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ABSTRACT 

The success of radiation therapy depends critically on 

accurately delineating the target volume, which is the 

region of known or suspected disease in a patient. Methods 

that can compute a contour set defining a target volume on 

a set of patient’s biomedical images will contribute greatly 

to the success of radiation therapy and drastically reduce 

the workload of radiation oncologists, who currently often 

draw the targets by hand on images using simple computer 

drawing tools. We are developing methods for 

automatically selecting and adapting standardized regions 

of tumor spread based on the location of lymph node 

regions in a standard or reference case, using image 

registration techniques. Previously available image 

registration techniques (deformable transformations 

computed using mutual information [5]) appear promising 

and can be supplemented by utilizing landmark 

correspondences in the optimization process to come closer 

to achieving a clinically acceptable match. 

1. INTRODUCTION 

With the rapid development of conformal radiation therapy 

and Intensity Modulated Radiation Therapy (IMRT) 

systems in the field of Radiation Oncology, it is now 

possible to deliver a precise dose of radiation to irregularly 

shaped target (tumor) volumes. A 3-dimensional target 

volume needs to be defined to facilitate a treatment plan, 

and the success of the treatment depends on knowing the 

exact extend of the target volume in each patient. 

Radiation oncologists have adopted definitions for 

various components of the target volume. The Gross Target 

Volume (GTV) is the visible and palpable tumor mass 

usually visible on images (CT and MR). It is not 

automatically identifiable with existing image processing 

techniques. The Clinical Target Volume (CTV) includes 

the locations of microscopic local and regional spread, 

which usually means the GTV plus the lymph node regions 

around it. Microscopic disease cannot currently be imaged 

by any existing clinical technique. Even the nodes 

themselves are often hard to identify in the images. The 

task of delineating these nodal regions, which is usually 

done by clinicians, is quite time consuming. Clinicians 

often elect to perform less aggressive, non-conforming 

treatment, because they do not have the time to draw the 

outlines of the nodal regions and CTV, even if they are 

confident of which node groups are likely to have disease to 

treat. 

Inter-subject image registration methods have been the 

subject of extensive study in many areas of biomedical 

imaging applications, for example the brain mapping. We 

are proposing an image registration method that maps 

predefined head and neck nodal regions of reference 

(canonical) models to target patients and suggests where 

the CTV might be in a target image set. 

2. IMAGE BASED NODAL CLASSIFICATION 

Cervical lymph nodes are divided into regions or “levels” 

that are described by their anatomical locations. Traditional 

classification has used surgical landmarks or other physical 

assessment criteria, but more recently image-based 

classifications have been proposed [1][2] that provide a 

more consistently reproducible nodal staging model. Figure 

1 shows an example of nodal region contours in a CT 

image. 

3. LANDMARK CORRESPONDENCE 

Anatomical landmarks are commonly utilized in image 

registration methods, which use landmark points to match 

the image properties in different image sets and bring them 

into alignment. They are also often used in combination 

with an entirely different registration basis, such as brain 

mapping. For example, Christensen et al. [3] use interactive 

methods to locate anatomical landmarks that define the 

Frankfort Horizontal Plane, the Median Sagittal Plane, and 

the Coronal Plane; they then use those planes to estimate 

the rigid registration before running non-rigid registration 

with a different method (elastic model). We have chosen 

the mandible and hyoid bones as our landmarks because of 
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the proximity to the nodal regions of interest, high contrast, 

and consistent location, size and shape. 

Fig. 1: Level system of lymph node classification. 

3.1. Segmentation 

Two common problems make segmenting the mandibles a 

non-trivial task: (1) dental implants may cause metal 

artifacts in CT images; (2) the teeth may be in contact 

and/or overlap with the maxillary. Figure 2 shows an 

example of such problems, where maxillary and mandible 

may be segmented into one structure. 

Fig. 2: Example of a noisy CT image data set with metal 

artifact from dental implants, and an undesirable 

segmentation result of mandible. 

We chose to use a 3-dimensional active contour (snake) 

method to segment mandible and hyoid bones. The Insight 

Toolkit (ITK www.itk.org) provides a flexible 3-D snake 

utility. With proper parameters for the threshold, 

propagation (balloon force) velocity, and curvature term, it 

provides improved results for mandible and hyoid bone 

segmentation. Figure 3 shows a better mandible 

segmentation from the same data set. 

3.2. Surface-based warping 

Fig. 3: An improved segmentation of the mandible from the 

same noisy CT image data set as shown in Fig. 2. 

Once we have mandible and hyoid bone surface meshes 

from both the reference and target images, we can obtain 

correspondences between points on reference and target 

meshes using Shelton’s algorithm [4]. 

Let υk be the set of landmark points sampled from the 

mandible and hyoid surface meshes of the reference image 

set and ϖk be their corresponding locations in the test 

image set resulted from the surface warping. The 

deformation at those landmark points is simply 

ζk = ϖk - υk    (1) 

4. IMAGE REGISTRATION 

4.1. Previous work 

Mattes and Haynor [5] implemented a multi-resolution 

non-rigid (deformable) image registration method using B-

splines and mutual information. The transformation of a 

point x = [x, y, z]T in the reference image coordinate system 

to the test image coordinate system is defined by a 3×3-

homogeneous rotation matrix R, a 3-element 

transformation vector T and a deformation term D(x|δ) [6]: 

g(x|µ) = R(x - xC) - T(x - xC) + D(x|δ)  (2) 

where xC is the center of the reference volume. A rigid body 

transformation defined by R and T was first calculated and 

used as the initial transformation for the deformation 

process. The deformation term D(x|δ) gives an x-, y-, and z- 

offset for each given x. Hence the transformation parameter 

vector µ becomes [6] 

µ = {γ, θ, φ, tx, ty, tz; δj}   (3) 

The first three parameters γ, θ, φ are the roll-pitch-yaw 

Euler angles of R. The translation vector T is defined by [tx,

ty, tz]
T. T and R together define the rigid body 

transformation. 

The parameter δj is the set of the deformation 

coefficients. The deformation was modeled on cubic B-

splines [10] because of their computational efficiency (via 

separability in multidimensional expression), smoothness, 
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and local control. The deformation is defined on a sparse, 

regular grid of control points λj, each having associated x-, 

y-, and z- components of the deformation. The resolution  

ρ = [ρx,ρy,ρz]    (4)  

of the deformation determines the spacing of the grid and 

can be anisotropic. Mattes uses control points on a uniform 

grid with spacing 

   ∆ρ = [∆ρx, ∆ρ y, ∆ρ z]
T = 

T

z

z

y

y

x

x qqq

−
−

−
−

−
−

1

1
,

1

1
,

1

1

ρρρ
 (5) 

where qx, qy, and qz are the dimensions of the reference 

image. 

The deformation at any point x = [x, y, z]T  in the 

reference image is interpolated using a cubic B-spline 

convolution: 
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By displacing the control points, intermediate deformation 

values are computed by cubic spline interpolation between 

them. 

4.2. Using landmark correspondences 

Instead of initializing the deformations at the control points 

to zero, we propose to use the landmark correspondences to 

initialize the deformations at the control points at each of 

the multi-resolution stages. The deformation control points 

are set to a uniform grid 

λj = [l∆ρx, m∆ρ y, n∆ρ z]
T,

    where 0 ≤ l ≤ ρx, 0 ≤ m ≤ ρy, 0 ≤ n ≤ ρz. (7) 

and the corresponding deformation values D(λj) are either 

initially set to zero or calculated from the deformation 

coefficients δj of the previous iteration at a lower resolution 

of control points as in Eq. (6). 

Then the deformation of each control point that has 

landmark points in close proximity is modified to the 

deformation of the closest landmark point as follows 
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where υk is the closest landmark point to λj in the reference 

image set, and ζk is the deformation at υk obtained from the 

surface correspondence in Eq. (1). A new set of 

deformation coefficients δj is then set to the spline 

coefficients of the new grid of deformation values D’(λj)

[5]. Finally the transformation parameter vector µ is input 

to the optimizer for alignment. 

5. EXPERIMENT AND RESULTS 

The test images are CT scans performed at the University 

of Washington Medical Center using a General Electric CT 

scanner. A simple segmentation process was performed to 

remove the bed and immobilization devices from the CT 

images before they were used in the segmentation and 

image registration processes. 

Nine sets of CT images in which all of the slices are 

512×512 pixels are used; the distance between slices varies 

between 1.25 mm and 3.75 mm for each image set. A 

subset of slices was selected from the base of skull to the 

thoracic inlet for each image set, which is most relevant to 

the anatomy around the cervical lymph node regions. Each 

image set is used as both reference and target data. 

5.1. Qualitative evaluation 

We can apply the final transformation µ to resample the 

target image data. The resulting image can be compared 

with the reference image visually to assess the alignment 

qualitatively. 

We compared results from Mattes’ image registration 

method and our proposed hybrid method combining 

Mattes’ algorithm with landmark correspondences. Figure 

4 shows a sample result, where the hybrid method exhibits 

much better alignment visually. 

5.2. Quantitative evaluation 

The result of the image registration process can be 

evaluated quantitatively by measuring the 3-D Hausdorff 

distance between the two 3-dimensional meshes: reference 

target volume transformed into target space and target 

volume. Table 1 shows some of the results using Mattes’ 

method. Table 2 shows the results using the new method 

utilizing landmark correspondences. 

6. CONCLUSIONS 

The proposed hybrid image registration method 

demonstrates the benefit of utilizing landmark information 

in the mutual information optimization method. Figure 4 

shows improved anatomical alignment, and Table 2 shows 
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(a) (b) 

(c) (d)

Fig. 4: Example of image registration results, showing one 

slice from the 3-dimentional image set (a) Reference image.  

(b) Warp reference image to target image using Mattes’ 

method. (c) Warp reference image to target image using 

Mattes’ method with landmark correspondence. (d) Target 

image. 

        Ref  

Test 
case 3 case 4 case 5 case 6 case 7 

case 3 n/a 1.334 0.938 1.2 1.453 

case 4 1.443 n/a 0.876 1.913 2.047 

case 5 0.911 0.996 n/a 2.209 1.649 

case 6 1.249 1.368 1.074 n/a 1.389 

case 7 0.804 1.044 0.76 1.274 n/a 

Table 1. Results of Matttes’ method: Hausdorff distance (in 

cm) between transformed reference mesh to target mesh for 

nodal region 1B-right. 

        Ref  

Test 
case 3 case 4 case 5 case 6 case 7 

case 3 n/a 1.296 0.967 1.523 1.175 

case 4 1.06 n/a 0.875 1.448 1.079 

case 5 1.106 1.474 n/a 1.119 1.323 

case 6 0.998 1.91 1.014 n/a 1.142 

case 7 0.87 1.127 0.967 1.061 n/a 

Table 2. Results of the new method incorporating landmark 

information: Hausdorff distance (in cm) between 

transformed reference mesh to target mesh for nodal region 

1B-right. Compare to Table 1. 

decreased error measurement comparing to Table 1 in most 

cases. In cases where the new method did not improve the 

result, it is mainly because the nodal region contours drawn 

by the oncologists are affected by the physicians’ clinical 

judgment, rather than purely following the image based 

classification. Although the technique shows promise, the 

results do not yet conform to clinical criteria. 

We will continue this work by collecting more 

reference models, including clinical patient data with 

different anatomical characteristics, or various tumor 

stages, and analyze the results to study the effects of those 

different characteristics.  In addition to hyoid and 

mandible, more anatomical structures will be used to 

generate landmark correspondences, for example, cervical 

spine and sternocleidomastoid muscle. Landmark 

information will also be used in the optimization process as 

part of the criteria for convergence. Further, integration 

with a radiation therapy planning system [7] will enable 

evaluation in a clinical setting by more clinicians on more 

cases. 
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