retrieval methods to speed up the search
more.
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Because of the shortcomings of computer vision segmenta-
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2. RELATED LITERATURE

The related work falls into two categories: (1) systems t
attempt to provide a general image retrieval capability and
systems that provide a single retrieval technique, often for a
ticular application. In general image retrieval systems, on
the first efforts was the work of Chang [13] in which retrieval
images was achieved through attribute matching, spatial rela
matching, structural (contour) matching, and similarity mat
ing using various application-specific similarity measures. K
[23, 27] developed an experimental database system called
MUSEUM that was intended to be an electronic art gallery. T
system included a visual interface by which a user could e
a hand-drawn sketch, a monochrome photo or xerox cop
a full color image of a painting in order to retrieve matchi
images from the database. The QBIC (query by image con
system developed at IBM Almaden [33] became the first co
mercial product. The original QBIC allowed retrieval of imag
by color, texture, and the shape of image objects or regions.
system is constantly updated to add new retreival methods.
other commercial product, VIR, developed by Virage, Inc. [2
allows retrieval based on color, composition, texture, and st
ture measures. Virage has collaborated with Compaq to pro
theAV Photo Finder, a website that allows retrieval of image
based on color, composition, structure, texture, and keywo
They catalog over 10 million images.

Pentland’s group at MIT developed the Photobook sys
[34], a set of interactive tools for browsing and searching ima
and image sequences that allows queries by appearance, s
and texture. Appearance refers to the technique of matc
with eigenimages developed by Turk and Pentland [43], sh
is based on the work of Pentland and Sclaroff [37], and tex
matching comes from the work of Picard and Liu [36].

Most single-purpose systems have also concentrated on o
the four main classes of matching: shape, color, texture, and
position matching. In shape matching, most of the 2D con
matching techniques developed for computer vision apply
though several researchers have particularly targeted their
toward image databases. Grosky and Mehrotra [19, 31] use
dex trees to access a database of 2D object contour mod
industrial parts. Califano and Mohan [11] developed a rela
indexing method that uses multidimensional global invaria
of tuples of local interest features as indexes that vote for ob
models in the database. Del Bimbo [8] retrieved images con
ing specified 2D shapes using an elastic matching techniqu

The spatial and/or frequency distributions of colors or g
tones in an image are often used for retrieval. All of the gen
purpose systems contain one or more distance measures for
or “appearance-based” retrieval. Jacobs, Finkelstein, and Sa
[24] used a multiresolution wavelet decomposition to repres
images for rapid matching and retrieval. Color indexing has b
thoroughly analyzed by Swain and Ballard [41].

Texture classification and segmentation algorithms have b

heavily studied in the computer vision/pattern recognition co
D SHAPIRO
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munity [42]. In the image database community, Picard a
Minka [35] developed a texture-based vision annotation sys
that learns from user feedback. Kelly and Cannon [28, 29] at
Alamos National Laboratory used a global signature to cha
terize images and a signature distance function to compare t
Jain, Murthy, and Chen [26] have developed a methodology
comparing various texture similarity measures.

Most of the above techniques are global in that they comp
some global feature or features of an image, such as signat
histograms, eigenimages, and wavelet representations. S
tural techniques break the image into a set of extracted ent
and produce a description in terms of these entities, their pro
ties, and their interrelationships [40]. Descriptions are enco
as string, tree, or graph structures, and relational matching is
formed to determine the distance between a query and a s
description. Chang, Shi, and Yan [14] encoded the spatial r
tions among picture objects as 2D strings and provided an ic
indexing technique using these strings to retrieve images. In
object recognition work performed at the University of Was
ington, Costa and Shapiro developed an accumulator-base
lational indexing technique that uses subgraphs of a struc
description of the image to vote for 3D view-class object mod
[39].

Del Bimbo [7, 9] used both spatial and temporal relations
select image sequences that match a query. Bach, Paul, an
developed a feature-based approach to retrieval of face im
[1]. The distance between a query image and an image f
the database was a weighted sum of the differences betw
pairs of corresponding query image features and database im
features.

Much of the older work in content-based retrieval only gave
lustrations of system performance without any real evaluation
newer work, Jain and Vailaya [25] describe a system for cont
based retrieval of trademark images using a combination of c
and shape features. A thorough set of experiments was ru
judge the accuracy, stability, and speed of the approach.
curacy was defined to mean that the most similar image to
query image should be in the top set of returned images. Stab
or robustness meant that the procedures should not break
under various conditions; the conditions tested were arbitrary
tations, size variations, and addition of random noise. Ano
interesting and thorough study was the recent work of Min
and Picard [32]. The Four Eyes system, which extends their
ture work, represents a general supervised learning approa
image retrieval.

More recently, Sclaroffet al. [38] used a k-d tree algorithm t
index images collected on the Web. Using a relevance feed
mechanism, the user attempts to progressively home in on
desired images. They also combined their results with keyw
searches. Netra [30] allows searches based on simple com
tions of color, texture, shape, and position of shapes extra
from images offline.
m-tion algorithms, very little of the older work has involved actual
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FIG. 1. Result of query with

object identification. Forsythet al. [18] recently proposed a new
approach that involves a sequence of grouping activities
satisfy increasingly strict constraints. As an example, Fle
Forsyth, and Bregler [16] developed a procedure for find
naked people in color images, for possible use in products
restrict access to web sites with pornographic material. The
cess has two levels of filtering. The first filter looks for lar
areas (30% of the image) of skin color. Regions that pass
test go on to a geometric analyzer looking for elongated reg
that can be grouped into certain spatial relationships that are
ical of limbs connected to torsos. This work is a first step in
recognition of abstract concepts in difficult, real images. Anot
promising approach is that of Carsonet al. [12] who segment
images intoblob regions with annotated color and texture pro
erties, enabling retrieval of images that contain similar regio

3. THE USE OF MULTIPLE DISTANCE MEASURES

A distance measureis a function that computes and retur
a value corresponding to the similarity between two obje
according to some predefined criteria. For example, Fig. 1
lustrates the result of a query that used a color-histogram
tance measure to retrieve images similar to the leftmost im
Figure 2 illustrates the result of a query that used a texture-b
distance measure to retrieve images for the same query im
as in Fig. 1.
fundamental classes of distance measures are those mea-innumerable ways to define bin size and placement for the un-
distance
ased on color properties of images and those measuresderlying color histogram of a color-histogram-based
FIG. 2. Result of query with
a color-based distance measure.
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based on image texture properties. There are many different
cific color measures and texture measures in use and an infi
number of distinct possible measures. Other types of meas
may be based on features such as the existence of partic
objects within the image, the relative position of various ima
features or literally any quality that one can ascribe to an ima

3.1. The Need for Multiple Measures

One can create an innumerable number of distance meas
for images based on any set of features and an arbitrary sco
mechanism. We cannot program all these distance measur
advance. This difficulty motivates the idea of giving the use
predefined set of base distance measures that he or she can
bine to create more complex measures. The potential spac
creatable distance measures increases as we increase the
ber of predefined measures. For example, Haering, Myles,
da Vetoria Lobo [22] demonstrated a neural network with
distance measures as input that was trained to detect decid
trees.

Apart from having many different distance measures, we
lieve that there is a need for multiple variants of the basic dista
measures. A piece of software representing a distance mea
also represents many decisions made by the programmer.
user of the distance measure may disagree with, not unders
or not even know about these decisions. For example, there
a texture-based distance measure.
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measure. A user who does not wish to distinguish pink fr
red will be unhappy with a color measure that does distingu
the two colors. Giving the user multiple color histograms fro
which to choose increases the potential utility of the system
such a user.

The problems of color measurement only increase when d
ing with texture distance measures. As in color-histogram m
sures, there may be many decisions made by the program
that control the behavior of the texture measure. These d
sions are opaque to the user, yet they affect the performan
the measure for the user. The difficulties are compounded in
the semantics of texture are more obtuse than the semant
color. Thus, just giving the user multiple textures from wh
to choose is not a complete strategy, since he or she will h
no method (other than trial and error) by which to decide w
measures to use.

A more subtle problem with distance measures is that t
force the user to make concrete decisions about similarity w
the user may not desire to do so. The user may wish to
images that are “similar” without actually specifying any p
ticular measure. For example, consider the user who want
set of all closest matches to a query image over all poss
color-histogram-based distance measures. This set may ac
be quite small, yet reliance on any single distance measure
leave out some matches. In this case, such a fuzzy similarity
be approximated by querying the database with several diffe
color distance measures.

3.2. Methods of Combining Distance Measures

Given a database system with several distance measure
has to decide in what ways the user shall be allowed to com
the distance measures. There are three separate, possibl
flicting objectives. The first objective is to provide many choic
to the user. The second objective is to provide an interface
allows the user to understand his choices. The third objectiv
to support database search of the resultant queries in an effi
manner.

Systems such as QBIC [17] and Virage [21] offer the user

ability to take weighted combinations of color, texture, shape,
and po

sum of the color and texture measures returns a viable match to

sition measures, combined with keyword search. But whatthe query in Fig. 5.
FIG. 3. Poor result of a query w
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of the user who wishes to formulate queries such as “matc
colors, unless the texture and shape are both very close” or
out of three of color, texture, and shape must match”? Th
queries cannot be expressed as a weighted sum of indiv
distance measures. In order to expand users’ searching vo
lary, more complex combinations of distance measures mu
offered.

To deal with these problems to some extent, we propose
the following set of operations to enable more expressive que
(d1 . . .dn represent distance measures):

• Addition: d= d1+ d2
• Weighting:d= cd1
• Max: d=Max(d1, d2, . . . ,dn)
• Min: d=Min(d1, d2, . . . ,dn).

These operations are all invariant under inequality. That is,

x1 ≤ y1, x2 ≤ y2⇒ x1+ x2 ≤ y1+ y2

x ≤ y, c ≥ 0⇒ cx ≤ cy

x1 ≤ y1, x2 ≤ y2⇒ Min(x1, x2) ≤ Min(y1, y2)

x1 ≤ y1, x2 ≤ y2⇒ Max(x1, x2) ≤ Max(y1, y2).

We later show how to take advantage of this invariance to a
triangle-inequality-based pruning algorithms to distance m
sures that are combined together using the above operatio

Weighting and addition are already commonly used in b
commercial and research systems [21, 17]. The reason for
and Min is that they enable queries that we expect to be us
Max, for example, enables tight searches: “I want a match
color and texture and position and shape.” Min enables m
speculative searches similar to those required by the data m
community: “I want a match on color or texture or position
shape.” Figures 3, 4, and 5 demonstrate the utility of combin
distance measures. The query image is a particularly difficult
for the distance measures in the system. In Fig. 3, a color dist
measure returns unsatisfactory results. A texture measure p
no better as shown in Fig. 4.Yet a distance measure based o
ith a color-based distance measure.
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Fagin [15] has also proposed extending multimedia querie
boolean combinations, using Min and Max to implement the
We experimented with taking powers of distance measure
but decided that the functionality was too unintuitive with lit
apparent gain in utility.

3.3. Query Strategies: Threshold and Best-Match

Given an image databaseS, a query imageQ, and a distance
measured, there are two main types of searches. One can req
all imagesI ∈S such that the distanced(Q, I ) is not greater than
some given threshold valuet . We label this task to be athreshold
style query. The second method is to find the image or ima
in S which minimized(Q, I ). We label this task to be abest-
matchstyle query. Note that we can naturally extend best-ma
queries to find then best matches.

3.4. How to Query the Database

User understanding of the distance measures is a problem
any content-based retrieval system. Our proposed set of o
tions adds a great deal of complexity to the system. There
need for an additional layer to bridge the gap between user un
standing and system capabilities. Possibilities include exam
based learning and natural language translation. It may be
different image database domains will require different in
faces.
dard comparison techniques usually involve comparing(1, 1) or central rectangle of the queryQ to the central rectangle
texture
s which have been computed over entire images. How-of the database imageI as illustrated in Fig. 7. The
FIG. 5. Improved result of query
ith a texture-based distance measure.
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ever, one can consider the utility of comparing correspond
sections of images. For example, the user may wish to find
ages whose centers match the center area of a query imag
the user may care about color in the top half of an image, but
about texture in the lower half. We can give the user some con
over the locations which the user cares about by usinggridded
distance measures. The idea is to break up each image i
grid of rectangles of the same proportions as the original ima
Given imageI , let Ir,c,x,y be the (x, y) rectangle ofI which has
been broken up into a (r, c) grid of rectangles. Given a distanc
measured, let dr,c,x,y(I , Q) be defined asd(Ir,c,x,y, Qr,c,x,y).
That is, dr,c,x,y “pretends” that the chosen rectangles are
entire images to be compared.

Using gridded distance measures gives the user the capa
to create queries with some positional semantics. For exam
a user could express the following queries with combination
gridded distance measures:

• Match the lower left corner by color.
• Match the top half by color and texture and the bottom

texture.
• Match the center by color and all of the image by textu

Assuming a 3× 3 grid, color measureC, and texture measur
T , this last query would be expressed in our formulation
Max(C3,3,1,1, T). The distance measureC3,3,1,1 compares the
with a combination distance measure.
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FIG. 6. Looking for water and tr

measureT compares all ofQ to all of I . The Max operation
implements the equivalent of a logical AND operator.

Our system employs such gridded measures. We have f
it useful in retrieving matches to images that have different q
ities in different areas of the image. In Fig. 6, we are look
for matches to a scene with water in the foreground and t
in the background. The picture was taken in fall as can be
cerned by the autumn coloring of the leaves. However, we
not wish to restrict the returned set to autumn images. Th
fore, we choose to match on texture in all four quadrants o
image, but only match on color in the bottom half of the i
age. Not including the query image itself, two of the return
images have water in the lower half and trees in the upper
However, the trees in the returned images do not share th
coloring of the query image. Given thatT was our texture mea
sure andC was our color measure, the formula for the co
posite distance measure used in this search was 2 (Max(T2,2,0,0,

T2,2,0,1, T2,2,1,0, T2,2,1,1))+Max(C2,2,0,1,C2,2,1,1). This formula
is ample illustration of the need for good user interfaces.
not something a user would wish to type.

One could imagine extending gridded distance meas
to arbitrary shapes. One can further imagine extending
to nonconstant shapes such as those calculated by seg
tation. Here are some other examples using these e
sions:

FIG. 7. Gridded distance measures are defined on a particular grid rect
of the query and the corresponding grid rectangle of the image being comp
ighted grid rectangle is the (1, 1) rectangle of the (3, 3) grid. Distan
s with subscript (3, 3, 1, 1) reference this grid rectangle.
s, but not necessarily fall tree colors.
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• Match the largest segments by color and the next larg
segments by texture.
• Match the center circular area by color and the largest s

ments by color and texture.

4. INDEXING WITH THE TRIANGLE INEQUALITY

There are several schemes in the literature [2–4, 6, 10]
take advantage of the triangle inequality to reduce the num
of direct comparisons in a threshold style database search.
intuition behind all the schemes is that the distance between
objects cannot be less than the difference in their distance
any other object.

The indexing scheme and algorithm described here, defi
informally as thebare-bones triangle inequality algorithm, out-
puts a value for each database image corresponding to a l
bound on the distance between that image and the query im
This set of values can be used in several different ways. One
use the lower bounds to discard images that are shown to be
far from the query image to be a potential match. Alternative
one can sequence the images in increasing order of their
culated lower bounds. Experimental evidence suggests tha
first images in such a sequence are the ones most likely to b
best matches to the query. In our examples below, we ass
that a threshold is applied to the lower bounds on the imag
rather than an ordering.

The bare-bones triangle inequality algorithm is probabilis
in nature. The lower bounds are guaranteed to be correct
the ordering of the images based on their lower bounds is
guaranteed to be the same as the ordering of the images bas
their true distances to the query image. To improve accuracy,
can add an additional step in which the database images with
smallest lower bounds are compared directly to the query im
to obtain their true distances. Our experiments have shown
good results can be obtained with direct comparison of on
tiny fraction of the original database to the query.

4.1. Indexing with a Single Distance Measure

Let I represent a database object,Q represent a query ob
ceject, K represent an arbitrary fixed object known as akey, and
d represent some distance measure that is a metric. Asd is a
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pseudo-metric, the two triangle inequalities,d(I , Q)+ d(Q, K )
≥ d(I , K ) andd(I , Q)+ d(I , K ) ≥ d(Q, K ), must be true. We
can combine them to form the inequality which places a lo
bound ond(I , Q),

d(I , Q) ≥ |d(I , K )− d(Q, K )|. (1)

Thus, by comparing the database and query objects to a
key object, a lower bound on the distance between the
objects can be obtained. We definel (d, K , I , Q)= |d(I , K )−
d(Q, K )| to be equal to this lower bound ond(I , Q). We further
shortenl (d, K , I , Q) to l (d, K ) when there is no confusion a
to the identity ofI andQ.

Burke and Keller [10] first proposed the idea of using
triangle inequality to reduce comparisons. This idea was u
by Uhlmann [44] to create vantage-point trees, where each
in a tree corresponds to a carefully chosen key. The sub
rooted at that node was partitioned according to the distanc
the leaf elements to the key. Berman [4] and Baeza-Yateset al.
[2] separately refined Burke and Keller’s algorithm by creat
a single set of keys to use for all the objects in the datab
The single key method differs from vantage-point trees in
it reduces the total number of key comparisons at the exp
of increasing the number of fast operations. Barroset al. [3]
successfully used a single set of keys and the triangle inequ
in a real image database. What follows is a description of
general algorithm used with a single set of keys:

Equation (1) can be extended naturally by substituting a
of keysK= (K1, . . . , KM ) for K as

d(I , Q) ≥ max
1≤s≤M

|d(I , Ks)− d(Q, Ks)|. (2)

We can see that this inequality is valid by noting thatd(I , Q) ≥
|d(I , Ks)− d(Q, Ks)| for all values ofs. We definel ′(d,K, I , Q)
to be equal to the lower bound ond(I , Q) found by using Eq. (2)
As before, we shortenl ′(d,K, I , Q) to l ′(d,K) where possible

Consider a large set of database objects,S ={I1, . . . , In}, and
a much smaller set of key objects,K={K1, . . . , Km}. Precalcu-
lated(Is, Kt ) for all {1≤ s ≤ n} × {1≤ t ≤ m}. Now consider
a request to find all database objectsIs such thatd(Is, Q) ≤ t
for some query imageQ and threshold valuet . We can cal-
culate lower bounds on{d(I1, Q), . . . ,d(In, Q)} by calculating
{d(Q, K1), . . . ,d(Q, Km)} and repeatedly using Eq. (2). If w
prove thatt is less thand(Is, Q), then we eliminateIs from our
list of possible matches toQ. After the elimination phase, w
may search linearly through the uneliminated objects, com
ing each toQ in the standard fashion. This algorithm involv
m+ u distance measure calculations, andO(mn) simple (con-
stant cost) operations whereu is the number of uneliminate
objects. The hope is thatm+ u is sufficiently smaller thann to
result in an overall time savings. The pseudocode for settin
the index structure, calculating a lower bound for a query an

image, and retrieving images for a query with a single distan
measure is given in Fig. 8.
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FIG. 8. Pseudo-code for the indexing and retrieval procedures using
triangle-inequality algorithm with a single distance measure.

EXAMPLE OF INDEXING WITH A SINGLE DISTANCE MEASURE. Let
our sample database be an image database composed
imagesS = (I1, . . . , I6). Our keys are imagesK= (K1, K2).
To initialize the database for distance measured, we calculate
d(Is, K j ) for all s, j as shown in Table 1. Now suppose w
wish to find all imagesIs in our database such thatd(Is, Q) ≤
2 for some query objectQ. We calculated(K1, Q)= 3 and
d(K2, Q)= 5. We subtract 3 from each element in the first c
umn in Table 1 and subtract 5 from each element of the sec
column. We then place the absolute values of the results
Table 2.

′
ceBy examining the values ofl (d,K, Is, Q) for 1 ≤ s ≤ 6,
we see that onlyI2 and I3 can possibly be within a distance of
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TABLE 1
Sample Database and Stored Distances

Image d(I , K1) d(I , K2)

I1 2 8
I2 4 4
I3 1 5
I4 6 9
I5 4 1
I6 7 3

2 to queryQ. Thus, onlyd(I2, Q) andd(I3, Q) need to be cal
culated to determine all close matches toQ. The efficiency of
the algorithm is highly dependent on the selection of keys,
relative expense of distance measure calculation, and the s
tical behavior of the distance measure over the set of data
objects.

Figure 9 shows a real example from our system. In this c
we used a simple color measure to find close matches to the
most image. The possible threshold range for this color mea
is 0 for an exact match to 1000 for no color match at all. Usin
threshold of 100, we eliminated all but 19 out of 37,748 ima
as potential matches to the query.

The Berman [4] and Baeza-Yates [2] papers also introdu
the idea of combining all the precalculated distances into atrie.
Use of this data structure can, in some circumstances, reduc
number of simple calculations to belowO(nm). Berman showed
anO(u logn+ nε) expected upper bound on simple calculatio
for the string-matching problem using the Hamming distanc
random binary strings, whereε is a complicated function alway
less than one. We discuss this data structure, thetriangle trie, in
Section 9.

4.2. Indexing with Multiple Distance Measures

We extended the above scheme to work with combinat
of distance measures [6]. The intuition is that lower bounds
the distance between two objects for distance measuresd1 and
d2 can often be used to calculate a lower bound between

objects for distance measured whend can be calculated as a
combina

also note that the power functionf (x)= cxe, c ≥ 0, e ≥ 0, is

tion ofd1 andd2. monotonically nondecreasing.
FIG. 9. An example from our system using a simple color mea
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TABLE 2
Calculating Minimum Distances of Each Image in a Database

to Query Image q by Use of the Triangle Inequality

Image l (d, K1) l (d, K2) l ′(d,K)

I1 1 3 3
I2 1 1 1
I3 2 0 2
I4 3 4 4
I5 1 4 4
I6 4 2 4

Let D={d1, . . . ,dp}be a set of distance measures. These
tance measures will be known as thebasedistance measures. Le
K′ = {K1, . . . ,Kp} be a sequence of sets of keys, one set of k
for each distance measure. Note that each set may have a d
ent number of keys and that the sets may or may not intersec
L(D,K′, I , Q) be the set of lower boundsl ′(ds,Ks, I , Q) calcu-
lated from Eq. (2) for each pair (ds ∈ D,Ks ∈ K′), 1≤ s ≤ p.

Now consider a new distance measured′ that is of the form

d′(I , Q) = f (d1(I , Q), . . . ,dp(I , Q)),

where f is monotonically nondecreasing in its parameters.
example,f might describe a weighted sum of the base measu
or even combinations of minimums and maximiums of sets
the base measures. Sincel ′(ds,Ks, I , Q) ≤ ds(I , Q) for all s,
substitutingl ′(ds,Ks, I , Q) for each instance ofds(I , Q) gives
us

d′(I , Q) ≥ f (l ′(d1,K1, I , Q), . . . , l ′(dp,Kp, I , Q)).

Thus we can calculate a lower bound ond′(I , Q) given lower
bounds on the base distance measures. We can then either
the database images based on these lower bounds or th
old out database images as candidates for matches to the
image. Here we note that the operations on distance mea
described earlier—addition, weighting, max, and min—can
combined to form monotonically nondecreasing functions.
sure. The query image is on the far left, potential matches to the query.
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FIG. 10. Pseudo-code for the indexing and retrieval procedures using
triangle-inequality algorithm with multiple distance measures.

The pseudocode for setting up the index structure, calcula
a lower bound for a query and an image, and retrieving ima
for a query with multiple distance measures is given in Fig. 1

EXAMPLE OFINDEXING WITH MULTIPLE DISTANCEMEASURES. Let
our database be a set of images (I1, . . . , I6), with two base dis-
tance measures (d1, d2) and two sets of keys,K1= (K11, K12)
andK2= (K21, K22). We precalculateds(It , Ksu) over alls, t, u
to obtain Table 3. Now suppose we have queryQ and distance

TABLE 3
Sample Database and Stored Distances with Multiple

Distance Measures

Image d1(K11, I ) d1(K12, I ) d2(K21, I ) d2(K22, I )

I1 2 8 5 15
I2 4 4 3 6
I3 1 5 12 9
I4 6 9 10 8
I5 4 1 2 8

I6 7 3 15 15
TABASE SYSTEM 183
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TABLE 4
Calculating Lower Bounds on d′ = d1 + 3d2 by Use

of Triangle Inequality

Image l (d1, K11) l (d1, K12) l (d2, K21) l (d2, K22) l ′(d′,K′)

I1 1 3 3 7 3+ 3 ∗ 7= 24
I2 1 1 1 2 1+ 3 ∗ 2= 10
I3 2 0 10 1 2+ 3 ∗ 10= 32
I4 3 4 8 0 4+ 3 ∗ 8= 28
I5 1 4 0 0 4+ 3 ∗ 0= 4
I6 4 2 13 7 4+ 3 ∗ 13= 43

measured′(X,Y)= d1(X,Y)+ 3d2(X,Y). We wish to find all
objectsI in the database such thatd′(I , Q) ≤ 10. We calculate
d1(K11, Q)= 3, d1(K12, Q)= 5, d2(K21, Q)= 3, and d2(K22,
Q)= 8. Taking the absolute differences between these va
and the values in Table 3, we produce thel (ds, Ksu) values over
s, u and combine them to calculatel ′(d1,K1) andl ′(d2,K2). We
then combine these results to produce thel ′(d′,K′) values. The
l (ds, Ksu) andl ′(d′,K′) values are shown in Table 4. In this ca
l ′(d′, I5, Q,K′) ≤ 10 andl ′(d′, I2, Q,K′) ≤ 10. Thus,I2 and
I5 are returned as possible matches, with the remaining im
eliminated.

We can modify the algorithm to return the best match. In
case, the images are returned in increasing order of theirl ′(d′,K)
values as (I5, I2, I1, I4, I3, I6). Direct comparisons could then b
made from the query image to some prefix of this set to vali
the best image.

Figure 11 shows a real example from our system with mult
distance measures. The query is the leftmost image. We u
measure representing a weighted sum of a color measure
texture measure, with an appropriate threshold. We elimin
all but 290 out of 37,748 images as potential matches to
query. This example also illustrates a best-match exampl
the returned images are ordered by their calculated distanc
the query.

5. FAST IMAGE DATABASE SYSTEM:
A PROTOTYPE FOR TESTING

FIDS, the fast image database system, is a prototype con
based image retrieval system, which currently has over 37
images. It contains a number of distance measures base
color, texture, and feature detection. Position matching is
plemented by “gridding” the distance measures and perform
distance calculations on corresponding sub-rectangles.

The FIDS interface is shown in Figs. 12 and 13. There
four windows. The LIST window is a list of available distan
measures. When the user clicks on a distance measure, a
description is offered. The user can select distance mea

from this window and copy them to either the BUILD window
or the QUERY window. The BUILD window contains a smaller
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FIG. 11. Results of a query using a combination of a

set of distance measures. One creates a new distance m
by performing four activities.

1. Selecting two or more measures in the BUILD window
2. Selecting one of the three operations “SUM,” “MIN,”

“MAX,”
3. Entering the appropriate weights
4. Entering a name for the new distance measure,
5. Pressing the “build” button.

This new distance measure is then added to the LIST wind
The QUERY window contains the query image and the c

sen distance measure. The user runs the query by pressi
. The LIST and BUILD windows for the Fast Image Database Syste
olor measure and a texture measure. The query is on the far left.

asure

,
r

w.
o-

g the

run-query button. The RESULTS window contains the 16 i
ages judged to be the closest by the system. In the full F
system, there are three ways to get results. The first way is t
der the images by the lower bounds calculated from the trian
inequality. This method is the fastest as no direct comparis
of the query to the database are made. In the second metho
user selects how many images to verify. An image is verifie
its true distance to the query is less than the triangle-inequa
derived lower bounds of all the remaining images. The algorit
calculates the true distances to the returned images in lo
bound-derived order until the required number of images h
been verified. Optionally, one can set an upper limit on the nu
ber of images that need to be verified. The third method i
perform direct comparisons on all the images. In Berman
Shapiro [6], verification with an upper limit of a few percentag
of the database almost always returned the correct images

The user can click on any of the images in the RESULTS w
dow to move that image to the QUERY window. This provid
an efficient browsing mechanism for groups of similar imag

6. DISTANCE MEASURES IN FIDS

Experiments conducted using the FIDS system were
formed with various subsets of the following distance measu
They are labeled in the experiments using the labels in bold
below:

• Color. The color histogram distance measure was first p
lished by Swain and Ballard [41]. Consider RGB space a
three-dimensional cube with the axes labeled red, green,
blue. We quantize this cube by breaking it up into a set of s
cubes. For our experiments, we created a 4× 4× 4 set of sub-
cubes of equal size. Given an imageI , we label each subcub
with the fraction ofI that has any of the colors contained in th
subcube. The distance between two images is the sum o
absolute differences between the values in their correspon
subcubes, known more formally as theL1 distance. For some ex
periments, we divided the cube into an 8× 8× 8 set of subcubes
To prevent confusion, we note the dimensions of the subcu
m.

in some cases. If no dimensions are given, the 4× 4× 4 set was
used.
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• LBP. The local binary partition texture measure is a st
dard texture measure with very good performance [45]. For e
pixel P, the eight neighbors are examined to see if their inten
is greater thanP’s intensity. The result is encoded as an eig
bit binary number. A histogram of these numbers is created
each image. Two images are compared by taking theL1 distance
between their corresponding histograms.
• Sobel. The Sobel edge detector was run over the greys

version of each image. A histogram of the values of the resul
matrix was calculated. The distance between two images wa
L1 distance of the histograms. Note that in the standard S
edge detector, a threshold value is used to create a binary
image. We did not use a threshold value, but simply used
results of the Sobel convolution.
• Wavelet. This measure is based on the wavelet decom

sition distance measure developed by Jacobs,et al. [24]. A Haar
wavelet decomposition of the images is calculated, resulting
set of coefficients. These coefficients are then weighted and a
tance is calculated between two images based on the differ
between corresponding coefficients. As the wavelet decom
sition is only defined for images of size 2n× 2n, we resized all
the images to 32× 32 before calculating the coefficients.
• Flesh. We implemented a flesh detector based on the w

of Fleck and Forsyth [16]. For each image, we calculated the

ntage of pixels that contained flesh according to the detec
e distance between two images is simply the difference in
n-
ach
ity
t-
for
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ant
the
bel

edge
the

po-

in a
dis-
nce
po-

ork
er-

percentage. Technically, this is equivalent to a 2-bin histog
with anL1 distance calculation.
• Grid color, grid LBP, grid flesh, grid wavelet, gr

Sobel. We implemented a positionally dependent versio
each of the distance measures described above. Rather tha
paring whole images, gridded versions of distance measures
compare chosen pieces of the images. For these experimen
gridded versions of the distance measures compare the low
quarter of each image.
• Horizontal color and horizontal LBP. For these two d

tance measures, each image was split into three equal-size
izontal pieces. Two images were compared by averaging
color or LBP distance between the corresponding pieces.
• Vertical color and vertical LBP. These distance measu

are similar to the horizontal measures above, except tha
images were split vertically.
• SUM(d1, d2, . . .). A distance measure with the suffix SU

represents a composite measure that is the sum of the enc
distance measures. That is, the distance between the ima
question is computed for each enclosed measure, and the
of these distances is returned.
• MIN(d1, d2, . . .). A distance measure with the suffix MI

represents a composite measure that is the minimum of th
closed distance measures. That is, the distance between th

tor.

this
ages in question is computed for each enclosed measure and the
minimum value is returned.
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• MAX( d1, d2, . . .). A distance measure with the suffi
MAX represents a composite measure that is the maximum
the enclosed distance measures. That is, the distance be
the images in question is computed for each enclosed mea
and the maximum value is returned.

In some experiments, one or more base distance mea
were combined. An equal weighting of distance measures
always used in those cases.

7. PERFORMANCE OF THE TRIANGLE
INEQUALITY ALGORITHM

We first measured the speed of the bare-bones triangl
equality algorithm. The process by which a system using
algorithm returns a set of matches to a query can be broken
four steps:

• Step1. The system extracts relevant features from the qu
image. In our system, this step takes from a fiftieth to a qua
of a second, depending on the distance measure. Table 5 s
this range in the second column.
• Step2. The system calculates the distance from the qu

image to each of the key images. For the basic distance mea
on our system, this step takes from about a microsecond
image to more than four-fifths of a millisecond per image. T
third column of Table 5 shows the values.
• Step3. The system calculates the lower bound distan

from the query image to each of the database images.
• Step4. The system returns the images with the smal

lower bound distances calculated in the previous step.

The third step above is the deciding factor on throughput.
timing of the other steps is relatively stable across database s
although the number of keys in step two which are necessar
adequate performance will tend to increase as the numb
images in the database increases.

We measured a time of approximately 4 ms to perform
third step on 1000 images if 35 keys are used. This repres
a throughput of well over 250,000 images per second, once

TABLE 5
Feature Extraction and Distance Calculation Time for Represen-

tative Distance Measures Used in FIDS on a Pentium Pro 200-mHz
PC

Feature Distance Number of distan
extraction time calculation time calculations

Distance measure in seconds in ms per 1000 per secon

Color (4× 4× 4 RGB) 0.12 46.00 2174
Color (8× 8× 8 RGB) 0.13 37.00 2669
LBP 0.04 28.00 3623
Flesh 0.25 0.12 833333
Sobel 0.20 4.10 24937

Wavelet 0.02 863.00 115
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feature extraction and query-key comparisons are finished
comparison, the final column of Table 5 gives the through
per second for each distance measure given a system that
the features for its images.

7.1. The Accuracy of the Triangle-Inequality Algorithm

To evaluate the efficiency of using the triangle inequality
return close matches to queries, we performed experiments
both single and composite distance measures. Given a q
and distance measure, the system returns all the images
database ordered by calculated lowest bounds on their dista
to the query. We use terms such aslower-bound sequenceor
returned orderingto refer to the system’s output. On the oth
hand, there is thetrue sequenceor true ordering, which consists
of all the images in the database ordered by their true distan
the query. The hope is that the images which are at the fro
the true ordering are also at or near the front of the lower-bo
sequence. Measuring the placement of close matches wa
main goal of these experiments.

In order to test the quality of the returned ordering, so
ground truth was required. To achieve this ground truth,
examined the database by hand and selected 51 pairs of s
images. For each pair, we queried the system with one o
images and measured the position of the othertarget image in
the returned sequence. We then calculated the true positio
the target image and compared the returned positions to the
positions.

We measured the fraction of matches that were returne
part of the first 25 images. This corresponds to a scenario w
a user might ask for several images to be returned for cl
examination. We further measured the fraction of matches
were returned within the first 400 matches, corresponding
scenario in which the user or system is willing to do more wor
find a closer match. We also measured the fraction of images
were returned in their precise position. As we selected matc
pairs of test images by hand, we had to deal with the poss
ity that the test image pairs did not truly match with respec
the distance measures on the system. Our experiments we
signed to measure the ability of the system to find the clo
images to queries, so we excluded an image pair from tes
a distance measure if it was discovered that the target im
was not one of the five actual closest images to the query im
for that distance measure. Our database contained 37,74
ages, and we used 35 keys for each base measure.

7.2. Results for the Bare-Bones Triangle Inequality Algorith

Tables 6 and 7 show the results of experiments using the
set of valid matches. Depending on the distance measure,
50% to 100% of all the matches were within the first 25 ima
returned by the system. In almost every case, over 90% o
matches were within the first 400 returned images. In a sec

set of similar experiments, we simulated a user with a more
restricted definition of closeness. For each distance measure,
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TABLE 6
Summary Performance of Distance Measures Using

Full Set of Validated Images

Distance 100% in 90–99% in 80–89% in
measure class first 400 first 400 first 400

Single measures 3 2 3
AND’ed measures 7 12 1
OR’ed measures 16 1 3
SUM’ed measures 10 10 0
Totals 36 25 7

Note.There were no distance measures in which less than 80% of the ta
images were returned in the first 400 images out of 37,748.

the query-target pairs were sorted in increasing order of que
target distance. Only the first half of these lists were used
compute these results. The results were markedly better for
experiments using the closer half of the valid matches. Table
and 9 show the results of experiments with the restricted se
valid matches. In this case, only nine distance measures ou
the 68 tested measures had less than 80% of the target im
returned within the first 25 images. Furthermore, in 64 out of
distance measures, every single one of the matches were retu
within the first 400 images.

8. KEY SELECTION

We begin this section with a discussion of what makes a go
single key. Later, we discuss the choice of keys in combinati
We make the simplifying assumption that all distances are wit
the range of 0 to 1 inclusive.

8.1. Good Keys forThresholdStyle Queries

Consider database imageI , query imageQ, key imageK ,
distance functiond. We say that keyK separates Qfrom I for
valuev if |d(I , K )− d(Q, K )| > v. Suppose thatd(I , Q) > t
for some thresholdt . The triangle inequality implies that the
value |d(I , K )− d(Q, K )| can range from 0 tod(I , Q). Key
K will eliminate imageI as a candidate match toQ only if it

TABLE 7
Summary Performance of Distance Measures Using Full Set of

Validated Images, Showing How Many Distance Measures of Each
Type Returned the Target Images in the First 25 Images

Distance 100% 90–99% 80–89% 70–79% 50–69
measure class in first 25 in first 25 in first 25 in first 25 in first 2

Single measures 1 0 1 4 2
AND’ed measures 2 2 10 6 0
OR’ed measures 6 0 0 12 2
SUM’ed measures 4 6 10 0 0

Totals 13 8 21 22 4
TABASE SYSTEM 187
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TABLE 8
Summary Performance of Distance Measures Using

Closer Pairs of Validated Images

Distance 100% in 90–99% in 80–89% in 70–79%
measure class first 400 first 400 first 400 first 40

Single measures 6 0 2 0
AND’ed measures 20 0 0 0
OR’ed measures 18 1 0 1
SUM’ed measures 20 0 0 0
Totals 64 1 2 1

Note.Almost every distance measure returned all targets within the first
images.

separatesI from Q for valuet . The purpose of the algorithm
to eliminate as many nonmatching candidate images as pos
through key comparison. Thus, a good key will eliminate m
candidate images than a poor key. The concept of separ
described above motivates the following discussion.

Given a set of database imagesS, distance measured, and
key K , we can compute a density functionf ond(I , K ), I ∈ S.
Since we do not know the queries in advance, we make the
plifying assumption that the queries are taken from the data
images and ignore exact matches in our searches. Given th
old t , we can calculate the fraction of images thatK will separate
from a random query by looking at this density function. For
ample, if all of the area of the density function lies in a narr
range (x, x+ e), e< t , as shown in Fig. 14a, thenK will never
separate any query from any image in the database. If the
sity function has a uniform distribution, as shown in Fig. 1
then for 0< t < 1/2, P(K separatesI from Q)= (1− t)2. If
the density function is multipolar, withn equally sized narrow
spikes separated by distance greater thant , as shown in Fig. 14c
thenP(KseparatesI from Q)= (n− 1)/n. If the density func-
tion has a Gaussian shape, as shown in Fig. 14d, then, rou
speaking, greater standard deviations will indicate greater a
age separation of images by the key.

The issue gets more complicated when choosing several
Using keysK1 and K2 will be no better than just usingK1 if
they both separate the same images from queries. The que

TABLE 9
Summary Performance of Distance Measures Using Closer Pairs

of Validated Images, Showing How Many Distance Measures of
Each Type Returned the Target Images in the First 25 Images

Distance 100% 90–99% 80–89% 70–79% 50–69
measure class in first 25 in first 25 in first 25 in first 25 in first

Single measures 2 1 2 1 2
AND’ed measures 13 5 0 2 0
OR’ed measures 6 0 10 2 2
SUM’ed measures 16 3 1 0 0

Totals 37 9 13 5 4
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FIG. 14. The shape of the density functions determines the performanc
the keys.

of whether or not two keys separate the same images is c
putationally expensive to answer in the general case, but ca
approximately answered by sampling. One can also use the
that very similar keys will separate many of the same images
thus try to avoid keys that are too close together. For exam
in a clusterable database, keys should come from different
ters. Indeed, the key selection algorithms with the best res
make use of clustering and ensuring that different keys sep
different images.

8.2. Good Keys forBest-MatchQueries

Given imagesI1 and I2, queryQ and keyK , assuming tha
d(I1, Q)< d(I2, Q), key K orders I1 and I2 correctly if
l (d, K , I1, Q)< l (d, K , I2, Q). We can extend this definitio
naturally to sets of keys and multiple distance measures.
though our analyses were forthresholdqueries, the results wer
very good forbest-matchqueries as well. Further analysis of ke
optimized forbest-matchqueries is an open area of research

8.3. Algorithms for Key Selection

We examined five different algorithms for key selection: ra
dom keys, choosing keys by examining the variance of the d
sity function, ranking by testing thresholding efficiency, a gree
thresholding algorithm, and a clustering algorithm. The al
rithms assume a databaseS and a set of candidate keys.

RANDOM. Our prototype image database system curre

uses a set of (up to 35) keys chosen randomly and unifor
from the database itself. The triangle inequality algorithms g
D SHAPIRO
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excellent performance compared to linear search even with
dom keys, so this is a natural benchmark against which to
the other algorithms.

VARIANCE. Taking a subsetS ′ of our databaseS, we calcu-
lated the density function ofd(I , K ), I ∈ S ′, for each candidate
key K . We selected those candidate keys which had the de
functions with the greatest variance.

SEPARATION. We examined our database by hand to
pairs of images that we judged to be approximate matches.
average distance between these pairs was calculated. This
t represented a potential threshold value that one might use
query to find approximate matches. We then selected those
didate keysK which maximizedP(|d(I1, K )− d(I2, K )|> t)
over all pairsI1, I2∈S ′, whereS ′ was a subset of our databa
S.

GREEDY. VARIANCE and SEPARATION may choose se
eral keys which separate the same pairs of images. We
modified SEPARATION to keep track of which pairs of imag
were separated by each key. The first key selected was the
as that selected by SEPARATION. The performances of the
maining keys were then recalculated to discount pairs of ima
already separated by the first key. This process was conti
for subsequent keys until a preset number of keys was sele

CLUSTER. We used a simple clustering algorithm on
database. We selected the two database imagesK1 andK2 that
were furthest apart and used them as initial seeds for clu
ing. These two images were placed into our set of keys,
the remaining images were assigned to clusters based on
distances to the key images. We then found the image that
furthest from the current set of keys, added it to the set,
reclustered the database on the updated set of keys. We c
ued this process until the correct number of keys were sele
Note that this algorithm differs from the others in that the
lected keys came from the database itself.

8.4. Experiments

For our experiments, we collected two sets of images,
with 600 members, and one with 800 members. From each
100 images were chosen arbitrarily to be candidate key ima
The remaining 500 and 700 images became the test data
The five algorithms were run on the candidate images to ch
sets of 1 to 9 keys.

We queried the database against itself, testing the syst
performance using the keys chosen by the key selection a
rithms. To eliminate exact matches, we temporarily remo
each query image from the database. To test the performan
the keys on abest-matchsearch, we determined the best ma
to the query and calculated its position in the ordering of
lower bounds. To test the performance of the keys on athresh-
old search, we counted the number of images separated
the query by a given threshold value. This threshold value
determined off-line by calculating the average distance betw
pairs of images known to be similar. For the RANDOM k
mly
ive
selection algorithm, we ran the tests 10 times and averaged the
results.
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TABLE 10
Best Algorithms for Best-Match with Nine Keys

on a Database of 500 Images

A B C D E F G

Color histogram GREEDY 0.9% CLUSTER 1.1% 1.6% 1
LBP texture CLUSTER 1.2% GREEDY 1.6% 2.3% 1
Horizontal color GREEDY 3.6% CLUSTER 3.7% 4.6% 1
Vertical color GREEDY 2.5% RANDOM 3.5% 3.5% 1.
Horizontal texture CLUSTER 2.4% GREEDY 3.7% 4.8% 2
Vertical texture CLUSTER 2.1% GREEDY 2.2% 3.9% 1
Min (Color, Texture) GREEDY 1.0% CLUSTER 1.7% 2.2% 2
Color+ Texture GREEDY 1.0% CLUSTER 1.1% 1.7% 1

Note.Column headings: A, distance measure; B, best key selection algor
C, average rank of best match using best algorithm; D, second best key sel
algorithm; E, average rank of best match using second best algorithm; F, av
rank of best match using randomized key selection; G, ratio of performan
randomized algorithm to best algorithm (F/C).

8.5. Results of Key Selection Tests

We discuss the performance of the various key selection
gorithms, first forbest-matchand then forthreshold. As the
rankings of the algorithms did not change much as a func
of number of keys, we only show the results for nine keys,
maximum number tested. As the performance of the algorit
on the two databases was very similar, we only show table
the larger database.

8.5.1. Performance of key selection algorithms forBest-
match. As is shown in Table 10, CLUSTER provided the be
keys for the texture measures, while GREEDY provided the
keys for the color measures and the combination color/tex
measures. The second best algorithm was also always GRE
or CLUSTER, except for thevertical texturemeasure in the
larger database, which had RANDOM as the second best.

Columns C, E, and F of the table show the average rank o
best match using the appropriate key selection algorithm.
example, a 2% would mean that the true best match was ra
in the top 2% of the returned images. Column G represents
ratio of the number of images that would be examined using
RANDOM keys to the number of images that would be exami
using the best discovered keys. Thus, in the first row, the
keys returned the closest match in the top 0.9% of the ima
For the 700 image database, this translates to the top 6
images. The random keys returned the closest match in the t
images. If this database was a representative sample of a 70
image database, then the number of images needed to be di
compared would be approximate 630 and 1120, respectively
average, there was a 42% reduction in the number of im
examined using the best discovered keys, compared to usin
random keys.

The overall performance of the algorithms was excellent
the worst case for the database of 700 images,Horizontal Color,

the closest match was ranked in the top 3.6%—that meant
only approximately 24 images had to be compared directly a
TABASE SYSTEM 189
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pruning to find the best match. The database of 500 ima
had slightly worse performance with the average ranking of
best image ranging from 1.2% to 5.1%, again with the wo
performance found inHorizontal Color.

8.5.2. Performance of key selection algorithms forThresh-
old. As Table 11 shows, the GREEDY key selection meth
was the clear winner forthreshold, yielding the best perfor-
mance for every distance measure. There was no clear se
place algorithm—RANDOM, VARIANCE, and CLUSTER a
appeared in second place for several measures. The GRE
keys reduced the number of images that had to be directly c
pared by the RANDOM keys by 16% to 44%.

The second thing to note in Table 11 is the wide range of p
formance between distance measures. The triangle inequ
algorithm thresholded 98.5% of the images for theColor His-
togramdistance measure, yet it only thresholded 54.6% of
images for theVertical Texturedistance measure. It is difficu
to compare across distance measures since the distributio
distance values across pairs of images varies greatly from m
sure to measure. Especially interesting was the fact that u
five keys forVertical Textureresulted in a 53% thresholding
Thus the additional four keys only eliminated an additional 2
of the database. In [2], Baeza-Yateset al., demonstrated how
given a random model for database objects and keys, a loga
mic number of keys should threshold almost all of the datab
For our experiments to have supported this, the addition of
more keys would have had to increase the thresholding f
53% to about 70%. That this did not occur demonstrates
traditional models of randomness do not really apply to set
real images.

8.6. Analysis

The performance of keys in image retrieval is intimately ti
to the statistical behavior of the distance measures over
image set. At present, we have a limited understanding of

TABLE 11
Best Algorithms for Threshold with Nine Keys

on Database of 700 Images

A B C D E F G

Color histogram GREEDY 98.5% RANDOM 97.4% 97.4% 1
LBP texture GREEDY 83.2% CLUSTER 81.2% 77.8% 1
Horizontal color GREEDY 94.4% RANDOM 90.8% 90.8% 1.
Vertical color GREEDY 93.2% VARIANCE 90.0% 89.8% 1.
Horizontal texture GREEDY 55.3% CLUSTER 49.9% 47.5% 1
Vertical texture GREEDY 54.6% VARIANCE 52.7% 47.2% 1.
Min (Color, Texture) GREEDY 97.8% CLUSTER 96.4% 96.1% 1
Color+Texture GREEDY 94.5% CLUSTER 91.5% 91.2% 1

Note.Column headings: A, distance measure; B, best key selection algori
C, average percentage of database eliminated using best algorithm; D, s
best key selection algorithm; E, average percentage of database eliminat
ing second best algorithm; F, average percentage of database eliminated
that
fter
randomized key selection; G, ratio of performance of randomized algorithm to
best algorithm (100%− F)/(100%−C).
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behavior; this limits the sophistication of our key selection
gorithms. Thus, more research into the behavior of the dist
measures is called for. A more complete set of distance m
sures will also be used in our future tests. Distance meas
have been proposed for color, texture, shape [8], object p
ence [18], and object spatial relationships [7]. We would like
include representatives of each type of measure in our test

In our work, we selected keys from the database itself.
space of possible keys is huge—it is the space of possible
ages. We would like to take advantage of this freedom in s
tractable manner. For example, it may be possible to cons
artificial images that are excellent keys for either a spe
database, or even for large image domains. Furthermore
analysis contained the assumption that the query domain
similar to the database. This is not necessarily the case.

Even if we restrict our candidate keys to some random
set ofn images, the number of possible subsets ofm keys is
exponential inm. There is no guarantee that there is not so
difficult to find set of keys that will prune the database far m
than any other set. It may be that heuristics like those tradit
ally used for NP-complete algorithms may be applicable for
selection.

Finally, there has been no published work on the proper n
ber of keys to use for a database of a given size. There
trade-off between the elimination power of a set of keys
the execution time required to compare the query to the key
Some queries may require more keys than other queries for
performance.

Of the algorithms tested, CLUSTER and GREEDY clea
gave the best results. The improvement over random key s
tion was up to a factor of two. As random key selection redu
best-matchsearches to just a few percentages of the datab
the use of random keys may be perfectly acceptable for sm
databases.

One thing to note is that, givenn sample database imag
and m candidate keys, CLUSTER and GREEDY takeO(n2)
andO(mn2) time, respectively. Thus, for very large databas
one might consider sampling the database. We used sampl
GREEDY and not in CLUSTER, yet GREEDY was essentia
as good as CLUSTER in some cases and better than CLUS
in the rest. It is promising that relatively simple algorithms w
able to increase performance to the extent shown in this pa

9. THE TRIANGLE TRIE

Although much faster than direct comparisons, the b
triangle-inequality algorithm described above has a running
of O(nk), wheren is the number of images andk is the number
of keys. Running time may become unacceptable for very l
databases with a large number of keys. Therefore, we tak
vantage of a data structure called thetriangle trie [4] to reduce
the number of operations.
A triangle trie, also called aReally Fixed Query Tree[2], is a
data structure developed for approximate-match searching b
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FIG. 15. Triangle trie with two levels.

by Baeza-Yateset al. and by Berman in independent resear
efforts. A single triangle trie is associated with a distance m
sure, a set of key images, and a set of database elements
a form of trie, which is a tree in which the edges leading fro
the root to a leaf “spell out” the index of the leaf. The leaves of
tree contain the database elements. Each internal edge in
tree is associated with a nonnegative number. Each leve
the tree is associated with a single key. The path from the roo
the tree to a database element in a leaf represents the dista
from that database element to each of the keys.

Figure 15 illustrates a triangle trie with four element
(W, X,Y, Z), and two keys (J, K ). The distance fromW to
J is 3 and the distance fromW to K is 1. This is expressed in
the trie by the path from the root to the leaf containingW.

Construction of the trie is straightforward. Compute the d
tances from the keys to the database elements. Starting wit
empty trie, insert the database elements one at a time usin
vector of its key distances. Create nodes as necessary unt
ery element is in the trie. Formally, letS = (x1, . . . xn) be our
set of objects in the database. Letkey1, . . . , keyj be another set
of objects, known as “key objects.” For eachxi in S compute
the vectorvi = (d(xi , key1), d(xi , key2), . . . ,d(xi , keyj )). Then
combine the vectorsv1, . . . , vn into atrie, with xi being placed
on the leaf reached by following the path represented byvi .

9.1. Pruning the Search with a Triangle Trie

Suppose we are given queryq and threshold integert and
wish to find all objects in our database with a distance fromq of
not more thant . Now, consider a nodep at levell with a value
of C. Every object at leaves descendant fromp has a distance of
C from the key objectkeyl . Thus, if |C− d(q, keyl )| is greater
thant , then we know from the triangle inequality thatd(q, s′)
is greater thant for all objectss′ which are descendants ofp.
Thus, we can safely prune the search at nodep.

The algorithm for searching the database using the trian
trie is straightforward. Compute the distances fromq to each
key: d(q, key1), . . . ,d(q, keyj ). Perform a depth-first search o
the trie. If there is a nodep at level l with valueC such that
|c− d(q, keyl )|> t , then prune the search at nodep. When a
leaf is reached, measure the distance fromq to every object in
oth
the leaf and return those objectsi for which d(q, i ) is less than
or equal tot .
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Searching the trie: An example.We continue with the exam
ple. Suppose we wish to search our database for a close m
to objectV where our maximum allowed distance toV is 1. We
computevV by calculatingd(V, key1) andd(V, key2). We dis-
cover thatvV = (3, 8). We then perform our depth-first search.
the top level, we only search nodes with a value within 3± 1, so
both nodes at this level are searched. At the second level, we
search children of those nodes with a value within 8± 1. At this
levelY andZ are returned as potential matches, whileX andW
are eliminated. The final step is to computed(V,Y) andd(V, Z).
The algorithm does not need to computed(V, X) andd(V,W).

There may be cases where the distance measure is not in
valued, or where the distance measure has such a wide var
that any resultant triangle trie would have a very quick f
out. In these cases, it may be necessary to map the calcu
distances to a smaller set of values. We call this processbinning
the distances. We have conducted experiments with triangle
of various bin sizes and depths to better understand the effe
binning on performance.

9.2. Two-Stage Pruning with a Triangle Trie

The breadth of a triangle trie expands with its depth, up
a maximum breadth equal to the number of database elem
The value of a pruning step is directly related to the numbe
leaves of the pruned subtree. Thus, as the breadth increase
performance of the tree-pruning algorithm decreases, until
unfavorable when compared to directly calculating lower bou
for each database object. On the other hand, the efficiency o
triangle inequality algorithm increases with the number of k
used. Our work suggests that by using a relatively short
and by storing additional key distances in the leaves, we
obtain the best of both worlds. Our two-stage algorithm wo
as follows: Given database imagesI1, . . . , In, keysK1, . . . , Km,
and distance measured, we create a triangle trieT of depthTdepth,
whereTdepth< m. For each stored imageIi , we referenceIi in
the trie along withd(Ii , K j ) for all K1, . . . , Km. Given query
Q, we perform our search of the trie as described above. O
completed, we calculate lower bounds on the returned im
using all the keys. This further reduces the size of the returned

9.3. Using Triangle Tries with Composite Measures

A triangle trie is designed to enable thresholded datab
searches for a single distance measure. However, it is p
ble to use multiple triangle tries to enable thresholded data
searches over a composite measure. The intuition is to figur
for each distance measure, what threshold should be used f
corresponding triangle trie. Searches are done on the indiv
tries and the returned images are either merged or interse
depending on the particular operation. This operation substi
for the first stage of the two-stage pruning algorithm. The sec
stage proceeds as before.
To see how this works, consider the following example: Defi
R(T, Q, t) as the set of images returned from a search on trieT
TABASE SYSTEM 191
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with thresholdt . Now consider the composite distance meas
d(I , Q)=Min(d1(I , Q), d2(I , Q)). Assume the threshold use
is t . Let T1 and T2 represent the tries associated withd1 and
d2, respectively. Sinced(I , Q) ≤ t wheneverd1(I , Q) ≤ t or
d2(I , Q) ≤ t , we must find all images whered1(I , Q) ≤ t or
d2(I , Q) ≤ t . Thus, we calculateR(T1, Q, t) and R(T2, Q, t)
and merge the results. Call this resultant setS ′. This set consists
of all images that have a possibility of being within distanct
to Q by distance measured. We then pruneS ′ with the triangle
inequality on the composite functiond.

The objective in using the triangle trie is to reduce the num
of images for which we have to compute the triangle inequa
with the full set of keys. Therefore, when using multiple tria
gle tries, our objective should be to return as small as pos
set of images that need to be further pruned. We have d
oped algorithms for each of the operations—Min, Max, Su
and Weight—that reduce the size of the returned set. We
scribe the various algorithms for binary operations and then s
how to combine them for a more complex composite dista
function.

9.3.1. The Max function. Given distance functionsd1 andd2,
associated triangle triesT1 andT2, queryQ, and thresholdt , sup-
pose we wish to find all imagesI such thatd(I , Q) ≤ t , where
d(I , Q)=Max(d1(I , Q), d2(I , Q)). Ford(I , Q) ≤ t to be true,
bothd1(I , Q) andd2(I , Q) must also be true. Thus, the algorith
for the Max function is to calculateR(T1, Q, t)∩R(T2, Q, t) by
searching onT1 andT2 and taking the intersection of the resul
Second stage pruning is then applied to the intersection se

Note that we could perform second stage pruning o
R(T1, Q, t) and R(T2, Q, t) separately and take the interse
tion of the results. Assume the sizes of the two sets aren andm
with k keys and an intersection ofw≤Min(n,m). Intersecting
before key comparisons results in an intersection step tim
O(n+m), followed by a key comparison step of timeO(kw).
Performing key comparison first results in a key compari
time of O(k(n+m)) followed by an intersection step of un
known time (all elements could have been eliminated). Wh
method is faster in any particular case would probably rely he
ily on details of the system.

9.3.2. The Min function. Supposed=Min(d1, d2). If im-
age I has the property thatd(I , Q)≤ t either d1(I , Q)≤ t or
d2(I , Q)≤ t must be true. Thus,I must be inR(T1, Q, t) ∪
R(T2, Q, t). To find potential approximate matches toQ in this
case, we compute the union of the twoR functions.

9.3.3. The Addition function.Supposed= d1+d2. Suppose
imageI has the property thatd(I , Q) ≤ t . Certainlyd(I , Q) ≤
t⇒ d1(I , Q)≤ t, d2(I , Q) ≤ t . Thus, if imageI has the property
thatd(I , Q) ≤ t , then as in the Min function above,I must be in
R(T1, Q, t) ∩ R(T2, Q, t). This leads to an algorithm where w
calculateR(T1, Q, t) andR(T2, Q, t) and take their intersection

There are other algorithmic possibilities. For example,s∈

neR(T1, Q, t) ∩ R(T2, Q, t)⇒ s∈ R(T1, Q, t) implies that we
could just calculateR(T1, Q, t) and not bother to calculate
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R(T2, Q, t). This may be faster in some cases. Similarly
could just computeR(T2, Q, t). We could compute both an
return the smaller set. We also can reduce the threshold
the individual sets, as follows: Suppose thatd1(I , Q)>v for a
given imageI and some arbitrary valuev. Thend(I , Q) ≤ t im-
plies thatd2(I , Q) ≤ t − v. Thus,d(I , Q) ≤ t ⇒ d1(I , Q) ≤
v, d2(I , Q) ≤ t − v for any v. We therefore can claim tha
I must be inR(T1, Q, v)∪ R(T2, Q, t − v) for any legitimate
0 ≤ v ≤ t . Thus, to find potential approximate matches in t
case, we can pick some value forv and compute the union o
the twoR functions with the modified thresholds.

It is an open question as to how to efficiently decide the b
value forv. Choosingv= 0 orv= t has the advantage of elim
inating the search of one trie entirely, as well as the conseq
merging of results. Yet there is evidence that halving a thres
more than halves the returned results. In our system we sim
choosev= t/2.

9.3.4. The weight function.Supposed=Cd1 for some pos-
itive constantC. Thend(I , Q) ≤ t impliesd1(I , Q) ≤ t/C. In
this case we find candidates for approximate matches toQ by
calculatingR(T1, Q, t/C).

9.4. Experiments on Triangle Tries

We tested the performance of the triangle trie in image sea
es. We used the basic distance measures described earlie
gridded versions of the measures. Currently, our database
tains 37,748 images. We used only 20,000 of these images i
triangle-trie experiments to reduce disk accesses, which m
otherwise have disrupted the time measurements.

Trie searches are performed given both a query and a th
old value. No images that are provably more distant to the q
than the threshold value are returned from a trie search. Th
ficiency of the trie search is dependent on the chosen thres
value. Thus, we had to determine appropriate threshold va
for each distance measure. We examined the distances be
pairs of closely matching images in our database to determ
appropriate threshold values. These values are listed in Tab
The threshold values for the gridded distance measures
chosen to be the same as those for the nongridded distance
sures. This consistency afforded an opportunity to see if th
were marked differences in performance between the grid
measures and regular measures.

TABLE 12
Threshold Values Chosen for the Triangle-Trie Experiments

Distance measure Threshold value

Color (4× 4× 4 RGB) 200
LBP 90
Wavelet 15
Sobel 10

Flesh 10
SHAPIRO

e

for

is

st

ent
old
ply

ch-
r and
on-
our
ght

sh-
ery
ef-
old

ues
een

ine
12.
ere
ea-

ere
ed

TABLE 13
Characteristics of the Best Tries Found for Each Distance

Measure, Rated by the Speed Factor

Speed Returned
Measure factor Bin size Trie depth Time match

Sobel 47.8 10 6 0.4 318.6
Gridded Sobel 38.6 30 15 0.7 343.0
Gridded wavelets 22.3 20 8 1.2 598.
Gridded color 15.01 130 11 1.8 882.4
Color 8.8 80 8 4.0 1273.0
Wavelets 3.8 40 4 11.8 2343.6
Gridded flesh 3.2 30 4 7.0 4588.2
LBPHist 2.8 30 7 20.1 5740.7
Flesh 2.6 80 11 7.4 5980.2
Gridded LBPHist 2.4 80 8 12.1 5465.0

Note: Time is in milliseconds for a search of 20,000 images and is just
the trie search itself. The speed factor is the ratio of time taken for a sear
20,000 images using the triangle inequality algorithm without the triangle tri
a search using the triangle trie as a precursor to the triangle inequality algor

We created a set of triangle tries for each distance meas
varying the tries by depth and bin size. The depths ranged fro
to 11, and the bin sizes ranged from 10 to 130 stepping by 10
the distance measures except the Haar Wavelets had a rang
to 1000. The Haar Wavelets had a theoretical range greater
1000, but no distances greater than 1000 were calculated d
the experiment. Experiments were not conducted for a gi
depth and bin size if the created trie would contain more t
20,000 nodes. This limit was chosen due to memory constra

There are 35 key images in our database. Any subset of t
can be used as the keys for the tries. We created five ran
orderings of the keys. For each triple of 10 distance measu
11 depths, and 13 bin sizes, we created five tries using the ap
priate five prefixes of the random key orderings. For each s
trie, we tested five images, resulting in a total of 25 tests for e
triple of distance measure, depth, and bin size. This resulted
total of 33,295 experiments, not including experiments that w
abandoned due to too large a trie being created. Each experi
was repeated 250 times to improve the accuracy of the meas
time. We recorded the size of the created tries, the numbe
matches returned for a search, the number of internal trie n
accessed, the number of leaf trie nodes accessed, and the t
took to walk the trie and return the matches.

9.5. Triangle-Trie Test Results with Single Distance Measu

In Section 6, we estimated a time of approximately 4
to calculate the lower bounds on 1000 images using the b
bones triangle inequality algorithm, not including key calcu
tions and feature extraction. We used this value to calculate
speed-improvement factor gained by using the two-stage p
ing algorithm instead of the bare-bones algorithm.
Table 13 shows the results of the tries that had the highest
speed improvement factors. The gridded version of the local-
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TABLE 14
Characteristics of Tries Found for Each Distance Measure

with the Median Speed Factor

Speed Returned
Measure factor Bin size Trie depth Time match

Sobel 14.6 90 8 1.2 1014.0
Gridded Sobel 14.6 40 6 1.3 992.2
Gridded color 6.8 90 4 3.1 1962.0
Gridded wavelets 5.2 20 3 4.2 2564.4
Color 5.0 20 4 6.8 1826.5
Gridded flesh 2.2 60 6 10.5 5703.2
Flesh 1.8 130 8 10.3 7668.6
Gridded LBPHist 1.8 100 8 13.3 6250.8
Wavelets 1.6 130 5 18.7 6542.4
LBPHist 1.4 130 9 16.5 8466.4

Note.Time is in milliseconds for a search of 20,000 images and is just
the trie search itself. The speed factor is the ratio of time taken for a sear
20,000 images using the triangle inequality algorithm without the triangle tri
a search using the triangle trie as a precursor to the triangle inequality algor

binary-partition texture measure had the minimum impro
ment, being about twice as fast with a trie as without one. At
other end of the scale, the Sobel-edge-histogram texture me
was almost 50 times as fast with a trie as without one. This
resents a potential processing rate of almost 12 million ima
per second.

Note that there are many factors which affect trie performan
Even within a given trie depth, bin size, and distance meas
the speed of a trie search varied greatly with the keys chosen
the query image (see Tables 14 and 15). Trie search perform
varies with the chosen threshold value—as the algorithm u
the threshold value to prune subtrees—reducing the thres
results in less of the tree being walked, yielding a time savin
In particular, the algorithm walks only one path with a thresh
value of zero, while it walks the full trie with a threshold valu
of infinity.

TABLE 15
Averages of Trie Statistics (Each Column Individually Averaged)

Speed Returned Internal Lea
Measure factor Time matches nodes nod

Sobel 15.4 20.8 1679.5 17.3 4.
Gridded Sobel 15.0 22.8 1514.8 28.1 6
Gridded color 6.6 61.6 3024.0 123.7 103
Gridded wavelets 6.5 63.4 3997.5 47.7 14
Color 4.8 77.3 3167.2 152.2 132.
Gridded flesh 2.2 98.2 5954.8 9.4 1.
Wavelets 1.7 231.9 5439.1 35.0 15.
Flesh 1.7 115.8 7616.3 11.9 2.
LBPHist 1.4 167.4 8060.9 350.7 257.
Gridded LBPHist 1.6 163.8 7050.9 408.5 231

Note.The average is over all the tries in the experiments with depths ran

from 1 to 13, bin sizes ranging from 10 to 140, and no tries with more th
20,000 nodes included.
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9.6. Triange-Trie Results with Composite Distance Measure

Thetwo-stage pruningalgorithm, detailed in Section 5.2, is a
method for using triangle-tries for composites of basic distan
measures. Given a distance measured′ = g(d1, . . . ,dk), where
the system has triangle tries for the distance measuresd1, . . . ,dk,
the system computes appropriate threshold values for the
sic distance measures and composites the returned pote
matches dependent on the character ofg( ). The bare-bones
triangle-inequality algorithm is then run on the returned pote
tial matches.

The two major methods for compositing returned potent
matches are intersection and union. As expected, intersec
reduces the number of potential matches, while merging
creases them. Suppose the returns from several triangle
are merged, and the resultant set of images is the same siz
the full database. In that case, no benefit is accrued from the
of the triangle trie. On the other hand, suppose the results fr
several tries are to be intersected, and a search of one of the
returned only a small handful of potential matches. In that ca
since the intersection ofX andY is contained withinX, it may
be worth directly proceeding to lower-bound calculation wi
that small returned handful and avoiding the cost of process
the remaining tries or of intersecting the results. Tables 16 a
17 show the average results of merging and intersecting vari
returned matches from the triangle tries for the basic dista
measures.

9.7. Discussion of Results for Triangle Trie-Experiments

The Triangle-Trie offered improved performance on all of th
tested distance measures. Some of the improvements were

TABLE 16
Average Size of Image Sets after Merging or Intersecting Image

Sequences Returned from Triangle-Trie Searches, Using One or
Two Distance Measures

Merged set Intersected se
Distance measures average size average si

Color 3568
LBP 6102
Wavelet 3023
Sobel 427
Flesh 8090
Color flesh 10001 1656
Color LBP 8342 1327
Color Sobel 3889 106
Color wavelet 5570 1021
LBP flesh 11727 2464
LBP Sobel 6355 173
LBP wavelet 7949 1177
Wavelet Sobel 3382 68
Wavelet flesh 9771 1342
Sobel flesh 8366 151
an Note:The rows labeled with single distance measures show the average sizes
of the original sets.
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TABLE 17
Average Size of Image Sets after Merging or Intersecting Image

Sequences Returned from Triangle-Trie Searches, Using Three or
Four Distance Measures

Merged set Intersected se
Distance measures average set average s

Color LBP wavelet 9606 438
Color LBP Sobel 8537 46
Color LBP flesh 12964 653
Color wavelet Sobel 5854 31
Color wavelet flesh 11199 538
LBP wavelet Sobel 8169 35
LBP wavelet flesh 12812 581
LBP Sobel flesh 11894 64
Wavelet Sobel flesh 10010 31
Color Sobel flesh 10224 52
Color LBP wavelet Sobel 9781 16
Color LBP wavelet Flesh 13753 251
Color LBP Sobel flesh 13102 22
Color wavelet Sobel flesh 11398 18
LBP wavelet Sobel flesh 12960 17

significant and might enable otherwise difficult tasks such
nearest neighbor searches for large sets of images. The p
mance of triangle-inequality-based searches is dependent
number of factors, including the nature of the image sets,
distance measures, the number and nature of the chosen
the chosen threshold, and the properties of the query ima
Thus, it is impossible to categorically state that the performa
boosts demonstrated here will translate to somebody else’s
age database. We have demonstrated, however, that the tria
trie is worth considering in the case that a performance boo
needed.

10. SUMMARY

The overall goal of our research has been to create t
nology useful in a generalized system for content-based im
retrieval. We believe that there are three main requirement
a useful content-based retrieval system. The system must s
and retrieve images quickly. The system should allow as w
a selection of queries as possible. Finally, the system shou
easy to use.

To enable fast searches, we have developed algorithms b
on the triangle inequality and triangle-tries. The experiment
this paper provide evidence that these algorithms can be
for fast image retrieval in large databases. Our current sys
searches a database of 37,000 images in an average time o
than a second, depending on the query. We have provid
set of operations for combining distance measures in way
believe to be flexible enough to allow users to fashion us
queries. Importantly, we have demonstrated that the trian
inequality algorithms can be used with these combination

distance measures. Thus the flexibility of our system was n
obtained by sacrificing performance.
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There are a number of open problems in the various data s
tures and algorithms we described. We have already mentio
some of them, like key selection, number of keys, trie dep
and bin size. More generally, the statistical behavior of dista
measures over different sets of images influences the beh
of all the algorithms and thus needs to be explored.

Facilitating user understanding of a system such as ours
open problem. We believe that user understanding will be a
sue for any system that offers a reasonable degree of flexib
Fundamentally, images are hard to describe. This is the flip-
of the phrase, “an image is worth a thousand words.” And
whatever extent images are hard to describe, the relation
between two images can be even harder to describe. Yet
precisely this relationship that the user must define when qu
ing an image database based on content. There is a lot of r
for fruitful research in the area of interfaces between users
content-based retrieval systems.
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