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Abstract. Content-based image retrieval (CBIR) refers to the retrieval
of images according to their content, rather than through standard key-
word retrieval techniques. Most of the early CBIR systems retrieved im-
ages based on global image features such as color histograms and texture
statistics. These systems all had the philosophy of returning images that
looked like a given example; they were not useful to users of commer-
cial systems who wanted to find images containing specific objects. This
paper addresses the need for object recognition in content-based image
retrieval. It discusses the types of images features necessary for recogni-
tion of common objects in outdoor scenes and discusses three example
systems that can recognize boats, vehicles, and buildings. It then goes
on to discuss our proposed methodology for object recognition in terms
of features called abstract regions, global representations for these fea-
tures that can be used in learning, and a learning procedure that uses a
hierarchy of support vector machines.

1 Introduction

Content-based image retrieval has become an important research area in com-
puter vision as digital image collections are rapidly being created and made avail-
able to multitudes of users through the World Wide Web. ! There are collections
of images from art museums, medical institutes, and environmental agencies, to
name a few. In the commercial sector, companies have been formed that are
making large collections of photographic images of real-world scenes available
to users who want them for illustrations in books, articles, advertisements, and
other media meant for the public at large. The largest of these companies have
collections of over a million digital images that are constantly growing bigger.
Incredibly, the indexing of these images is all being done manually—a human in-
dexer selects and inputs a set of keywords for each image. Each keyword can be

! This material is based upon work supported by the National Science Foundation
under Grant No. IIS0097329. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.



augmented by terms from a thesaurus that supplies synonyms and other terms
that previous users have tried in searches that led to related images. Keywords
can also be obtained from captions, but these are less reliable.

Content-based image retrieval research has produced a number of search
engines that can retrieve images based on local or global features derived from
color, texture, and simple shape information. The commercial image providers,
for the most part, are not using these techniques. There are two main reasons
for this:

1. Most CBIR systems require an example image and then retrieve similar im-
ages from their databases. Real users do not have example images; they start
with an idea, not an image.

2. Most CBIR systems retrieve images based on low-level features, such as color
and texture. Users want to retrieve images according to higher-level concepts
such as scene classes (outdoor/indoor, city/country) and the objects present
in the scene (people, tigers, cars, sunsets).

Thus the recognition of generic classes of objects and concepts is needed to
provide automated indexing of images for content-based retrieval. In this paper,
we suggest a methodology for object recognition through learning based on mid-
level image features.

2 Related Literature

Object recognition is a major area of computer vision, but recognition of generic
object classes is still an unsolved problem. While early work on recognition (e.g.
the University of Massachusetts VISIONS System [12]) attempted to analyze
complex natural scenes, the task was initially too difficult. Instead, research
shifted to more practical domains with limited numbers of objects. Much of the
important work in object recognition in the 1980s and 1990s was in the domain
of industrial machine vision, where the objects to be recognized were specific in-
dustrial parts with fixed geometric models. In this domain, recognition refers to
identifying an exact copy of a known 3D object, usually from the 2D projections
of its detectable features, such as straight and curved line segments [4]. Objects
to be recognized are represented by their visible features and by geometric invari-
ants related to these features [10]. Once some of the features from an object are
detected, the position and orientation parameters of the object are estimated,
and its 3D geometric model is projected onto the image for a verification phase
[13]. The geometric approach, for the most part, does not extend from single
objects to classes of objects, especially not to classes of real-world objects that
appear in general photographic images. However, the feature-based approach is an
important object-recognition technique that is itself extendable to object classes.



In recent years, the computer vision community has started to tackle more
general, more difficult recognition algorithms using a number of techniques that
have been developed over the years. Techniques that use the appearance of an
object in its images, instead of its 3D structure, are called appearance-based ob-
ject recognition techniques [19][27][23]. Appearance-based techniques have been
used to identify people by their faces and to match pictures of cars and other ob-
jects. The current limitations of these techniques are that they expect the image
to consist of, or be limited to, the object in question and that this object must
be presented from the same viewpoint as the images used to train the system (ie.
front view of faces, side view of cars). Appearance-based techniques have been
able to yield high recognition accuracy in limited domains.

Appearance-based techniques do not attempt to segment the image; this is
both a strength and a weakness of the approach. Region-based techniques [2][26]
do require presegmentation of the image into regions of interest. In most appli-
cations, the reliability of image segmentation techniques has been a problem for
object recognition, but newer image segmentation algorithms [17][24] that use
both color and texture can now partition an image into regions that, in many
cases, can be identified as having the right colors and textural pattern to be a
tiger or a zebra or some other object with a well-known color-texture signature.
Related to this approach are algorithms that look for regions in color-texture
space that correspond to particular materials, such as human flesh [8]. Such al-
gorithms can be used with eye, nose, mouth recognizers to detect human faces or
with constraints on region relationships to detect unclothed people. A different
set of color criteria and spatial region relationships can be used to find horses [9].
People’s faces have also been successfully detected using only gray-tone features
and relying on heavily-trained neural net classifiers [20]. In fact, neural nets and
support-vector machines have become an important tool in recognizing several
different specific classes of imagery.

In the CBIR community, only a small number of researchers have worked on
retrieval via object recognition and many of these efforts have been limited to a
single class of object, such as people or horses. Some systems allow the user to
sketch the shape of a desired class of object and retrieve images with similarly-
shaped regions [5]. Recent systems are starting to embody general methods for
object recognition and for concept recognition. For example, the Berkeley Digi-
tal Libraries group represents each object class as a hierarchy of image regions
and their spatial relationships [9]. The work at Michigan State in concept recog-
nition [28] uses a Bayesian classifier with lower-level features to classify different
kinds of vacation images. A new and very promising approach to object classes
[7] models objects classes as flexible configurations of parts, where the parts are
merely square regions selected by an entropy-based feature detector [29], and
also uses a Bayesian classifier for the final recognition task.



For the most part, generic object recognition efforts have been standalone.
There is not yet a unified methodology for generic object class recognition or for
concept class recognition. The development of such a methodology is the subject
of our research.

3 Features for Object Class Recognition

In industrial machine vision, the main features used have been points, straight
line segments, and to a smaller extent, curved line segments. In medical-image
object recognition, intensity, texture, and shape of image regions are the main
features. In content-based retrieval so far, the main features of interest have
been the color and texture of image regions and the spatial relationships among
them. Region shape has been used to a lesser extent, since it is less reliable for
arbitrary views of 3D objects.

We work in the domain of outdoor scenes including city scenes, park scenes,
and body of water scenes with such objects as sky, water, grass, trees, flowers,
walkways, streets, buildings, fences, cars, trucks, buses, and boats. The object
classes to be recognized require many different features for the recognition task.
The major features of these object classes are their color, their texture, their
structure, and their position in the image. Also useful in some cases will be
region shape, such as ellipses for vehicle wheels or long thin rectangles for sailboat
masts. Finally, some objects may be recognized on the basis of both their own
features and those of their surroundings. We illustrate the variety of features
that may prove useful with three examples from our work: boat recognition,
vehicle recognition, and building recognition.

3.1 Features for Boat Recognition

Boats are examples of objects that can be recognized on the basis of both their
own features and those of their surroundings. Figure 1 shows a very simple boat
recognition system that we developed to illustrate the importance of context in
object recognition. The algorithm for detecting boats in outdoor scenes is as
follows.

1. First detect the sky. A region is sky if it a has blue color and a relatively flat
texture.

2. Next look for water. A region is water if it has a blue color and a relatively
rough texture. The properties of the region can be used to further verify the
hypothesis. For example, a water region is usually at the bottom of an image
and occupies a relatively large area.

3. Finally, look for a boat in the water. Boats have characteristic colors. For
example, most pleasure boats are white, while commercial boats are often
gray. Most importantly, boat regions can only be found within water regions.



a. original image

b. sky c. water
d. boat e. sailboat

Fig. 1. Recognition of boats using color regions, texture regions, and context.

To extend this approach to sailboats, the system can look for a vertical line
segment above and adjacent to the boat region. This simple approach works
quite well for finding possible boats, but it does not extend to other transporta-
tion objects, such as cars, trucks, and buses.

3.2  Features for Vehicle Recognition

There has been quite a lot of work in vehicle recognition, both feature-based
and appearance-based. The eigenvector approach that was developed for face
recognition has also been used for car recognition. In this case, the system must
be trained on several different potential views of the vehicles to be recognized.
Features used have included symmetry features for front and rear views and



shape features (ie. parallelogram windows and elliptical wheels) for side views.

The symmetry approach [15] calculates a symmetry score for each image
column by comparing edge pixels on each side and locates the central axes of
the vehicles by finding the local maximum of the scores. Alternatively, for each
image row, a score can be acquired for all the possible reflective points and all
the possible symmetric lengths [31]. Summarizing the scores from all the rows
and the peaks in the summation images determines the symmetric axes and
the possible widths. The horizontal-edge-based approach [18] detects horizontal
edges, forms a histogram by counting the horizontal edges on each image column,
and selects the histogram peaks as the hypotheses of the central axes of vehicles.
Figure 2 illustrates a vehicle recognition system that looks for front and rear
views of cars and trucks. The vehicle detection system operates as follows:

1. The system locates the central axes of vehicles using either the symmetry-
based approaches or the horizontal-edge-based approach. More reliable loca-
tions can be chosen by voting from just one approach.

2. The length of horizontal lines and the peak ranges of the maxima in the last
step are used to determine the width of the vehicles.

3. The top and bottom boundaries of the vehicles are determined by find-
ing horizontal line clusters. The boundaries can be verified by under-vehicle
shadows.

The system is not very robust; partial views of vehicles and those that are
far away will not be detected.

a. horizontal-edge histogram b. detected vehicles

Fig. 2. Recognition of front and rear views of vehicles using symmetry features and
horizontal line segments.

3.3 Features for Building Recognition

Many man-made objects are too complex for the above features. Such objects as
buildings, houses, buses, and fences, for example, are not segmentable through



color or texture alone and have many line segments rather than one or two
important ones. What they do have is a very regular structure, consisting of
multiple line segments in one or two major orientations and usually just one or
two dominant colors. We have developed a building recognition system [16] that
uses structure features. These features are obtained as follows:

1.

Apply the Canny edge detector [1] and ORT line detector [6] to extract line
segments from the image.

. For each line segment, compute its orientation and its color pairs (pairs of

colors for which the first is on one side and the second on the other side of
the line segment).

Cluster the line segments according to their color pairs, to obtain a set of
color-consistent line clusters.

Within the color-consistent clusters, cluster the line segments according to
their orientations to obtain a set of color-consistent orientation-consistent
line clusters.

Within the orientation-consistent clusters, cluster the line segments accord-
ing to their positions in the image to obtain a final set of consistent line
clusters.

Fig. 3. (top left) Original image. (top right) Line segments. (bottom) Color-consistent
line clusters.

Color-Consistent Line Clusters To reduce the complexity of obtaining color-
consistent line clusters, we first classify each pixel of the image as one of sev-



eral dominant colors, using the Gong color clustering algorithm [11] and the
CIEL*a*b* color space. Then each line segment is assigned one or more color
pairs consisting of one dominant color from its left region and one from its right
region, based on a small window of analysis. The line segments are grouped into
color-consistent line clusters based on these color pairs. Figure 3 illustrates the
process of constructing the color-consistent line clusters. The main color pair of
the left building in Figure 3 is (tan,gray), while the main color pair of the right
building is (grayblue,gray). The two color clusters (bottom row) also contain
spurious segments from other objects.

7T

tloy
1" 1//
/

! M’é

v, 0

1

!

A\

Fig. 4. Orientation-consistent line clusters obtained from the color-consistent line clus-
ters shown in Figure 3. The results are final orientation-consistent clusters using both
orientation and perspective information with small clusters removed.

Orientation-Consistent Line Clusters For every color-consistent line clus-
ter, the orientation feature of the line segments can be used to further classify
them. We would like to assign the parallel segments of an object to exactly one
orientation-consistent line cluster. Because of the effect of perspective projection,
the parallel lines on an object may not be parallel in the image, but will con-
verge to a single point. Because of this, we use two steps to achieve our objective:
first, roughly classify the segments according to their orientation in the image,



and second, decide whether they are parallel to each other or they converge to
a vanishing point in the image. Finding the roughly orientation-consistent line
clusters is achieved through a simple clustering algorithm that finds the peaks in
the orientation histogram and assigns each line segment to the cluster associated
with its closest peak. After the roughly-orientation-consistent line clusters are
obtained, the perspective information is used as a key both to decide whether
the segments in a line cluster are consistent and to filter out the “noise” lines.
Each of the two color clusters in Figure 3 produced several orientation-consistent
clusters as shown in Figure 4.

Spatially-Consistent Line Clusters After constructing the consistent line
clusters using color and orientation features, the resultant clusters may still
have some segments from different physical entities. To rule out such segments,
spatial clustering is performed using both vertical and horizontal position his-
tograms. First, the line segments in a cluster are projected to the y-axis to
create a vertical position histogram, which can be segmented into groups of y-
positions that yield vertical position clusters. Then, the line segments of each
vertical position cluster are projected to the x-axis to create a horizontal posi-
tion histogram whose segmentation produces horizontal position clusters. The
line segments in the resultant spatially-consistent line clusters are close to each
other, both vertically and horizontally, in the image. The application of color-
consistent clustering followed by orientation-consistent clustering followed by
spatially-consistent clustering yields the set of consistent line clusters that are
used to detect buildings or other line-segment-rich structures. Figure 5 shows
two spatially-consistent line clusters which came from the single orientation-
consistent line cluster in the top-right position of Figure 4. The cluster has been
divided into the line segments from a building and those from an automobile.

Fig. 5. Two spatially-consistent line clusters obtained from the single orientation-
consistent line cluster shown in Figure 4 (top-right image).

Recognizing Buildings Once the consistent line clusters have all been con-
structed, they can be used to detect objects, such as buildings. We use two crite-
ria to detect buildings: the interrelationships of the consistent line clusters detect
structure-preserving or junction-rich buildings, and their intra-relationships can



be used to detect the simple-structured or overlap-rich buildings. These two sit-
uations are shown in Figure 6 and discussed below. The location of a building
can be estimated from the position of its corresponding line clusters.

Fig. 6. (left) Interrelationship criterion. (right) Intra-relationship criterion.

Interrelationship Criterion Because many line segments on buildings are from
windows and doors, there will be many intersections. Two line segments are
classified as intersecting if when they are extended, the intercept point of the
two virtual lines is on one of the line segments or is close to one of their end
points. For every line cluster pair (cl;,cl;), the interrelationship between the
two line clusters is considered to decide whether this cluster pair is a hint of
the existence of buildings. In order for the pair to be a qualified hint, its line
segments should form enough intersections. This can be represented by Ninter;;,
the total number of lines in cl; that intersect some line in cl;. For each cluster,
we can then define Ninter;, the maximum number of intersecting lines of ¢l; over
all other clusters, and finally, its normalized version Norm_inter;, normalized
by the total number of lines in the cluster.

Ninter;; = |{l; € cl; | Az € clj, 1y intersects lo}]

Ninter; = maz;{Ninter;;| i # j }

Ninter;
eli]

Norm_inter; =
Intra-relationship Criterion Due to the many different appearances of buildings
and the different distances at which the images were taken, some buildings do
not produce many junctions on the image, but they do have many overlapping
line segments. The intra-relationship criterion is used to examine how many lines
heavily overlap in a line cluster ¢l. For a line I, Nol(l) = |{l'|l' overlaps l}| is
the number of lines in ¢l that overlap with [. If Nol(l) is large enough (greater
than a learned threshold T},), then [ is a heavily overlapped line. The number
of heavily overlapped lines is another hint of the existence of buildings. Similar



to the interrelationship criterion, the intra-relationship criterion is defined by
features: Nintra;, the number of heavily overlapped lines in the line cluster ¢l;,
and Norm_intra;, normalized by the total number of lines in the cluster.

Nintra; = |{l|l € cl; and Nol(l) > Tho}|

Nintra;

Norm_intra; = A
k2

Evaluation of Building Detection Our consistent-line-cluster (CLC) features
can be used for two different tasks: 1) content-based image retrieval and 2) object
recognition. For content-based image retrieval, we built a simple decision-tree
classifier. The feature vectors for this task were designed to convert the local
features for the separate clusters to a global histogram as follows:

Ninter(k) = max{Norm_nter;| Ninter; > k}

Nintra(k) = maz{Norm_intra;| Nintra; > k}

for £ = 1 to maxy,. With the feature vectors

(Ninter(1),. .., Ninter(maxy),
Nintra(1), ..., Nintra(mazy))

and maxy, set to 64, we used the C4.5 package to generate simple decision-tree
classifiers. Our test database of 977 images was obtained from two online image
databases: creatas.com and freefoto.com. We selected 336 building images and
641 nonbuilding images and ran a set of cross-validation experiments in each
of which 90% of the images were used as the training set and the other 10%
as the test set. The average error (false positives plus false negatives) over the
set of cross-validation experiments was 5.8%. (Note that our algorithms were
developed on a completely independent database of our own images of campus,
city, and landscape scenes.)

buildings buildings cactus

Fig. 7. Sample images from the online test set.



Fig. 8. Some correct classifications.

There are three CBIR methods that seem most related to our own: Igbal
and Aggarwals’s approach [14] to building recognition using perceptual group-
ing (rectangles), Zhou, Rui, and Huang’s water-filling algorithm [30] for extract-
ing edge-map features, and Vailaya, Jain, and Zhang’s edge-direction-histogram
(EDH) features [28] for classifying city vs. landscape images. Because the em-
phasis in [14] and [30] was quite different from our own and since several early
reviewers of our paper suggested comparing our features to the EDH features,
we implemented EDH and tested it on classifying building vs. nonbuilidng im-
ages, using C4.5 and cross validation as above. On the same test set, the EDH
method had an average error of 16.5% compared to CLC’s 5.8%. Note that this
test data set (see Figure 7 for examples) is a fairly difficult one with the building
images taken from many different viewpoints and the nonbuilding images con-



taining many vertical line segments. We found that EDH worked very well on
images with many vertical lines and less well on those without vertical lines. Our
CLC features are not sensitive to a particular orientation and can also handle
perspective.

The CLC features can also be used for object recognition and approximate
localization, so that the presence and locations of objects in images can be de-
tected and indexed for future retrievals. For object recognition, we tested the
algorithm on 97 well-patterned buildings, 44 non-well-patterned buildings, 16
non-patterned non-buildings, and 25 patterned non-buildings in a local test set,
specifically acquired to control these experiments. The results were 0% error for
well-patterned buildings, 4.5% error for non-well-patterned buildings, 6.2% error
for non-patterned non-buildings, and 100% error for the patterned non-buildings,
which were objects like faculty mailboxes, buses, and fences, all selected to try
to fool the algorithm (and they all did!). Additional features (context) will be
required to distinguish these similarly structured objects from buildings. Fig-
ure 8 shows some correct classification/location results on this image set. The
first and second row images were considered to contain well-patterned buildings,
while the third and fourth row images, which are more difficult, were considered
to be non-well-patterned.

Two of the misclassifications are shown in Figure 9. The reasons for false neg-
atives are the lack of enough patterns and the pattern interference from other
objects, for example, trees. Some patterns from objects other than buildings,
such as trees and bridges, are recognized as buildings in the false positives.

Fig. 9. False negative (left) and false positive (right).

Two images from the patterned non-buildings are shown in Figure 10. Al-
though they are currently false positives, they also show the potential use for
consistent line clusters, along with other features, for recognizing additional man-
made objects.



Fig. 10. Two false positives that show the potential for using consistent line clusters
to find additional man-made objects.

4 Abstract Regions and Learning

We are developing a new methodology for object recognition in content-based
image retrieval. Our methodology has three main parts:

1. Select a set of mid-level features that have multiple attributes for recognition
and design a unified representation for them.

2. Develop methods for encoding complex features into feature vectors that can
be used by general-purpose classifiers.

3. Design a learning procedure for automating the development of classifiers
for new objects.

The unified representation we have designed is called the abstract region rep-
resentation. The idea is that all features will be regions, each with its own set of
attribures, but with a common representation. The regions we are using to start
our work are color regions, texture regions, and structure regions. Color regions
are produced by a two-step procedure. The first step is color clustering using a
variant of the K-means algorithm on the original color images represented in the
HSI color system. The second step is a merging procedure that merges multiple
tiny regions into large ones. Figure 11 illustrates this process on a football im-
age in which the K-means algorithm produced hundreds of tiny regions for the
multi-colored crowd, and the merging process merged them into a single region.

Our texture regions come from a color-guided texture segmentation process.
Color segmentation is first performed using the K-means algorithm. Next, pairs
of regions are merged if after a dilation they overlap by more than 50%. Each of
the merged regions is segmented using the same clustering algorithm on the Ga-
bor texture coefficients. Figure 12 illustrates the texture segmentation process.
Structure regions come from the features we developed for building recognition.
They are polygons containing one or more overlapping consistent-line structures.



Original Color Merged

Fig. 11. Tllustration of the merging of tiny color regions.

-

Original Color Texture

Image Segmentation Segmentation

Fig. 12. Our texture segmentation is color-guided; it is performed on the regions of an
initial color segmentation.

Figure 13 illustrates the abstract regions for several representative images.
The first image is of a large campus building at the University of Washington.
Regions such as the sky, the concrete, and the large brick section of the building
show up as large homogeneous regions in both the color segmentation and the
texture segmentation. The windowed part of the building breaks up into many
regions for both the color and the texture segmentations?, but it becomes a
single region in the structure image. The structure-finder also captures a small
amount of structure at the left side of the image. The second image (park) is
segmented into several large regions in both color and texture. The green trees
merge into the green grass on the right side in the color image, but the texture
image separates them. No structure was found. In the remaining four images
(sailboat, house, building with cherry trees, and flowers in front of a house) both
the color and texture segmentations provide some useful regions that will help
to identify the sky, trees, flowers, lawn, water, and sailboat; the sailboat, house,
pieces of building, and pieces of house are captured in structure regions. It is
clear that no one feature type alone is sufficient to identify the objects.

2 The black regions are areas where there were many small regions, which have been
discarded as not useful.



Original Color Texture Structure

Fig. 13. The abstract regions constructed from a set of representative images using
color clustering, color-guided texture clustering, and consistent-line-segment clustering.



The features described above are all examples of mid-level features. Abstract
regions should also be able to handle other features that we have used or will use.
For example, line segments can be represented as long, thin regions with length,
orientation, and position. Symmetry features can be represented by regions that
consist of the axes of symmetry and have statistical features, such as the mean
width of the symmetric entity and the variance. Once we have these unified fea-
tures, we still need a method for converting all the features in an image to a
representation suitable for learning. We are investigating two main approaches
to this representation: iconic and symbolic.

The iconic representation converts the abstract regions to labeled images:
one for color regions, one for texture regions, and one for structure regions. Only
the most significant regions will be chosen for this class. The chosen regions from
the training data set will be clustered according to their attributes, producing a
set of labeled color clusters, a set of labeled texture clusters, and a set of labeled
structure clusters. The labels will represent the attributes of their clusters. For
example, in the color clusters, we would expect one or more green clusters that
may come about from trees, grass, or bushes. In the texture clusters, we will get
separate labels for different types of texture, such as brick texture, tree texture,
or ocean texture. The structure clusters will vary as to the color pairs from which
they are derived and the orientations and densities of the line segments.

The symbolic representation is a data structure that summarizes the abstract
regions in an image. We envision a histogram structure that keeps track of the
sizes and locations of the nontrivial abstract regions in bins spanning their at-
tribute spaces. The clustering idea suggested above may also be used in this
approach. Both the iconic and symbolic image representations produce large
feature vectors that can become the input to learning procedures.

The learning aspect of this work is in an early stage of development. In
Ruiz-Correa’s 3D shape recognition work [22], we have developed a new learn-
ing paradigm: a three-stage classification process that constructs, identifies, and
labels shape regions in a 3D mesh and classifies shapes based on the types of re-
gions and their spatial configuration. One approach we intend to try is a variant
of this approach that uses our abstract regions in place of the 3D shape regions.
We will also experiment with more conventional classification techniques and
with hierarchical multiple classifiers [3].

5 Conclusions and Future Work

We have presented a methodology for object recognition for content-based image
retrieval in the domain of color images of natural scenes containing both man-
made and nature objects. We first investigated the mid-level features necessary
for recognizing common objects. We found that many common objects, such as
sky, water, trees, flowers, office buildings, houses, and vehicles can be recognized



from a combination of mid-level features including color regions, texture regions,
structure regions, major line segments, and symmetry features and their spatial
arrangements. We developed systems to recognize boats, vehicles, and buildings
using these features.

From these systems we designed a set of abstract region features to be used in
systems that learn to recognize common objects from example images containing
them. We also developed two different image representations that can capture
the abstract regions of an image and their spatial relationships as a global feature
vector that can be used in learning. Our next task is to apply learning algorithms
to this data in order to test our hypothesis that the procedures for recognizing
common objects can be learned from these representations.

References

1. J. Canny: A Computational Approach to Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 8, pp. 679-698, 1986.

2. C. Carson, S. Belongie, H. Greenspan, J. Malik: Region-based Image Querying,
Proceedings of the 1997 IEEE Workshop on Content-Based Accesss of Image and
Video Libraryies, pp. 42-49, June 1997.

3. Y. Chou and L. G. Shapiro: A Hierarchical Multiple Classifier Learning Algorithm,
Proceedings of the International Conference on Pattern Recognition, 2000, Vol. 2,
pp. 152-155.

4. Costa, M. S. and L. G. Shapiro, “3D Object Recognition and Pose with Relational
Indexing,” Computer Vision and Image Understanding, Vol. 79, No. 3, 2000, pp.
364-407.

5. A. Del Bimbo, P. Pala, S. Santini: Visual image retrieval by elastic deformation of
object sketches, IEEE Symposium on Visual Languages, pp. 216-223, 1994.

6. A. Etamadi: Robust Segmentation of Edge Data, Proceedings of the IEE Image
Processing Conference, 1992.

7. R.Fergus, P. Perona, and A. Zisserman: Object-Class Recognition by Unsupervised
Scale-Invariant Learning, Proceeeings of the IEEE Conference on Computer Vision
and Pattern Recognition, Vol. 2, 2003, pp. 264-271.

8. M. M. Fleck, D. A. Forsyth, and C. Pregler: Finding Naked People, Proceedings of
the European Conference on Computer Vision, Springer-Verlag, 1996, pp. 593-602.

9. D. Forsyth and M. Fleck: Body Plans, IEEE Society Conference on Computer
Vision and Pattern Recognition, pp. 678-683, 1997.

10. D. Forsyth, J. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell: In-
variant Descriptors for 3-D Object Recognition and Pose, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 13, No. 10, 1991, pp. 971-991.

11. Y. Gong: Advancing Content-Based Image Retrieval by Exploiting Image Color
and Region Features, Multimedia Systems, Vol. 7, pp. 449-457, 1999.

12. A. R. Hanson and E. M. Riseman: VISIONS: A Computer System for Interpreting
Scenes, Computer Vision Systems, A. Hanson and E. Riseman, eds., New York,
Academic Press, 1978, pp- 303-333.

13. D. P. Huttenlocher and S. Ullman: Recognizing Solid Objects by Alignment with an
Image, International Journal of Computer Vision, Vol. 5, No. 2, 1990, pp. 195-212.



14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Q. Igbal and J. K. Aggarwal: Applying Perceptual Grouping to Content-Based Im-
age Retrieval: Building Images, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 42-48, June 23-25, 1999.

A. Kuehnle: Symmetry-based recognition of vehicle rears, Pattern Recognition Let-
ters, vol.12, no.4, 1991.

Y. Li and L. G. Shapiro: Consistent Line Clusters for Building Recognition in
CBIR, Proceedings of the International Conference on Pattern Recognition, 2002.
W. Y. Ma and B. S. Manjunath: NETRA: A Toolbox for Navigating Large Image
Databases, Proceedings of the IEEE International Conference on Image Processing,
1997.

N. D. Matthews, P. E. An, D. Charnley, and C. J. Harris: Vehicle detection and
recognition in greyscale imagery, Intelligent Autonomous Vehicles, pp. 1-6, 1995.
H. Murase and S. K. Nayar: Visual Learning of Object Models from Appearance,
International Journal of Computer Vision, 1992.

H. Rowley, S. Baluja, and T. Kanade: Neural Network-Based Face Detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, 1998,
pp- 23-38.

Y. Rui, T. Huang, and S. Mehrotra: Relevance Feedback: A Power Tool for In-
teractive Content-Based Image Retrieval, Proceedings of the IEEE Workshop on
Content-based Access of Image and Video Libraries, pp. 67-74, 1997.

S. Ruiz-Correa, L. G. Shapiro, and M. Meild: A New Paradigm for Recognizing
3-D Object Shapes from Range Data, to appear in Proceedings of the International
Conference on Computer Vision, October, 2003.

S. Sclaroff, A. Pentland: Object Recognition and Categorization using Modal
Matching, Proc. of 2nd CAD-Based Vision Workshop, pp. 258-265, 1994.

J. Shi and J. Malik: Normalized Cuts and Image Segmentation, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 731-737.
J.R. Smith and S.-F. Chang: VisualSEEK: A Fully Automated Content-Based
Image Query System, ACM Multimedia, pp. 87-98, November, 1996.

J. R. Smith and C. S. Li: Image Classification and Querying Using Composite
Region Templates, Computer Vision and Image Understanding: Special Issue on
Content-Based Access of Image and Video Libraries, Vol. 75, Nos. 1-2, 1999, pp.
165-174.

M. Turk and A. Pentland: Eigenfaces for Recognition, Journal of Cognitive Neu-
roscience, 1991.

A. Vailaya, A. K. Jain and H.-J. Zhang: On Image Classification: City Images vs.
Landscapes, Pattern Recognition, Vol. 31, pp 1921-1936, 1998.

M. Weber, M. Welling, and P. Perona: Unsupervised Learning of Models for Recog-
nition, Proceedings of the European Conference on Computer Vision, 2000, pp.
18-32.

S. X. Zhou, Y. Rui, and T. S. Huang: Water-filling Algorithm: A Novel Way for
Image Feature Extraction Based on Edge Maps, Proc. IEEE Int. Conf. on Image
Proc., 1999.

T. Zielke, M. Brauckmann, and W. Von Seelen: Intensity and edge-based symme-
try detection with an application to car-following, CVGIP: Image Understanding,
vol.58, no.2, 1993



