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There is a growing need for the ability to query image databases
based on similarity of image content rather than strict keyword
search. As distance computations can be expensive, there is a need
for indexing systems and algorithms that can eliminate candidate
images without performing distance calculations. As user needs
may change from session to session, there is also a need for run-
time creation of distance measures. In this paper, we present FIDS,
“flexible image database system.” FIDS allows the user to query
the database based on complex combinations of dozens of prede-
fined distance measures. Using an indexing scheme and algorithms
based on the triangle inequality, FIDS can often return matches
to the query image without directly comparing the query image to
more than a small percentage of the database. This paper describes
the technical contributions of the FIDS approach to content-based

image retrieval.  © 1999 Academic Press

1. INTRODUCTION

There is a growing interest in image databases that can
gueried based on image content rather than just with keywor
Such queries are based on the use of distance measure-s
functions that rate the similarity of two images based on pre
fined criteria. There are several challenges that arise from t
approach. Thefirst challenge is that of flexibility. The user’s def)
nition of similarity may change from session to session, creatin
a need for runtime creation of distance measures. Another cP}ﬁ
lenge is that of speed. Distance measure computation require.
accessing either the images being compared or precomputed as-
sociated data. Furthermore, distance computation can be so
what expensive. Thus, a system that must compute the distalit
from the query image to each image in a large database may
hibit prohibitively unsatisfactory performance. For certain dis-
tance measures and data sets, indexing or clustering schem
can be used to reduce the number of direct comparisons.
standard clustering or indexing schemes may not be efficient

some combinations of data sets and distance measures.

We have designed and implemented a prototype datab
system that allows the user a great deal of flexibility in ru

time distance measure creation. The system can also reduc
number of direct distance measure calculations between a g
guery object and the database elements. FIDS, or “flexible
age database system,” has been tested on a database of 3
images and is being upgraded to handle 100,000 images. F
allows the user to find approximate matches to query ima
using complex combinations of dozens of predefined distal
measures. FIDS can often return results without directly co
paring the query image to more than a small percentage of
original database.

There are algorithms in the literature based on the trian
inequality that can reduce the number of distance measure
culations [4, 6, 3, 10, 2] in object retrieval. These methods h:
the advantage of being applicable to any distance measure
satisfies the triangle inequality. FIDS uses algorithms basec
the triangle inequality that are extensions to the methods in
literature.

In certain application domains, objefgaturescan be pre-
omputed and stored. A system can take advantage of this
o(?nputation to speed up object searches at runtime. Howe

e cost of feature comparison by itself can still be prohibitive.

(?Hﬂgpaper, we do not distinguish between “image compariso

nd “feature comparisons.” Although FIDS does precompt
Ytures of images in its database, it does not currently st
hose features and does not use them directly. Thus, wher
state that a direct comparison is eliminated, the implication
at the feature comparison is also eliminated.
his paper describes the technical contributions of the FII
roach to content-based image retrieval. Section 2 discu
#)ted work in image retrieval. Section 3 discusses the us
m)%l_tiple distance measures in user queries and the operat
t%at can be used to combine them. Section 4 describes the F
Indexing scheme, which employs the triangle inequality to rt
%%%arge portions of the image database from direct comp:
on with the query, and Section 5 presents the FIDS interfe
ection 6 gives experimental results of the basic retrieval al
Qgém’ while Section 7 discusses and presents results for ¢
eral different methods for selecting keys to be used in indexil

rbection 8 describes an additional data structure, the triangle-

and presents experimental results on using it in conjunction v
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the basic FIDS retrieval methods to speed up the search €
more.
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2. RELATED LITERATURE munity [42]. In the image database community, Picard anc
Minka [35] developed a texture-based vision annotation syster

The related work falls into two categories: (1) systems th#tat learns from user feedback. Kelly and Cannon [28, 29] at Lo
attempt to provide a general image retrieval capability and (&Jamos National Laboratory used a global signature to charac
systems that provide a single retrieval technique, often for a ptarize images and a signature distance function to compare the
ticular application. In general image retrieval systems, one &éin, Murthy, and Chen [26] have developed a methodology fc
the first efforts was the work of Chang [13] in which retrieval oEomparing various texture similarity measures.
images was achieved through attribute matching, spatial relatiorMost of the above techniques are global in that they compar
matching, structural (contour) matching, and similarity matclsome global feature or features of an image, such as signaturt
ing using various application-specific similarity measures. Katastograms, eigenimages, and wavelet representations. Strt
[23, 27] developed an experimental database system called ARTral techniques break the image into a set of extracted entitie
MUSEUM that was intended to be an electronic art gallery. Thed produce a description in terms of these entities, their prope
system included a visual interface by which a user could enters, and their interrelationships [40]. Descriptions are encode
a hand-drawn sketch, a monochrome photo or xerox copy,as string, tree, or graph structures, and relational matching is pe
a full color image of a painting in order to retrieve matchindormed to determine the distance between a query and a stor
images from the database. The QBIC (query by image conted&scription. Chang, Shi, and Yan [14] encoded the spatial relz
system developed at IBM Almaden [33] became the first cortions among picture objects as 2D strings and provided anicon
mercial product. The original QBIC allowed retrieval of imagemdexing technique using these strings to retrieve images. In 3|
by color, texture, and the shape of image objects or regions. Tdtgect recognition work performed at the University of Wash-
system is constantly updated to add new retreival methods. Amgton, Costa and Shapiro developed an accumulator-based |
other commercial product, VIR, developed by Virage, Inc. [20]ational indexing technique that uses subgraphs of a structur
allows retrieval based on color, composition, texture, and strudescription of the image to vote for 3D view-class object model:
ture measures. Virage has collaborated with Compag to prod{ige].
the AV Photo Findeya website that allows retrieval of images Del Bimbo [7, 9] used both spatial and temporal relations tc
based on color, composition, structure, texture, and keywordslect image sequences that match a query. Bach, Paul, and J
They catalog over 10 million images. developed a feature-based approach to retrieval of face imag

Pentland’s group at MIT developed the Photobook systet]. The distance between a query image and an image frot
[34], a set of interactive tools for browsing and searching imagtse database was a weighted sum of the differences betwe
and image sequences that allows queries by appearance, shagies of corresponding query image features and database ima
and texture. Appearance refers to the technique of matchiiegtures.
with eigenimages developed by Turk and Pentland [43], shapeMuch of the older work in content-based retrieval only gaveil-
is based on the work of Pentland and Sclaroff [37], and textulestrations of system performance without any real evaluation. I
matching comes from the work of Picard and Liu [36]. newer work, Jain and Vailaya [25] describe a system for conten

Most single-purpose systems have also concentrated on onkaged retrieval of trademark images using a combination of colc
the four main classes of matching: shape, color, texture, and caand shape features. A thorough set of experiments was run
position matching. In shape matching, most of the 2D contojudge the accuracy, stability, and speed of the approach. Ac
matching techniques developed for computer vision apply, @dracy was defined to mean that the most similar image to th
though several researchers have particularly targeted their wqtlery image should be in the top set of returned images. Stabili
toward image databases. Grosky and Mehrotra [19, 31] usedantobustness meant that the procedures should not break do
dex trees to access a database of 2D object contour modelsrmder various conditions; the conditions tested were arbitrary rc
industrial parts. Califano and Mohan [11] developed a relat¢ations, size variations, and addition of random noise. Anothe
indexing method that uses multidimensional global invarianisteresting and thorough study was the recent work of Minke
of tuples of local interest features as indexes that vote for objeetd Picard [32]. The Four Eyes system, which extends their te)
models in the database. Del Bimbo [8] retrieved images contatnre work, represents a general supervised learning approach
ing specified 2D shapes using an elastic matching techniqueimage retrieval.

The spatial and/or frequency distributions of colors or gray More recently, Sclarofét al. [38] used a k-d tree algorithm to
tones in an image are often used for retrieval. All of the geneliadex images collected on the Web. Using a relevance feedba
purpose systems contain one or more distance measures for calechanism, the user attempts to progressively home in on tt
or“appearance-based” retrieval. Jacobs, Finkelstein, and Salesired images. They also combined their results with keywor
[24] used a multiresolution wavelet decomposition to represesgarches. Netra [30] allows searches based on simple combir
images for rapid matching and retrieval. Color indexing has begans of color, texture, shape, and position of shapes extracte
thoroughly analyzed by Swain and Ballard [41]. from images offline.

Texture classification and segmentation algorithms have beeBecause of the shortcomings of computer vision segment:
heavily studied in the computer vision/pattern recognition cortien algorithms, very little of the older work has involved actual
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FIG. 1. Resultof query with a color-based distance measure.

object identification. Forsytét al. [18] recently proposed a newbased onimage texture properties. There are many different s
approach that involves a sequence of grouping activities theific color measures and texture measures in use and an infir
satisfy increasingly strict constraints. As an example, Fleckumber of distinct possible measures. Other types of measu
Forsyth, and Bregler [16] developed a procedure for findingay be based on features such as the existence of partict
naked people in color images, for possible use in products thudijects within the image, the relative position of various imag
restrict access to web sites with pornographic material. The pfeatures or literally any quality that one can ascribe to animag
cess has two levels of filtering. The first filter looks for large

areas (30% of the image) of skin color. Regions that pass t@ig. The Need for Multiple Measures

test go on to a geometric analyzer looking for elongated regions , ,
that can be grouped into certain spatial relationships that are typ©On€ €an create an innumerable number of distance measu
ical of limbs connected to torsos. This work is a first step in tI}/gr images based on any set of features and an arbitrary scor

recognition of abstract conceptsin difficult, realimages. AnothBechanism. -We_ cannot program all these diSt&.m.CG measure
promising approach is that of Carsenal. [12] who segment advance. This difficulty motivates the idea of giving the user

images intdlobregions with annotated color and texture propr_)redeflned set of base distance measures that he or she can ¢

erties, enabling retrieval of images that contain similar regior@.ne to crea}te more complex Measures. The pptentlal Space
creatable distance measures increases as we increase the r

3. THE USE OF MULTIPLE DISTANCE MEASURES ber of predefined measures. For example, Haering, Myles, a
da Vetoria Lobo [22] demonstrated a neural network with 4
A distance measuris a function that computes and returnslistance measures as input that was trained to detect decidu

a value corresponding to the similarity between two objectrees.
according to some predefined criteria. For example, Fig. 1 il- Apart from having many different distance measures, we b
lustrates the result of a query that used a color-histogram disve thatthere is a need for multiple variants of the basic distan
tance measure to retrieve images similar to the leftmost imageeasures. A piece of software representing a distance meas
Figure 2 illustrates the result of a query that used a texture-basdsb represents many decisions made by the programmer. T
distance measure to retrieve images for the same query imager of the distance measure may disagree with, not understa
as in Fig. 1. or not even know about these decisions. For example, there :
Two fundamental classes of distance measures are those nirgaimerable ways to define bin size and placement for the u
sures based on color properties of images and those measdeglying color histogram of a color-histogram-based distanc

FIG. 2. Result of query with a texture-based distance measure.
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measure. A user who does not wish to distinguish pink froof the user who wishes to formulate queries such as “match o

red will be unhappy with a color measure that does distinguisblors, unless the texture and shape are both very close” or “tw

the two colors. Giving the user multiple color histograms froraut of three of color, texture, and shape must match”? Thes

which to choose increases the potential utility of the system fqueries cannot be expressed as a weighted sum of individu

such a user. distance measures. In order to expand users’ searching vocal
The problems of color measurement only increase when ddaky, more complex combinations of distance measures must

ing with texture distance measures. As in color-histogram megztfered.

sures, there may be many decisions made by the programmero deal with these problems to some extent, we proposed [°

that control the behavior of the texture measure. These ddtie following set of operations to enable more expressive querie

sions are opaque to the user, yet they affect the performancedsf. . . d, represent distance measures):

the measure for the user. The difficulties are compounded in that —

the semantics of texture are more obtuse than the semantics o.f Ad(_jltlon ) d =01+

: i, . .. ® Weighting:d =cd;

color. Thus, just giving the user multiple textures from which o Max: d = Max(dy, d d)

to choose is not a complete strategy, since he or she will have, Min'.d — Min(d l’d 20 7d 3

no method (other than trial and error) by which to decide what T 1520 Hn)e

measures to use. These operations are all invariant under inequality. That is,
A more subtle problem with distance measures is that they

force the user to make concrete decisions about similarity when X1 =Y, X2 =Y2 = X1 +X2 = Y1+ Y2

the user may not desire to do so. The user may wish to find X<y,c>0= cx<cy

images that are “similar” without actually specifying any par-

ticular measure. For example, consider the user who wants the X1 < Y1, X2 < Y2 = Min(xy, X2) < Min(y1, y)

set of gll closest match(_es to a query image over all possible X1 < V1, X2 < Y2 = Max(xq, Xo) < Max(y1, ¥a).

color-histogram-based distance measures. This set may actually

be quite small, yet reliance on any single distance measure Wil ater show how to take advantage of this invariance to appl
leave out some matches. In this case, such a fuzzy similarity ¢aggje-inequality-based pruning algorithms to distance mez
be approximated by querying the database with several differg{jtes that are combined together using the above operations.
color distance measures. Weighting and addition are already commonly used in bott
commercial and research systems [21, 17]. The reason for Me
and Min is that they enable queries that we expect to be useft

Given a database system with several distance measures,ag, for example, enables tight searches: “I want a match o
has to decide in what ways the user shall be allowed to combiraor and texture and position and shape.” Min enables mor
the distance measures. There are three separate, possibly spaeulative searches similar to those required by the data minit
flicting objectives. The first objective is to provide many choicesommunity: “I want a match on color or texture or position or
to the user. The second objective is to provide an interface tishtape.” Figures 3, 4, and 5 demonstrate the utility of combinin
allows the user to understand his choices. The third objectivadistance measures. The queryimage is a particularly difficult on
to support database search of the resultant queries in an efficfenthe distance measures in the system. In Fig. 3, a color distan
manner. measure returns unsatisfactory results. A texture measure prov

Systems such as QBIC [17] and Virage [21] offer the user tm® better as shown in Fig. 4.Yet a distance measure based on
ability to take weighted combinations of color, texture, shapsym of the color and texture measures returns a viable match
and position measures, combined with keyword search. But whia¢ query in Fig. 5.

3.2. Methods of Combining Distance Measures

FIG. 3. Poor result of a query with a color-based distance measure.
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FIG. 4. Poor result of a query with a texture-based distance measure.

Fagin [15] has also proposed extending multimedia queriesgeer, one can consider the utility of comparing correspondir
boolean combinations, using Min and Max to implement theraections of images. For example, the user may wish to find in
We experimented with taking powers of distance measures fgjes whose centers match the center area of a query image
but decided that the functionality was too unintuitive with littlehe user may care about color in the top half of animage, but ce

apparent gain in utility. about texture inthe lower half. We can give the user some contr
_ over the locations which the user cares about by ugidgded
3.3. Query Strategies: Threshold and Best-Match distance measures. The idea is to break up each image int

Given an image database a query image®, and a distance gr.id oflrectangles of the same proportions as the original imag
measurel, there are two main types of searches. One can requééten imagel, letlr ¢ .y be the k, y) rectangle ofl which has
allimaged e S suchthatthe distanciQ, 1) is notgreater than been broken up into a,(c) grid of rectangles. Given a distance
some given threshold valieWe label this task to betareshold  Measured, let d; cxy(I. Q) be defined asi(l; c.x.y. Qr.cx.y)-
style query. The second method is to find the image or imagBaat iS, tr.cxy “pretends” that the chosen rectangles are th
in S which minimized(Q, 1). We label this task to be lpest- €ntire images to be compared. _ .
matchstyle query. Note that we can naturally extend best-matchUsing gridded distance measures gives the user the capabi

queries to find the best matches. to create queries with some positional semantics. For examp
a user could express the following queries with combinations «
3.4. How to Query the Database gridded distance measures:

User understanding of the distance measures is a problemwitl \jatch the lower left corner by color.

any content-based retrieval system. Our proposed set of operas pmatch the top half by color and texture and the bottom b
tions adds a great deal of complexity to the system. There igg&tyre.

need foranadditional layer to bridge the gap between userunders \Match the center by color and all of the image by texture

standing and system capabilities. Possibilities include example-

based learning and natural language translation. It may be tAasuming a 3< 3 grid, color measur€, and texture measure

different image database domains will require different intef-, this last query would be expressed in our formulation b

faces. Max(Csz 31,1, T). The distance measufgs; 31,1 compares the
Standard comparison techniques usually involve compari(ly 1) or central rectangle of the queyto the central rectangle

features which have been computed over entire images. Haf-the database imagk as illustrated in Fig. 7. The texture

FIG.5. Improved result of query with a combination distance measure.



180 BERMAN AND SHAPIRO

FIG. 6. Looking for water and trees, but not necessarily fall tree colors.

measurel compares all ofQ to all of I. The Max operation e Match the largest segments by color and the next large:
implements the equivalent of a logical AND operator. segments by texture.

Our system employs such gridded measures. We have found Match the center circular area by color and the largest seg
it useful in retrieving matches to images that have different quahents by color and texture.
ities in different areas of the image. In Fig. 6, we are looking
for matches to a scene with water in the foreground and treés INDEXING WITH THE TRIANGLE INEQUALITY
in the background. The picture was taken in fall as can be dis- ) )
cermed by the autumn coloring of the leaves. However, we do!N€re are several schemes in the literature [2-4, 6, 10] th:
not wish to restrict the returned set to autumn images. Thef@ke advantage of the triangle inequality to reduce the numbe

fore, we choose to match on texture in all four quadrants of tﬁédirect comparisons in a threshold style database search. T!

image, but only match on color in the bottom half of the imintuition behind all the schemes is that the distance between tw

age. Not including the query image itself, two of the returnegpPiects cannot be less than the difference in their distances
images have water in the lower half and trees in the upper h&fY other object. _ _ _
However, the trees in the returned images do not share the fajf € indexing scheme and algorithm described here, define
coloring of the query image. Given thitwas our texture mea- Informally as thebare-bones triangle inequality algorithraut-
sure andC was our color measure, the formula for the comPUts & value for each database image corresponding to a low

posite distance measure used in this search was 2 (Maxb, bound on the distance between that image and the query imac
To201, T2210, T2211)) +Max(Cz201, Co211). This formula This setof values can be used in several different ways. One c:

is ample illustration of the need for good user interfaces. It {§€ the lower bounds to discard images that are shown to be t
not something a user would wish to type. far from the query image to be a potential match. Alternatively.

One could imagine extending gridded distance measu@¥ €an sequence the images in increasing order of their c
to arbitrary shapes. One can further imagine extending tﬁ'—glaf[ed Iowsr bounds. Experimental evidence suggests that tl
to nonconstant shapes such as those calculated by Segnf]ugﬂ_lmages in such a sequence are the ones most likely to be t

tation. Here are some other examples using these extBRStMatches to the query. In our examples below, we assur
sions: that a threshold is applied to the lower bounds on the image:

rather than an ordering.

The bare-bones triangle inequality algorithm is probabilistic
0 1 2 0 1 ) in nature. The lower bounds are guaranteed to be correct, b
the ordering of the images based on their lower bounds is ne
0 0 guaranteed to be the same as the ordering of the images basec
their true distances to the query image. To improve accuracy, or
can add an additional step in which the database images with tl
smallest lower bounds are compared directly to the query imag
to obtain their true distances. Our experiments have shown th
2 2 good results can be obtained with direct comparison of only
tiny fraction of the original database to the query.

Query Q Image 1 ] . ) )
4.1. Indexing with a Single Distance Measure

FIG. 7. Gridded distance measures are defined on a particular grid rectanglﬁ_et | represent a database objeCtrepresent a query ob-
of the query and the corresponding grid rectangle of the image being compared. p JeCLrep query

The highlighted grid rectangle is the (1, 1) rectangle of the (3, 3) grid. Distanl@Ct, K represent an_arbitrary fixed object known d@ _and
measures with subscript (3, 3, 1, 1) reference this grid rectangle. d represent some distance measure that is a metrid i8sa
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pseudo-metric, the two triangle inequalitidél, Q) + d(Q, K)
> d(I, K)andd(l, Q) +d(l, K) > d(Q, K), must be true. We
can combine them to form the inequality which places a lower
bound ord(I, Q),

d(l, Q) = [d(I, K) — d(Q, K)I. 1)

Thus, by comparing the database and query objects to a third
key object, a lower bound on the distance between the two
objects can be obtained. We defirfd, K, I, Q)=|d(l, K) —

d(Q, K)| to be equal to this lower bound aifl, Q). We further
shortenl(d, K, I, Q) tol(d, K) when there is no confusion as
to the identity ofl andQ.

Burke and Keller [10] first proposed the idea of using the
triangle inequality to reduce comparisons. This idea was used
by Uhlmann [44] to create vantage-point trees, where each node
in a tree corresponds to a carefully chosen key. The subtree
rooted at that node was partitioned according to the distance of
the leaf elements to the key. Berman [4] and Baeza-Yeites
[2] separately refined Burke and Keller's algorithm by creating
a single set of keys to use for all the objects in the database.
The single key method differs from vantage-point trees in that
it reduces the total number of key comparisons at the expense
of increasing the number of fast operations. Bambsl. [3]
successfully used a single set of keys and the triangle inequality
in a real image database. What follows is a description of the
general algorithm used with a single set of keys:

Equation (1) can be extended naturally by substituting a set
of keysk =(Kgy, ..., Ky) for K as

d(l, Q) = max [d(l, Ks) — d(Q. Ks)I. (@)
We can see that this inequality is valid by noting tdét, Q) >
|d(1, Ks) —d(Q, Kg)| forallvalues of. We defind’(d, IC, |, Q)
to be equal to the lower bound dfil, Q) found by using Eq. (2).
As before, we shorteli(d, I, I, Q) tol’(d, K) where possible.

Consider a large set of database objegts,{l4, ..., I}, and
a much smaller set of key object§ = {K4, .. ., Kn}. Precalcu-
lated(ls, K¢) forall {1 < s <n} x {1 <t < m}. Now consider
a request to find all database objetgsuch thad(ls, Q) <t
for some query imag&) and threshold valué. We can cal-
culate lower bounds ofd(l4, Q), ..., d(l,, Q)} by calculating
{d(Q, Kq), ...,d(Q, Kn)} and repeatedly using Eq. (2). If we
prove that is less thard(ls, Q), then we eliminatdg from our
list of possible matches tQ. After the elimination phase, we

our

FIG.

ExamPLE OF INDEXING WITH A SINGLE DiSTANCE MEASURE
sample database be an image database composed of
imagesS=(ly, ..
To initialize the database for distance meadlireve calculate

181

procedure Index_Single(ImageSet[], KeySet[],d())

for X := 0 to SizeOf(ImageSet)-1
for Y := 0 to SizeOf(KeySet)-1
DistanceMatrix[X][Y] := d(ImageSet[X],KeySet[Y]);

procedure Calc_Lower.Bound(Query,i,d(),DistanceMatrix)
‘Query’ is the Query image
4’ 1s the database Image’s index
‘d() is the distance function
‘DistanceMatrix’ is the precalculated
image-key distance matrix for distance [unction‘d()’
{
for X := 0 to SizeOf(KeySet)-1
QKDist[X]=d(Query,KeySet[X]);
Distance := 0;
for Y := 0 to SizeOf(KeySet)-1
if (Abs(QKDist[Y]-DistanceMatrix[i][Y]) > Distance)
then Distance = Abs(QKDist[Y]-DistanceMatrix[i]{Y]);

procedure Retrieve_Single_With_Threshold(Query,t,d())
{
R = null;
for Y := 0 to SizeOf(ImageSet)-1
if Calc_Lower_Bound(Query,Y.d(),DistanceMatrix) < t
then R = R U ImageSet[Y] ;

return R;

}

8. Pseudo-code for the indexing and retrieval procedures using tt
triangle-inequality algorithm with a single distance measure.

Let

., lg). Our keys are imagek = (Kq, K5).

gr(_ls, K;) for all s, j as shown in Table 1. Now suppose we

may search linearly through the uneliminated objects, comp
ing each toQ in the standard fashion. This algorithm involve
m + u distance measure calculations, admn) simple (con-
stant cost) operations wheteis the number of uneliminated
objects. The hope is that + u is sufficiently smaller than to
result in an overall time savings. The pseudocode for setting

wish to find all imageds in our database such thafls, Q) <

2 for some query objec®. We calculated(K,, Q) =3 and

d(K;, Q)=5. We subtract 3 from each element in the first col
umn in Table 1 and subtract 5 from each element of the seco
column. We then place the absolute values of the results i
TRole 2.

the index structure, calculating a lower bound for a query and an
image, and retrieving images for a query with a single distanceBy examining the values df(d, K, Is, Q) for 1 < s < 6,
measure is given in Fig. 8. we see that only, andl3 can possibly be within a distance of
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TABLE 1 TABLE 2
Sample Database and Stored Distances Calculating Minimum Distances of Each Image in a Database
to Query Image q by Use of the Triangle Inequality
Image d(l, Kq) d(l, K2)
Image I(d, K1) I(d, K2) I'(d, K)
Iy 2 8
I2 4 4 Iy 1 3 3
I3 1 5 I 1 1 1
I4 6 9 I3 2 0 2
Is 4 1 Ia 3 4 4
ls 7 3 Is 1 4 4
ls 4 2 4
2 to queryQ. Thus, onlyd(l,, Q) andd(lsz, Q) need to be cal-
culated to determine all close matchesQoThe efficiency of LetD ={dy, ..., dp} be asetofdistance measures. These dis
the algorithm is highly dependent on the selection of keys, tience measures will be known as tiesedistance measures. Let
relative expense of distance measure calculation, and the statis= {K4, . .., K} be a sequence of sets of keys, one set of key
tical behavior of the distance measure over the set of databfseeach distance measure. Note that each set may have a diff
objects. entnumber of keys and that the sets may or may notintersect. L

Figure 9 shows a real example from our system. In this casg,D, X', I, Q) be the set of lower bound{ds, Ks, |, Q) calcu-
we used a simple color measure to find close matches to the l&fted from Eq. (2) for each paid{ € D, Ks € K'), 1 <s < p.
mostimage. The possible threshold range for this color measuré&low consider a new distance measdt¢hat is of the form
is 0 for an exact match to 1000 for no color match at all. Using a
threshold of 100, we eliminated all but 19 out of 37,748 images d'(l, Q) = f(du(l, Q). ....du(I, Q)),
as potential matches to the query.

The Berman [4] and Baeza-Yates [2] papers also introducedere f is monotonically nondecreasing in its parameters. Fo
the idea of combining all the precalculated distances inta ©€xample,f mightdescribe aweighted sum of the base measure
Use of this data structure can, in some circumstances, reduce@h&ven combinations of minimums and maximiums of sets o
number of simple calculations to bel@®(nm). Berman showed the base measures. Siné@s, s, I, Q) < ds(I, Q) for all s,
anO(ulogn + n¢) expected upper bound on simple calculationgubstituting’(ds, Ks, I, Q) for each instance ads(l, Q) gives
for the string-matching problem using the Hamming distance &&
random binary strings, wheeds a complicated function always , , ,
less than one. We discuss this data structureyitegle trie, in d'(I, Q) > f(I'(dy, K1, 1, Q), ..., 1'(dp, Kp, I, Q)).

Section 9. Thus we can calculate a lower bound @il , Q) given lower

bounds on the base distance measures. We can then either or
the database images based on these lower bounds or thre

We extended the above scheme to work with combinationii out database images as candidates for matches to the qu
of distance measures [6]. The intuition is that lower bounds @mage. Here we note that the operations on distance measut
the distance between two objects for distance measlirasd described earlier—addition, weighting, max, and min—can be
d, can often be used to calculate a lower bound between #wmbined to form monotonically nondecreasing functions. We
objects for distance measudewhend can be calculated as aalso note that the power functioh(x) =cx®,c > 0,e > 0, is
combination ofd; andd,. monotonically nondecreasing.

4.2. Indexing with Multiple Distance Measures

FIG.9. Anexample from our system using a simple color measure. The query image is on the far left, potential matches to the query.
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procedure Index_Multiple(ImageSet[}, KeySets[]{],d()) TABLE 4
{ Calculating Lower Bounds on d’ =d; +3d, by Use

for X := 0 to SizeOf(d)-1 of Triangle Inequality

for Y := 0 to SizeOf(ImageSet)-1

Image 1(dg, Kq1) 1(d1, K12)  [(d2, K21)  1(d2, K22) (d, £)
for Z := 0 to SizeOf(KeySet[X])
DistanceMatrix [X][Y][2] = dx (ImageSet[Y],KeySet[X][Z]); I 1 3 3 7 3+3x7=24
} I2 1 1 1 2 1+3%x2=10
I3 2 0 10 1 2+3%10=232
la 3 4 8 0 44+ 3+8=28
a Cale L Bound_Multiol. . . Matri Is 1 4 0 0 4+3x0=4
procedure Calc_Lower_Bound_Multiple(Query,i (), DistanceMatrix ) I 4 2 13 7 4+ 3%13=43
‘Query’ is the Query image
‘1’ is the database Image’s index
‘f()’ is the composite distance measure, as in d(Q, I) = f(d1(Q,I),d»(Q,1),...)

{ measured’ (X, Y) =di(X, Y) 4+ 3d2(X, Y). We wish to find all
for X := 0 to NumDistanceMeasures ObjeCtS| in the database such thﬂ(l s Q) < 10. We calculate
L[X] = Calc_Lower_Bound(Query,],dx (),DistanceMatrix ); dl(Kll, Q) =3, dl(KlZa Q) =5, dZ(KZla Q) =3, and dz(Kzz,
return f(L[1],... L{NumDistanceMeasures]); Q) =8. Taking the absolute differences between these valu

} and the values in Table 3, we produce ltfdy, Ks,) values over

s, u and combine them to calculdtéd;, K;) andl’(d,, k). We
then combine these results to produceltf@, £’) values. The

procedure Retrieve_Multiple With Threshold(Query.t. f()) I(ds, Ksy) andl’(d’, K') values are shown in Table 4. In this case
{ I'(d’, Is, Q, ) < 10 andl’'(d’, I,, Q, K') < 10. Thus,l, and

R = null; I5 are returned as possible matches, with the remaining imag
for Y := 0 to SizeOf(ImageSet)-1 eliminated.

if Cale_Lower_Bound_Multiple(Query,Y, f(),DistanceMatrix) < t

We can modify the algorithm to return the best match. In thi
then R = R U ImageSet[Y] ;

case, theimages are returned in increasing order ofl te¥ir )
values asl, I, 11, I4, 13, Ig). Direct comparisons could then be
1 made from the query image to some prefix of this set to valida

return R;

FIG. 10. Pseudo-code for the indexing and retrieval procedures using tmze ,beSt Image. . .
triangle-inequality algorithm with multiple distance measures. Figure 11 shows areal example from our system with multipl

distance measures. The query is the leftmost image. We use

measure representing a weighted sum of a color measure ar

The pseudocode for setting up the index structure, calculatiigture measure, with an appropriate threshold. We eliminat

a lower bound for a query and an image, and retrieving imaga% but 290 out of 37,748 images as potential matches to tf
for a query with multiple distance measures is given in Fig. 1@uery. This example also illustrates a best-match example,

the returned images are ordered by their calculated distance:
ExampLE oF INDEXING WITH MuLTIPLE DISTANCEMEASURES  Let the query.

our database be a set of imageés (.., lg), with two base dis-
tance measuresly{, dy) and two sets of keydC; = (K11, K12)

andi; = (K21, K22). We precalculatéls(lt, Ksy) over alls, t, u 5. FAST IMAGE DATABASE SYSTEM:
to obtain Table 3. Now suppose we have quérgnd distance A PROTOTYPE FOR TESTING
FIDS, the fast image database system, is a prototype conte
TABLE 3 based image retrieval system, which currently has over 37,0
Sample Database and Stored Distances with Multiple images. It contains a number of distance measures based
Distance Measures color, texture, and feature detection. Position matching is in
Image (Ko 1) (Ko 1) d(Kan 1) (Ko 1) p!emented by “gr?dding" the distancg measures and performir
distance calculations on corresponding sub-rectangles.

I 2 8 5 15 The FIDS interface is shown in Figs. 12 and 13. There al
2 4 4 3 6 four windows. The LIST window is a list of available distance
I3 1 5 12 9 measures. When the user clicks on a distance measure, a b
:;‘ i i 12 g description is offered. The user can select distance measu
s 7 3 15 15 from this window and copy them to either the BUILD window

or the QUERY window. The BUILD window contains a smaller
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FIG. 11.

Results of a query using a combination of a color measure and a texture measure. The query is on the far left.

set of distance measures. One creates a new distance measurguery button. The RESULTS window contains the 16 im-

by performing four activities.

1. Selecting two or more measures in the BUILD window,

2. Selecting one of the three operations “SUM,” “MIN,” o

“MAX,"
3. Entering the appropriate weights
4. Entering a name for the new distance measure,
5. Pressing the “build” button.

ages judged to be the closest by the system. In the full FID:
system, there are three ways to get results. The first way is to
' der the images by the lower bounds calculated from the triang|
rinequality. This method is the fastest as no direct comparisor
of the query to the database are made. In the second method,
user selects how many images to verify. An image is verified i
its true distance to the query is less than the triangle-inequality
derived lower bounds of all the remaining images. The algorithn

This new distance measure is then added to the LIST windowalculates the true distances to the returned images in lowe
The QUERY window contains the query image and the ch§ound-derived order until the required number of images hav

sen distance measure. The user runs the query by pressin

Grid2211LBPHist
SobelEdgeHist

0 ColorHistL1 4x4x4
ColorHist8xBxB

0X LBPHist

LBPHist

1 ColorHistL1 4x4x4
1140 ColorHistL1 4x4x4
||Crid2200LBPHist
Grid2201ColorHistL14x4xd  =f

Set as Right Distance Measure |
Setas Left Distance Measure
Set as Query Measure

_—

(a) List of available distance measures

R=4 Distance Measure Builder ERI=I S
: Create a new distance measure |
ColorHistx@x@ | + :ﬂ1

l Color + Texture

1 LBPHist

(b) New distance measure creation window

FIG.12. TheLIST and BUILD windows for the Fast Image Database Syste

gag,\@ verified. Optionally, one can set an upper limit on the num
ber of images that need to be verified. The third method is t
perform direct comparisons on all the images. In Berman an
Shapiro [6], verification with an upper limit of a few percentages
of the database almost always returned the correct images.
The user can click on any of the images in the RESULTS win:
dow to move that image to the QUERY window. This provides
an efficient browsing mechanism for groups of similar images.

6. DISTANCE MEASURES IN FIDS

Experiments conducted using the FIDS system were pel
formed with various subsets of the following distance measure:
They are labeled in the experiments using the labels in boldfac
below:

e Color. The color histogram distance measure was first puk
lished by Swain and Ballard [41]. Consider RGB space as
three-dimensional cube with the axes labeled red, green, ar
blue. We quantize this cube by breaking it up into a set of sub
cubes. For our experiments, we created>afx 4 set of sub-
cubes of equal size. Given an imabewe label each subcube
with the fraction ofl that has any of the colors contained in that
subcube. The distance between two images is the sum of
absolute differences between the values in their correspondir
subcubes, known more formally as thedistance. For some ex-
periments, we divided the cube into ax & x 8 set of subcubes.
To prevent confusion, we note the dimensions of the subcube
in some cases. If no dimensions are given, thex 4 set was
roised.
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7 [
0 ST I R

FIG.13. The QUERY and RESULTS windows for the Fast Image Database System.

e LBP. The local binary partition texture measure is a stapercentage. Technically, this is equivalent to a 2-bin histogra
dard texture measure with very good performance [45]. For eastth an L distance calculation.
pixel P, the eight neighbors are examined to see if their intensitye Grid color, grid LBP, grid flesh, grid wavelet, grid
is greater tharP’s intensity. The result is encoded as an eighSobel. We implemented a positionally dependent version ¢
bit binary number. A histogram of these numbers is created feach of the distance measures described above. Rather than c
each image. Two images are compared by takind thdistance paringwhole images, gridded versions of distance measures o
between their corresponding histograms. compare chosen pieces of the images. For these experiments,
e Sobel. The Sobel edge detector was run over the greyscgitielded versions of the distance measures compare the lower |
version of each image. A histogram of the values of the resultaptarter of each image.
matrix was calculated. The distance between two images was the Horizontal color and horizontal LBP. For these two dis-
L, distance of the histograms. Note that in the standard Soleshce measures, each image was splitinto three equal-sized t
edge detector, a threshold value is used to create a binary eidgatal pieces. Two images were compared by averaging tl
image. We did not use a threshold value, but simply used tbelor or LBP distance between the corresponding pieces.
results of the Sobel convolution. e \ertical color and vertical LBP. These distance measure
e Wavelet. This measure is based on the wavelet decompoe similar to the horizontal measures above, except that t
sition distance measure developed by Jacete, [24]. AHaar images were split vertically.
wavelet decomposition of the images is calculated, resulting ina® SUM(d,, do, ...). Adistance measure with the suffix SUM
set of coefficients. These coefficients are then weighted and a depresents a composite measure that is the sum of the enclo
tance is calculated between two images based on the differedistance measures. That is, the distance between the image
between corresponding coefficients. As the wavelet decompmutestion is computed for each enclosed measure, and the s
sition is only defined for images of siz8 2 2", we resized all of these distances is returned.
the images to 3% 32 before calculating the coefficients. e MIN(dy, do, ...). Adistance measure with the suffix MIN
e Flesh. We implemented a flesh detector based on the woepresents a composite measure that is the minimum of the ¢
of Fleck and Forsyth [16]. For each image, we calculated the pelesed distance measures. That is, the distance between the
centage of pixels that contained flesh according to the detectyes in question is computed for each enclosed measure and
The distance between two images is simply the difference in tmsnimum value is returned.
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e MAX(d;, dy,...). A distance measure with the suffixfeature extraction and query-key comparisons are finished. E
MAX represents a composite measure that is the maximumamparison, the final column of Table 5 gives the throughpu
the enclosed distance measures. That is, the distance betwsarsecond for each distance measure given a system that sto
the images in question is computed for each enclosed meagtesfeatures for its images.
and the maximum value is returned.

In some experiments, one or more base distance measutds The Accuracy of the Triangle-Inequality Algorithm
were combined. An equal weighting of distance measures wasyg eyajuate the efficiency of using the triangle inequality to

always used in those cases. return close matchesto queries, we performed experiments usi
both single and composite distance measures. Given a que
7. PERFORMANCE OF THE TRIANGLE and distance measure, the system returns all the images in t
INEQUALITY ALGORITHM database ordered by calculated lowest bounds on their distanc
to the query. We use terms such lager-bound sequencer

We first measured the speed of the bare-bones triangle figturned orderingto refer to the system’s output. On the other

equality algorithm. The process by which a system using tHi@nd, there is theue sequencer true ordering which consists
algorithm returns a set of matches to a query can be broken inf@ll the images in the database ordered by their true distance
four steps: the query. The hope is that the images which are at the front ¢

the true ordering are also at or near the front of the lower-boun

e Stepl. Thesystemextractsrelevantfeatures fromthe QUEIN, ence. Measuring the placement of close matches was t
image. In our system, this step takes from a fiftieth to a quarter; goal of these experiments.

of a second, depending on the distance measure. Table 5 shows order to test the quality of the returned ordering, some

this range in the second column. _ ground truth was required. To achieve this ground truth, we
_ © Step2. The system calculates the distance from the quUeLy; mined the database by hand and selected 51 pairs of simi
image to each ofth.e key images. For the basic d|§tance measm%es_ For each pair, we queried the system with one of th
on our system, this step takes from about a microsecond RBGges and measured the position of the othegetimage in

image to more than four-fifths of a millisecond per image. Th@e retyrned sequence. We then calculated the true position

third column of Table 5 shows the values. _ the target image and compared the returned positions to the tr
e Step3. The system calculates the lower bound d'StanCEBSitions.

from the query image to each of the database images. We measured the fraction of matches that were returned
* Step4. The system returns the images with the smallegk it of the first 25 images. This corresponds to a scenario whe

lower bound distances calculated in the previous step. a user might ask for several images to be returned for clos

The third step above is the deciding factor on throughput. T&amination. We further measured the fraction of matches th:
timing of the other steps is relatively stable across database si¥&/e returned within the first 400 matches, corresponding to
a|though the number of keys in Step two which are necessary Wﬁnario inwhich the user or SyStem is Wllllng to do more work tc
adequate performance will tend to increase as the numberfiBfl & closer match. We also measured the fraction ofimages th
images in the database increases. were returned in their precise position. As we selected matchin

We measured a time of approximate|y 4 ms to perform tlﬂ:;ﬁirs of test images by hand, we had to deal with the pOSSib”
third step on 1000 images if 35 keys are used. This represeifitdhat the test image pairs did not truly match with respect tc

a throughput of well over 250,000 images per second, once the distance measures on the system. Our experiments were ¢
signed to measure the ability of the system to find the close:

images to queries, so we excluded an image pair from tests

TABLE 5 a distance measure if it was discovered that the target imac

Feature Extraction and Distance Calculation Time for Represen-  was not one of the five actual closest images to the query imag
tative Distance Measures Used in FIDS on a Pentium Pro 200-mHz  for that distance measure. Our database contained 37,748 ii

PC ages, and we used 35 keys for each base measure.
Feature Distance Number of distance
extraction time calculationtime  calculations  7.2. Results for the Bare-Bones Triangle Inequality Algorithm
Distance measure inseconds  in ms per 1000 per second . .

Tables 6 and 7 show the results of experiments using the fu
Color (4x 4 x 4RGB) 0.12 46.00 2174 set of valid matches. Depending on the distance measure, fro
Color (8 x 8 x 8RGB) 0.13 37.00 2669 50% to 100% of all the matches were within the first 25 image:
LBP 0.04 28.00 3623 returned by the system. In almost every case, over 90% of tr
gfsgl 8:5(5) 2:1(2) 8232’9323 matches were within the first 400 returned images. In a secor
Wavelet 0.02 863.00 115 set of similar experiments, we simulated a user with a mort

restricted definition of closeness. For each distance measul
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TABLE 8
Summary Performance of Distance Measures Using
Closer Pairs of Validated Images

TABLE 6
Summary Performance of Distance Measures Using
Full Set of Validated Images

Distance 100% in 90-99% in 80-89% in Distance 100% in 90-99% in 80-89% in 70-79% in
measure class first 400 first 400 first400  measure class first 400 first 400 first 400 first 400
Single measures 3 2 3 Single measures 6 0 2 0
AND’ed measures 7 12 1 AND’ed measures 20 0 0 0
OR’ed measures 16 1 3 OR’ed measures 18 1 0 1
SUM’ed measures 10 10 0 SUM’ed measures 20 0 0 0
Totals 36 25 7 Totals 64 1 2 1

Note.There were no distance measures in which less than 80% of the targeNote.Almost every distance measure returned all targets within the first 4C
images were returned in the first 400 images out of 37,748. images.

the query-target pairs were sorted in increasing order of quefzparates from Q for valuet. The purpose of the algorithm is.
target distance. Only the first half of these lists were used @€liminate as many nonmatching candidate images as possi
compute these results. The results were markedly better for fiE2Ugh key comparison. Thus, a good key will eliminate mor
experiments using the closer half of the valid matches. Table§@ndidate images than a poor key. The concept of separat
and 9 show the results of experiments with the restricted setd§iscribed above motivates the following discussion.

valid matches. In this case, only nine distance measures out offiven a set of database imaggsdistance measure, and
the 68 tested measures had less than 80% of the target imagf¥d< . we can compute a density functidrond(l, K), I € 5.
returned within the first 25 images. Furthermore, in 64 out of 68Nce we do not know the queries in advance, we make the si

distance measures, every single one of the matches were retuRléing assumption that the queries are taken from the databz
within the first 400 images. images and ignore exact matches in our searches. Given thre

oldt, we can calculate the fraction ofimages tKawill separate
from arandom query by looking at this density function. For ex
ample, if all of the area of the density function lies in a narrov
Lo . . . . rapge &, x + €), e < t, as shown in Fig. 14a, thet will never

. We begin this secﬂop with a d|scus§|on of whqt makes.a 90Q parate any query from any image in the database. If the de
single key. Later, we discuss the choice of keys in comblnatlogty function has a uniform distribution, as shown in Fig. 14b

We make the simplifying assumptionthatalldistancesarewitl"men for 0< t < 1/2, P(K separates from Q)= (1—t)2. If

the range of 0 to 1 inclusive. the density function is multipolar, with equally sized narrow
spikes separated by distance greater thas shown in Fig. 14c,
thenP(K separate$ from Q) = (n — 1)/n. If the density func-
tion has a Gaussian shape, as shown in Fig. 14d, then, roug
distance functiom. We say that keX separates Grom | for speaking, greater standard deviations will indicate greater ave
valuev if [d(l, K) —d(Q, K)| > v. Suppose thad(l, Q) >t age separation of images by the key.

for some threshold. The triangle inequality implies that the The issue gets more complicated when choosing several ke
value |[d(I, K) —d(Q, K)| can range from O ta(l, Q). Key Using keysK; and K, will be no better than just using if

8. KEY SELECTION

8.1. Good Keys forhresholdStyle Queries

Consider database imade query imageQ, key imageK,

K will eliminate imagel as a candidate match @ only if it

TABLE 7

Summary Performance of Distance Measures Using Full Set of
Validated Images, Showing How Many Distance Measures of Each

Type Returned the Target Images in the First 25 Images

they both separate the same images from queries. The ques!

TABLE 9

Summary Performance of Distance Measures Using Closer Pairs
of Validated Images, Showing How Many Distance Measures of
Each Type Returned the Target Images in the First 25 Images

Distance 100% 90-99% 80-89% 70-79% 50-69% Distance 100% 90-99% 80-89% 70-79% 50-69%
measure class infirst25 infirst25 infirst25 infirst25 infirst25 measure class infirst25 infirst25 infirst25 infirst25 infirst25
Single measures 1 0 1 4 2 Single measures 2 1 2 1 2
AND’ed measures 2 2 10 6 0 AND’ed measures 13 5 0 2 0
OR’ed measures 6 0 0 12 2 OR’ed measures 6 0 10 2 2
SUM’ed measures 4 6 10 0 0 SUM’ed measures 16 3 1 0 0
Totals 13 8 21 22 4 Totals 37 9 13 5 4
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excellent performance compared to linear search even with ra
dom keys, so this is a natural benchmark against which to te:
the other algorithms.

£ £ VARIANCE. Taking a subse$’ of our databasé&, we calcu-
lated the density function af(l, K), | € &', for each candidate
key K. We selected those candidate keys which had the densi
functions with the greatest variance.

SEPARATION. We examined our database by hand to finc
pairs of images that we judged to be approximate matches. Tt
average distance between these pairs was calculated. This va
t represented a potential threshold value that one might use in
query to find approximate matches. We then selected those ce
didate keysK which maximizedP(|d(l1, K) —d(l;, K)| > t)
over all pairsly, 1, € §’, whereS’ was a subset of our database
£ £ S

d(s,k) d(s,k)

a) single spike b) uniform

GREEDY. VARIANCE and SEPARATION may choose sev-
eral keys which separate the same pairs of images. We thi
modified SEPARATION to keep track of which pairs of images

were separated by each key. The first key selected was the sa

a(s,k) dls,X) a5 that selected by SEPARATION. The performances of the re
) . maining keys were then recalculated to discount pairs of image
¢) multimodal d) Gaussian already separated by the first key. This process was continue

FIG. 14. The shape of the density functions determines the performanceft())lcr subsequent keys until a Preset numbe.r of keys .Was selecte
the keyé. CLUSTER. We used a simple clustering algorithm on the

database. We selected the two database imdgesdK, that

were furthest apart and used them as initial seeds for cluste
of whether or not two keys separate the same images is CaAy. These two images were placed into our set of keys, an
putationally expensive to answer in the general case, but canie remaining images were assigned to clusters based on th
approximately answered by sampling. One can also use the fgigtances to the key images. We then found the image that w:
that very similar keys will separate many of the same images afagthest from the current set of keys, added it to the set, an
thus try to avoid keys that are too close together. For examplgclustered the database on the updated set of keys. We cont
in a clusterable database, keys should come from different clugd this process until the correct number of keys were selecte
ters. Indeed, the key selection algorithms with the best resuliste that this algorithm differs from the others in that the se-
make use of clustering and ensuring that different keys sepangiged keys came from the database itself.

different images.
8.4. Experiments

8.2. Good Keys foBest-MatchQueries For our experiments, we collected two sets of images, on

Given imaged; andl,, queryQ and keyK, assuming that with 600 members, and one with 800 members. From each s¢
d(l1, Q) <d(l,, Q), key K orders k and I, correctly if 100 images were chosen arbitrarily to be candidate key image
I(d, K, I, Q) <I(d, K, I, Q). We can extend this definition The remaining 500 and 700 images became the test databa
naturally to sets of keys and multiple distance measures. Alke five algorithms were run on the candidate images to choo:s
though our analyses were fitrresholdqueries, the results weresets of 1 to 9 keys.
very good fobest-matclgueries as well. Further analysis ofkeys We queried the database against itself, testing the systern
optimized forbest-matchyueries is an open area of research. performance using the keys chosen by the key selection alg

rithms. To eliminate exact matches, we temporarily remove
8.3. Algorithms for Key Selection each query image from the database. To test the performance

the keys on dest-matctsearch, we determined the best match

We examined f'|ve different algor.lthms for key selection: ans the guery and calculated its position in the ordering of the
dom keys, choosing keys by examining the variance of the dgn-

. X ) ) ; - ower bounds. To test the performance of the keys tmresh-
sity function, ranking by testing thresholding efficiency, agree ¥ search. we counted the number of images separated fro
thresholding algorithm, and a clustering algorithm. The alg '

rithms assume a databaSend a set of candidate keys. the query by a given thresholq value. This thre_shold value wa
determined off-line by calculating the average distance betwee

RANDOM. Our prototype image database system currenthairs of images known to be similar. For the RANDOM key
uses a set of (up to 35) keys chosen randomly and uniforndglection algorithm, we ran the tests 10 times and averaged i
from the database itself. The triangle inequality algorithms givesults.
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TABLE 10 pruning to find the best match. The database of 500 imag
Best Algorithms for Best-Match with Nine Keys had slightly worse performance with the average ranking of tr
on a Database of 500 Images best image ranging from 1.2% to 5.1%, again with the wor:
performance found iklorizontal Color.
A B o D E F
Color histogram GREEDY 09% CLUSTER 11% 16% 18 8.5.2. Performance of key selection algorithms chrresh—
LBP texture CLUSTER 1.2% GREEDY 16% 23% 190ld- As Table 11 shows, the GREEDY key selection metho
Horizontal color GREEDY 3.6% CLUSTER 3.7% 4.6% 1.3Was the clear winner fothreshold yielding the best perfor-
Vertical color GREEDY 2.5% RANDOM 3.5% 3.5% 1.4 mance for every distance measure. There was no clear sect
\'jg:;éi?ii‘)éﬁiure gl'_-ngTTEE 22;1:/43 g&ggg\\(( 2327;’//0 ;‘-98(‘:?1 f-gplace algorithm—RANDOM, VARIANCE, and CLUSTER all
. (1] N (1] N 0 B H
Min (Color, Texture) GREEDY 10% CLUSTER L7% 2.2% appeared in second place for several measures. The GREE

CLUSTER 11% 1.7% 1.7Xeysreduced the number ofimages that had to be directly co
pared by the RANDOM keys by 16% to 44%.

Note.Column headings: A, distance measure; B, best key selection algorithm; The second thing to note in Table 11 is the wide range of pe
C, average rank of best match using best algorithm; D, second best key seledfigftmance between distance measures. The triangle inequa
algorithm; E, average rank of best_match using sgcond best_algorithm; F, averg@orithm thresholded 98.5% of the images for @mor His-
rank of pest match using randomlz_ed key selection; G, ratio of pen‘ormancetggramdiStance measure, yet it only thresholded 54.6% of tr
randomized algorithm to best algorithm (F/C). . . ! . A
images for thevertical Texturedistance measure. It is difficult
to compare across distance measures since the distribution
distance values across pairs of images varies greatly from me
sure to measure. Especially interesting was the fact that usi

We discuss the performance of the various key selection filke keys forVertical Textureresulted in a 53% thresholding.
gorithms, first forbest-matchand then forthreshold As the Thus the additional four keys only eliminated an additional 29
rankings of the algorithms did not change much as a functiofi the database. In [2], Baeza-Yatesal, demonstrated how,
of number of keys, we only show the results for nine keys, tlgiven a random model for database objects and keys, a logari
maximum number tested. As the performance of the algorithmsc number of keys should threshold almost all of the databas
on the two databases was very similar, we only show tables feer our experiments to have supported this, the addition of fo
the larger database. more keys would have had to increase the thresholding fro
53% to about 70%. That this did not occur demonstrates th

8.5.1. Performance of key selection algorithms BESt- 4 itional models of randomness do not really apply to sets
match Asis shown in Table 10, CLUSTER provided the besty images.

keys for the texture measures, while GREEDY provided the best

keys for the color measures and the combination color/text.ge. Analysis

measures. The second best algorithm was also always GREED

or CLUSTER, except for theertical texturemeasure in the

larger database, which had RANDOM as the second best.
Columns C, E, and F of the table show the average rank of

best match using the appropriate key selection algorithm. For

Color + Texture GREEDY 1.0%

8.5. Results of Key Selection Tests

Y

The performance of keys in image retrieval is intimately tie
to the statistical behavior of the distance measures over t
ljﬁréage set. At present, we have a limited understanding of th

example, a 2% would mean that the true best match was ranked TABLE 11

in the top 2% of the returned images. Column G represents the Best Algorithms for Threshold with Nine Keys

ratio of the number of images that would be examined using the on Database of 700 Images

RANDOM keys to the number ofimages that would be examined

using the best discovered keys. Thus, in the first row, the best A B c D E F G
keys returned the closest match in the top 0.9% of the images;,,, histogram GREEDY 98.5% RANDOM 97.4% 97.4% 1.7
For the 700 image database, this translates to the top 6 o(BP texture GREEDY 83.2% CLUSTER 81.2% 77.8% 1.3
images. The random keys returned the closest match in the topHatizontal color GREEDY 94.4% RANDOM 90.8% 90.8% 1.6
images. Ifthis database was a representative sample of a 700, gergcal color GREEDY 93.2% VARIANCE 90.0% 89.8% 1.5

; ; ; izontal texture GREEDY 55.3% CLUSTER 49.9% 47.5% 1.2
image database, then the number of images needed to be dire g%zca“exture GREEDY 54.6% VARIANCE 52706 47.9% 15

compared would be approximate 630 a_nd 1120, respectl\{ely. fh (Color, Texture) GREEDY 97.8% CLUSTER 96.4% 96.1% 1.8
average, there was a 42% reduction in the number of imag€sior+ Texture GREEDY 94.5% CLUSTER 915% 91.2% 1.6
examined using the best discovered keys, compared to using the

random keys. Note.Column headings: A, distance measure; B, best key selection algorithi

The overall performance of the algorithms was excellent ﬁ1 average percentage of database eliminated using best algorithm; D, sec
" best key selection algorithm; E, average percentage of database eliminated

the worst case for the database_Of 700 imagesizontal Color ing second best algorithm; F, average percentage of database eliminated u:
the closest match was ranked in the top 3.6%—that meant thatiomized key selection; G, ratio of performance of randomized algorithm

only approximately 24 images had to be compared directly aftesst algorithm (100%- F)/(100%— C).
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behavior; this limits the sophistication of our key selection al- ROOT
gorithms. Thus, more research into the behavior of the distance
measures is called for. A more complete set of distance mea-

)

- . . 3 4 Distances to Key °J’
sures will also be used in our future tests. Distance measures
have been proposed for color, texture, shape [8], object pres- /\ |
ence [18], and object spatial relationships [7]. We would like to 1 9 8 Distances to Key 'K’
include representatives of each type of measure in our tests. | | |
In our work, we selected keys from the database itself. The (w x) Y) @)
space of possible keys is huge—it is the space of possible im-
ages. We would like to take advantage of this freedom in some FIG. 15. Triangle trie with two levels.

tractable manner. For example, it may be possible to construct
artificial images that are excellent keys for either a specific

database, or even for large image domains. Furthermore, byrBaeza-Yategt al. and by Berman in independent research
analysis contained the assumption that the query domain vedforts. A single triangle trie is associated with a distance mea
similar to the database. This is not necessarily the case. sure, a set of key images, and a set of database elements. |

Even if we restrict our candidate keys to some random suf#form oftrie, which is a tree in which the edges leading from
set ofn images, the number of possible subsetsnokeys is the rootto aleaf “spell out” the index of the leaf. The leaves of the
exponential inm. There is no guarantee that there is not sonteee contain the database elements. Each internal edge in t
difficult to find set of keys that will prune the database far mongee is associated with a nonnegative number. Each level «
than any other set. It may be that heuristics like those traditiotire tree is associated with a single key. The path from the root ¢
ally used for NP-complete algorithms may be applicable for kejie tree to a database element in a leaf represents the distan
selection. from that database element to each of the keys.

Finally, there has been no published work on the proper num-Figure 15 illustrates a triangle trie with four elements
ber of keys to use for a database of a given size. There g\, X, Y, Z), and two keys J, K). The distance fromWV to
trade-off between the elimination power of a set of keys anilis 3 and the distance froW to K is 1. This is expressed in
the execution time required to compare the query to the key sl trie by the path from the root to the leaf containifg
Some queries may require more keys than other queries for gooGonstruction of the trie is straightforward. Compute the dis-
performance. tances from the keys to the database elements. Starting with

Of the algorithms tested, CLUSTER and GREEDY clearlgmpty trie, insert the database elements one at a time using t
gave the best results. The improvement over random key selgeetor of its key distances. Create nodes as necessary until €
tion was up to a factor of two. As random key selection reducesy element is in the trie. Formally, l&= (x4, ... X,) be our
best-matctsearches to just a few percentages of the databaset, of objects in the database. ke, . . ., key, be another set
the use of random keys may be perfectly acceptable for smaliérobjects, known as “key objects.” For eaghin S compute
databases. the vectorv; = (d(xi, key,), d(x;, key,), ..., d(xi, key;)). Then

One thing to note is that, given sample database imagesombine the vectors,, ..., v, into atrie, with x; being placed
andm candidate keys, CLUSTER and GREEDY ta®4n?) on the leaf reached by following the path represented by
and O(mr?) time, respectively. Thus, for very large databases,
one might consider sampling the database. We used samplin§.ib. Pruning the Search with a Triangle Trie
GREEDY and not in CLUSTER, yet GREEDY was essentially
as good as CLUSTER in some cases and better than CLUST\E
in the rest. It is promising that relatively simple algorithms werg
able to increase performance to the extent shown in this Papgr.~

uppose we are given quegyand threshold integer and
h to find all objects in our database with a distance fcpof
more thari. Now, consider a nodep at levell with a value
. Every object at leaves descendant frpinas a distance of
C from the key objeckey. Thus, if |C —d(q, key)| is greater
9. THE TRIANGLE TRIE thant, then we know from the triangle inequality thadq, s")
is greater than for all objectss’ which are descendants of
Although much faster than direct comparisons, the basitius, we can safely prune the search at npde
triangle-inequality algorithm described above has arunning timeThe algorithm for searching the database using the triangl
of O(nk), wheren is the number of images aikds the number trie is straightforward. Compute the distances frqrto each
of keys. Running time may become unacceptable for very largey: d(q, key,), . . ., d(q, key;). Perform a depth-first search of
databases with a large number of keys. Therefore, we take ttk trie. If there is a nodg at levell with value C such that
vantage of a data structure called thangle trie [4] to reduce |c—d(q, key)| >t, then prune the search at noge When a
the number of operations. leaf is reached, measure the distance fipto every object in
A triangle trie, also called &eally Fixed Query TreR],isa the leaf and return those objectdor whichd(q, i) is less than
data structure developed for approximate-match searching botrequal tat.
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Searching the trie: An example We continue with the exam- with threshold. Now consider the composite distance measut
ple. Suppose we wish to search our database for a close matth Q) = Min(dy(l, Q), dx(I, Q)). Assume the threshold used
to objectV where our maximum allowed distanceMas 1. We ist. Let T; and T, represent the tries associated withand
computevy by calculatingd(V, key) andd(V, key). We dis- d,, respectively. Since(l, Q) < t wheneverd;(I, Q) <t or
coverthaby = (3, 8). We then perform our depth-first search. At,(1, Q) < t, we must find all images wherh (I, Q) <t or
the top level, we only search nodes with a value withih B, so  dy(l, Q) < t. Thus, we calculaté’(Ty, Q, t) and R(T,, Q, t)
both nodes at this level are searched. Atthe second level, we oatyl merge the results. Call this resultant$ef his set consists
search children of those nodes with a value withih 8. Atthis  of all images that have a possibility of being within distahce
level Y andZ are returned as potential matches, wiklandW to Q by distance measurk We then prun&’ with the triangle
are eliminated. The final stepis to compd{¥, Y) andd(V, Z). inequality on the composite functiah
The algorithm does not need to compd{®/, X) andd(V, W). The objective in using the triangle trie is to reduce the numb

There may be cases where the distance measure is not inteénages for which we have to compute the triangle inequalit
valued, or where the distance measure has such a wide varianith the full set of keys. Therefore, when using multiple trian-:
that any resultant triangle trie would have a very quick fargle tries, our objective should be to return as small as possik
out. In these cases, it may be necessary to map the calculaedof images that need to be further pruned. We have dev
distances to a smaller set of values. We call this procssng oped algorithms for each of the operations—Min, Max, Sun
the distances. We have conducted experiments with triangle trégesl Weight—that reduce the size of the returned set. We d
of various bin sizes and depths to better understand the effecsofibe the various algorithms for binary operations and then shc

binning on performance. how to combine them for a more complex composite distanc
function.
9.2. Two-Stage Pruning with a Triangle Trie 9.3.1. The Max function. Given distance functiordy anddy,

The breadth of a triangle trie expands with its depth, up gsSociated triangle tri§§ andT,, queryQ, and threshold, sup-
a maximum breadth equal to the number of database elemeRfs€e we wish to find all imagdssuch thati(l, Q) < t, where
The value of a pruning step is directly related to the number 8f!- Q) =Max(d(l, Q). d2(I. Q)). Ford(l, Q) < t to be true,
leaves of the pruned subtree. Thus, as the breadth increasesP@idi(l, Q) anddy(l, Q) mustalso be true. Thus, the algorithm
performance of the tree-pruning algorithm decreases, until itf@ the Max function is to calculatB(T:, Q, t) N R(Tz, Q. t) by
unfavorable when compared to directly calculating lower bounggarching off; andT; and taking the intersection of the results.
for each database object. On the other hand, the efficiency of #feond stage pruning is then applied to the intersection set.
triangle inequality algorithm increases with the number of keys Note that we could perform second stage pruning on
used. Our work suggests that by using a relatively short tfT1. Q.t) and R(Tz, Q. t) separately and take the intersec-
and by storing additional key distances in the leaves, we cign of the results. Assume the sizes of the two setsianedm
obtain the best of both worlds. Our two-stage algorithm worl%ith k keys and an intersection af < Min(n, m). Intersecting
as follows: Given database images. . ., In, keysKu, ..., Km, before key comparisons results in an intersection step time
and distance measulewe create a triangle trik of depthTyepr, ©O(N+m), followed by a key comparison step of tinté(kw).
whereTgepn < M. For each stored image, we referenc; in Eerformmg key comparison first re;ults in a key compariso
the trie along withd(l;, K;) for all Ky, ..., Km. Given query time of O(k(n+m)) followed by an intersection step of un-
Q, we perform our search of the trie as described above. Org¥Wwn time (all elements could have been eliminated). Whic
completed, we calculate lower bounds on the returned imagB§thod is faster in any particular case would probably rely hea
using all the keys. This further reduces the size of the returned $on details of the system.

9.3.2. The Min function. Supposed = Min(dy, dy). If im-
9.3. Using Triangle Tries with Composite Measures agel has the property thad(l, Q) <t eitherd,(l, Q) <t or
déél, Q) <t must be true. Thus, must be inR(T;, Q,t) U

A triangle trie is designed to enable thresholded datab . ) . D
searches for a single distance measure. However, it is possi- 2’ Q. 1). To find potent!al approximate mgtches@un this
se, we compute the union of the tRdunctions.

ble to use multiple triangle tries to enable thresholded datab&88
searches over a composite measure. The intuition is to figure ou®.3.3. The Addition function. Supposel = d; + d,. Suppose
for each distance measure, what threshold should be used forithagel has the property that(l, Q) < t. Certainlyd(l, Q) <
corresponding triangle trie. Searches are done on the individuad di(1, Q) <t, dx(I, Q) < t. Thus, ifimagd hasthe property
tries and the returned images are either merged or intersectbdtd(l, Q) < t, then as in the Min function abovemust be in
depending on the particular operation. This operation substitu®&l;, Q, t) N R(T,, Q, t). This leads to an algorithm where we
for the first stage of the two-stage pruning algorithm. The seconalculateR(T;, Q, t) andR(T,, Q, t) and take their intersection.
stage proceeds as before. There are other algorithmic possibilities. For example,
To see how thisworks, consider the following example: Defing(Ty, Q,t) N R(Tz, Q,t) = se R(Ty, Q, t) implies that we
R(T, Q, t) as the set of images returned from a search orTtriecould just calculateR(T;, Q,t) and not bother to calculate



192 BERMAN AND SHAPIRO

R(T,, Q,t). This may be faster in some cases. Similarly we TABLE 13
could just computeR(T,, Q,t). We could compute both and  Characteristics of the Best Tries Found for Each Distance
return the smaller set. We also can reduce the thresholds for Measure, Rated by the Speed Factor

the individual sets, as follows: Suppose thgtl, Q) > v for a

giye” imagd and some arbitrary value Thend(l, Q) =<t im- Measure ngif(?r Binsize  Triedepth  Time Rer:\uartnci(:zs
plies thatdy(I, Q) < t —v. Thus,d(l, Q) <t = di(I, Q) <
v,dy(l, Q) < t—w for any v. We therefore can claim that sobel 47.8 10 6 0.4 318.6
I must be inR(Ty, Q, v) UR(T,, Q,t —v) for any legitimate Gridded Sobel 38.6 30 15 0.7 343.0
0 < v < t. Thus, to find potential approximate matches in thigridded wavelets  22.3 20 8 12 598.6
case, we can pick some value fomnd compute the union of ggl‘i‘:ed color 185501 2?60 él 4168 12383264
the twoR functions with the modified thresholds. Wavelets 38 40 4 118 23436
It is an open question as to how to efficiently decide the bestidded flesh 3.2 30 4 7.0 4588.2
value forv. Choosingv = 0 orv =t has the advantage of elim-LBPHist 2.8 30 7 20.1 5740.7
inating the search of one trie entirely, as well as the consequél§eh _ 2.6 80 1 74 59802
merging of results. Yet there is evidence that halving a threshdfgdded LBPHist 2.4 80 8 121 5465.0

more than halves the returned results. In our system we SImpl)(lote:Time is in milliseconds for a search of 20,000 images and is just for

choosev =t/2. the trie search itself. The speed factor is the ratio of time taken for a search

. . 20,000 images using the triangle inequality algorithm without the triangle trie tc

9.3.4. The weight function.Suppos@ = Cd; for some pos- 5 search using the triangle trie as a precursor to the triangle inequality algorithr
itive constanC. Thend(l, Q) < t impliesd,(l, Q) <t/C. In
this case we find candidates for approximate matche&3 by

calculatingR(T, Q, t/C). We created a set of triangle tries for each distance measur
_ . . varying the tries by depth and bin size. The depths ranged from
9.4. Experiments on Triangle Tries to 11, and the bin sizes ranged from 10 to 130 stepping by 10. A

We tested the performance of the triangle trie inimage seardhe distance measures except the Haar Wavelets had a range «
es. We used the basic distance measures described earliertad@00. The Haar Wavelets had a theoretical range greater th
gridded versions of the measures. Currently, our database cb@00, but no distances greater than 1000 were calculated duri
tains 37,748 images. We used only 20,000 of these images in Bl experiment. Experiments were not conducted for a give
triangle-trie experiments to reduce disk accesses, which migﬂpth and bin size if the created trie would contain more tha
otherwise have disrupted the time measurements. 20,000 nodes. This limit was chosen due to memory constraint

Trie searches are performed given both a query and a threshI here are 35 key images in our database. Any subset of the
old value. No images that are provably more distant to the queign be used as the keys for the tries. We created five rando
than the threshold value are returned from a trie search. The@ferings of the keys. For each triple of 10 distance measure
ficiency of the trie search is dependent on the chosen threshblddepths, and 13 bin sizes, we created five tries using the appr
value. Thus, we had to determine appropriate threshold valigiate five prefixes of the random key orderings. For each suc
for each distance measure. We examined the distances betwiéenwe tested five images, resulting in a total of 25 tests for eac
pairs of closely matching images in our database to determffi@le of distance measure, depth, and bin size. This resulted in
appropriate threshold values. These values are listed in Tabletpfal of 33,295 experiments, notincluding experiments that wer
The threshold values for the gridded distance measures wakandoned due to too large a trie being created. Each experime
chosen to be the same as those for the nongridded distance i@s repeated 250 times to improve the accuracy of the measur
sures. This consistency afforded an opportunity to see if thdt@e. We recorded the size of the created tries, the number ¢

were marked differences in performance between the gridd@@tches returned for a search, the number of internal trie nodt
measures and regular measures. accessed, the number of leaf trie nodes accessed, and the tim

took to walk the trie and return the matches.

TABLE 12 9.5. Triangle-Trie Test Results with Single Distance Measure:s

Threshold Values Chosen for the Triangle-Trie Experiments In Section 6, we estimated a time of approximately 4 ms

to calculate the lower bounds on 1000 images using the bar

Distance measure Threshold value ) i ; ) ) °

bones triangle inequality algorithm, not including key calcula-
Color (4x 4 x 4RGB) 200 tions and feature extraction. We used this value to calculate tt
LBP 90 speed-improvement factor gained by using the two-stage prut
Wavelet 15 . . . .

ing algorithm instead of the bare-bones algorithm.
Sobel 10 . .
Flesh 10 Table 13 shows the results of the tries that had the highe:

speed improvement factors. The gridded version of the loca
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TABLE 14 9.6. Triange-Trie Results with Composite Distance Measure:s
Characteristics of Tries Found for Each Distance Measure

with the Median Speed Factor Thetwo-stage pruninglgorithm, detailed in Section 5.2, is a

method for using triangle-tries for composites of basic distanc
Speed Returned measures. Given a distance meadlire g(dy, .. ., dk), where

Measure factor ~ Binsize  Triedepth ~ Time  matchethe system hastriangletries for the distance meashres. , dy,

the system computes appropriate threshold values for the |

2‘:53'6 d Sobel 114266 9400 86 11‘23 1%1;;02 sic distance measures and composites the returned poten
Gridded color 6.8 90 4 31 19620 Matches dependent on the charactegp). The bare-bones
Gridded wavelets 5.2 20 3 4.2 2564.4 triangle-inequality algorithm is then run on the returned poter
Color 5.0 20 4 6.8 1826.5 tial matches.
SlndﬁEd flesh 1282 1368 86 118-?? fgggé The two major methods for compositing returned potentie
es . . . ) . . . .
Gridded LBPHist 18 100 8 133 6250 ¢ Matches are intersection and union. As expect_ed, intersecti
Wavelets 16 130 5 18.7 6542 4 reduces the number of potential matches, while merging i
LBPHist 1.4 130 9 16.5 8466.4 Creases them. Suppose the returns from several triangle tr

are merged, and the resultant set of images is the same size
Note.Time is in milliseconds for a search of 20,000 images and is just fehe full database. In that case, no benefit is accrued from the

the trie search itself. The speed factor is the ratio of time taken for a searchoqfthe triangle trie. On the other hand, suppose the results frc

20,000 images using the triangle inequality algorithm without the triangle trie o . ) . '

a search using the triangle trie as a precursor to the triangle inequality algoritl'ﬁﬁ.veral tries are to be intersected, and a search of one of the t

returned only a small handful of potential matches. In that cas

bi tition text had th - . since the intersection of andY is contained withinX, it may
inary-partition texture measure had the minimum Improves, directly proceeding to lower-bound calculation witt

ment, being about twice as fast with a rie as without one. At t ffat small returned handful and avoiding the cost of processil

other end of the scale, the Sobel-edge-histogram texture mea?Héeremaining tries or of intersecting the results. Tables 16 ai

was almost 50 times as fast with a trie as without one. This rePs chow the average results of merging and intersecting vario

resents a potential processing rate of almost 12 million IMagefurned matches from the triangle tries for the basic distan
per second. measures.
Note that there are many factors which affecttrie performance.

Even within a given trie depth, bin size, and distance measu,
the speed of a trie search varied greatly with the keys chosen and
the query image (see Tables 14 and 15). Trie search performancghe Triangle-Trie offered improved performance on all of the
varies with the chosen threshold value—as the algorithm ugested distance measures. Some of the improvements were g
the threshold value to prune subtrees—reducing the threshold

results in less of the tree being walked, yielding a time savings. TABLE 16

In particular, the algorithm walks only one path with a threshold ayerage size of Image Sets after Merging or Intersecting Image
Value Of Zero, Wh'le |t Wa||(S the fu” U‘Ie W|th a '[hl‘eSh0|d Valu%equences Returned from Triangle_Trie SearcheS‘ Us|ng One or

Discussion of Results for Triangle Trie-Experiments

of infinity. Two Distance Measures
Merged set Intersected set
TABLE 15 Distance measures average size average Size
Averages of Trie Statistics (Each Column Individually Averaged)
Color 3568
Speed Returned Internal Leaf LBP 6102
Measure factor Time matches nodes nodes Wavelet 3023
Sobel 427
Sobel 154 20.8 1679.5 17.3 49 Flesh 8090
Gridded Sobel 15.0 22.8 1514.8 28.1 6.4 Color flesh 10001 1656
Gridded color 6.6 61.6 3024.0 123.7 103.0 Color LBP 8342 1327
Gridded wavelets 6.5 63.4 3997.5 a7.7 14.6 Color Sobel 3889 106
Color 4.8 77.3 3167.2 152.2 132.3  Color wavelet 5570 1021
Gridded flesh 2.2 98.2 5954.8 9.4 1.8 LBPflesh 11727 2464
Wavelets 1.7 231.9 5439.1 35.0 15.2 LBP Sobel 6355 173
Flesh 1.7 115.8 7616.3 11.9 2.4  LBP wavelet 7949 1177
LBPHist 1.4 167.4 8060.9 350.7 257.2  Wavelet Sobel 3382 68
Gridded LBPHist 1.6 163.8 7050.9 408.5 231.4 \Wavelet flesh 9771 1342
Sobel flesh 8366 151

Note.The average is over all the tries in the experiments with depths ranging
from 1 to 13, bin sizes ranging from 10 to 140, and no tries with more than Note: The rows labeled with single distance measures show the average si
20,000 nodes included. of the original sets.
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TABLE 17 There are anumber of open problems in the various data stru

Average Size of Image Sets after Merging or Intersecting Image  tures and algorithms we described. We have already mention
Sequences Returned from Triangle-Trie Searches, Using Three or  some of them, like key selection, number of keys, trie depth
Four Distance Measures and bin size. More generally, the statistical behavior of distanc

Merged set Intersected set TMEASUres over different sets of images influences the behavi
Distance measures average set average sizf all the algorithms and thus needs to be explored.
Facilitating user understanding of a system such as ours is

Color LBP wavelet 9606 438 open problem. We believe that user understanding will be an is
Color LBP Sobel 8537 46 sue for any system that offers a reasonable degree of flexibilit
Color LBP flesh 12964 653 Fundamentally, images are hard to describe. This is the flip-sic
Color wavelet Sobel 5854 31 y'“ _g - ' y p
Color wavelet flesh 11199 538 of the phrase, “an image is worth a thousand words.” And tc
LBP wavelet Sobel 8169 35 whatever extent images are hard to describe, the relationsh
LBP wavelet flesh 12812 581 between two images can be even harder to describe. Yet it
LBP Sobel flesh 11894 64 precisely this relationship that the user must define when quen
Wavelet Sobel flesh 10010 31 ing an im datab b d on content. There i lot of r -
Color Sobel flesh 10224 52 g an image database based on content. There IS a lot ot roc
Color LBP wavelet Sobel 9781 16 for fruitful research in the area of interfaces between users ar
Color LBP wavelet Flesh 13753 251 content-based retrieval systems.
Color LBP Sobel flesh 13102 22
Color wavelet Sobel flesh 11398 18
LBP wavelet Sobel flesh 12960 17 REFERENCES
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