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Abstract

We have developed a two-phase generative / discrimi-
native learning procedure for the recognition of classes of
objects and concepts in outdoor scenes. Our method uses
both multiple types of object features and context within
the image. The generative phase normalizes the descrip-
tion length of images, which can have an arbitrary num-
ber of extracted features of each type. In the discriminative
phase, a classifier learns which images, as represented by
this fixed-length description, contain the target object. We
have tested the approach by comparing it to several other
approaches in the literature and by experimenting with sev-
eral different data sets and combinations of features. Our
results, using color, texture, and structure features, show a
significant improvement over previously published results in
image retrieval. Using salient region features, we are com-
petitive with recent results in object recognition.

1. Introduction

Recognition of classes of objects in images and videos is
an important problem in computer vision with applications
in autonomous vehicle navigation, surveillance, aerial
video analysis, and image or video retrieval systems. In the
context of image annotation, image regions from various
segmentations are used for recognizing object classes in
images or videos [5] [10] [16] [2] [15] [6] [7]. Appearance-
based object recognition, which was initially proposed for
recognizing specific objects, has progressed to detection of
instances of object classes [12]. Most of these systems use
formal learning methodologies, such as Bayesian decision
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making, neural nets, support vector machines (discrimina-
tive approach) or the EM algorithm (generative approach).
More recently, the learning approach has been extended by
the development of interest operators [9] [4] [11] that select
image windows having patterns that might be used for rec-
ognizing objects and to the ability to learn constellations of
parts that make up a more complex object [11] [3] [17] [14].

Our goal in this work is to develop a classification
methodology for the automatic annotation of outdoor scene
images. The training data is a set of images, each labeled
with a list of one or more object (or concept) classes that it
contains. There is no information on the locations of these
entities in the image. For each class to be learned, a clas-
sifier is trained to detect instances of that class, regardless
of size, orientation, or location in the image. The solution
that we propose is a generative/discriminative learning pro-
cedure that learns the object or concept classes that appear
in an image from multiple segmentations of pre-annotated
training images. It is significant in several respects:
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Figure 1. Abstract regions corresponding to
color, texture, and structure segmentations.



1. It is able to work with any type of feature that can be
extracted from an image by some automatic segmen-
tation process and represented by a vector of attribute
values. It can work with regions from a color or tex-
ture segmentation, groups of line segments, or small
windows selected by an interest operator.

2. It can work with any number of different feature types
simultaneously. The formalism we developed for a sin-
gle feature type generalizes easily to multiple feature
types (Section 3.2). Thus we can use several features
types together for a more powerful recognition system.

3. Like the work of Dorko and Schmid [1] and the more
theoretical paper of Raina et al [13], our method con-
sists of two phases: a generative phase followed by
a discriminative phase. Our method is distinguished
in the elegant framework we use for our discrimina-
tive phase. In particular, although each segmentation
process can produce a variable number of instances of
its features, our methodology produces a fixed-length
description of each image that summarizes the feature
information in a novel way. This allows the discrimi-
native phase to be implemented by standard classifiers
such as neural nets or support vector machines.

Although our work was motivated by the image annota-
tion problem, the learning framework is general and could
also be used as part of an object recognition system.

2. Abstract Regions

Our methodology allows the simultaneous use of
multiple feature types for object recognition. In this paper,
we will refer to the different feature types as abstract
regions. Each type of abstract region a will have a type-a
feature vector Xa containing the attribute values of that
region type. Our learning methodology is general and
can handle arbitrary region-based feature types. We have
implemented three types of abstract regions for our studies:
color, texture, and structure regions, and we have also been
able to incorporate features from other systems. We will
briefly describe our own features here and those of others
in the discussions of our comparison experiments.

Our color regions are produced by a two-step procedure:
1) color clustering in the CIELab color space using a
variant of the K-means algorithm and 2) an iterative
merging procedure that merges multiple tiny regions
into larger ones. The feature vector for a color region is
Xc = [L∗, a∗, b∗], where L∗ is the luminance, and a∗ and
b∗ are the color channels. Our texture regions come from
a color-guided texture segmentation process. Following
the color segmentation, pairs of regions are merged if after

a small dilation they overlap by more than 50%. Each of
the merged regions is segmented using the same clustering
algorithm on the Gabor texture coefficients. The feature
vector for a texture region is Xt = [g1, g2, . . . , g12] where
the gi’s are the Gabor coefficients.

The features we use for recognizing man-made struc-
tures are called structure features and are obtained using
the concept of a consistent line cluster [8]. Line segments
are extracted from an image, and their color pairs (pairs
of colors on opposite sides of the segment) are computed.
The line segments are clustered first according to their
color pairs, next according to their orientations, and finally
according to their positions in the image to obtain the
structure regions. The feature vector for a structure region
is Xs = [nl, L1, a1, b1, L2, a2, b2, θ, no, mi] where nl
is the number of lines in the region, (L1, a1, b1) and
(L2, a2, b2) are its color pair, θ is its dominant orientation,
no is the number of overlapping line segments, and mi is
the maximum number of intersections of its line segments
with those of another cluster.

Figure 1 illustrates the concept of abstract regions with
color, texture, and structure features. The first image is of
a large building. Regions such as the sky, the concrete, and
the brick show up as large homogeneous regions in both
color and texture segmentations. The windowed part of the
building breaks up into many regions for both the color and
texture segmentations, but it becomes a single structure re-
gion. The structure-finder also captures a small amount of
structure at the left of the image. The second image of a
park is segmented into several large regions in both color
and texture. The green trees merge into the green grass on
the right side in the color image, but the texture image sep-
arates them. No structure was found. In the last image of
a sailboat, both the color and texture segmentations provide
some useful regions that will help to identify the sky, wa-
ter, trees and sailboat. The sailboat is also captured in the
structure region. It is clear that no one feature type alone is
sufficient to identify all objects. Therefore, a general pur-
pose image classification system must have the ability to
combine the power of mulitple features.

3. The Generative / Discriminative Learning
Approach

We propose a new two-phase generative/discriminative
learning approach that can learn to recognize objects using
multiple feature types and variable numbers of features of
each type in each image. Phase 1, the generative phase,
is an unsupervised clustering step implemented with the
classical EM algorithm. The clusters are represented by a
multivariate Gaussian mixture model. Phase 1 also includes



an aggregation step that has the effect of normalizing the
description length of images that can have an arbitrary
number of regions. Phase 2, the discriminative phase, is
a classification step that uses aggregated scores from the
results of Phase 1 to compute the probability that an image
contains a particular object class. It also generalizes to any
number of different feature types in a seamless manner,
making it both simple and powerful.

Our procedure for learning a specific object class o can
be summarized as follows:

1. Generative Step

(a) For each training image Ii and abstract region
type a run the type-a segmentation procedure to
produce a set F a

i = {Xa
i,r|r = 1, . . . , na

i } of
type-a feature vectors representing its regions.

(b) Use the EM algorithm to produce an
Ma-component Gaussian mixture model
to approximate the feature vector dis-
tribution of the object-o training set
T a = ∪i {F a

i | object o appears in image Ii}.

(c) Use the Gaussian mixture models to derive a
fixed-length aggregated feature vector Vi that
summarizes the content of image Ii in terms
of the components of the models for all feature
types. (See Section 3.1 for the details.)

2. Discriminative Step

(a) Label the aggregated feature vectors from the set
of training images that contain an instance of ob-
ject o with the label 1.

(b) Label the aggregated feature vectors from the set
of training images that do not contain any in-
stances of object o with the label 0.

(c) Train a classifier to distinguish between the
classes 1 and 0. We used multi-layered percep-
trons, but any standard classification algorithm
could be used.

The details of our learning procedure are given below,
first for the single-feature case and then for the extension to
multiple types of features.

3.1. Single-Feature Case

In our framework, each object class is learned separately.
Suppose that we are learning object class o and using feature
type a. In Phase 1, the EM algorithm finds those clusters in
the feature vector space for feature a that are most likely to
appear in images containing object class o. Since the cor-
respondence between regions and objects is unknown, all

of the type a feature vectors from all the training images
containing object o are used. The EM algorithm approxi-
mates the feature vector distribution by a Gaussian mixture
model. Thus the probability of a particular type-a feature
vector Xa appearing in an image containing object o is

P (Xa|o) =
Ma∑
m=1

wa
m · N(Xa; µa

m, Σa
m)

where N(X, µ, Σ) is a multivariate Gaussian distribution
over feature vector set X with mean µ and covariance
matrix Σ, Ma is the total number of Gaussian components,
and wa

m is the weight of Gaussian component ma. Each
Gaussian component represents a cluster in the feature
vector space for feature type a that is likely to be found in
the images containing object class o. Figure 2a shows two
positive and two negative training images for the beach
class and the means of eight Gaussian components for
the color feature learned from positive training images.
Note that the mixture for object class o is trained with all
regions of all images that contain o, but these images also
contain many other regions from other object classes. Our
discriminative step (described below) learns how to exploit
this information to predict the presence of the target object.

a. Sample Training Images and Component Means

Beach Class Nonbeach Class
beach1 beach2 nonbch1 nonbch2

Means of 8 Color Components from EM Clustering

b. Aggregated Scores

beach1
beach2

nonbch1
nonbch2




0.93 0.16 0.94 0.24 0.10 0.99 0.32 0.00
0.66 0.80 0.00 0.72 0.19 0.01 0.22 0.02
0.43 0.03 0.00 0.00 0.00 0.00 0.15 0.00
0.15 0.77 0.18 0.02 0.28 0.49 0.12 0.47




Figure 2. a. Two positive and two negative
training images for the “beach” class and the
mean values for the color clusters produced
by the EM clustering algorithm on the full set
of “beach” training images. b. Feature vec-
tors with aggregated scores for the two posi-
tive and two negative examples using the max
aggregate function and 8 components.



Once the Gaussian components are computed, the likeli-
hood that those components are present in each training im-
age can be calculated. For image Ii and its type-a region r,
let Xa

i,r be the corresponding feature vector. Image Ii will
produce a number of type-a region feature vectors, Xa

i,1,
Xa

i,2, . . . , X
a
i,na

i
. The number na

i of type-a feature vectors
is the same as that of the type-a regions obtained from the
type-a image segmentation and varies from image to image.
The joint probability of the type-a features of region r and
cluster ma is given by

P (Xa
i,r, m

a) = wa
m · N(Xa

i,r, µ
a
m, Σa

m)

From these probabilities, we compute a summary score in-
dicating the degree to which a component ma explains the
image Ii as:

P (Ii, m
a) = f({P (Xa

i,r, m
a)|r = 1, 2, . . . , na

i })
where f is an aggregate function that combines the evi-
dence from each of the type-a regions in the image. We
have tried max and mean as aggregate functions in our
experiments. Figure 2b shows the feature vectors with the
aggregated scores for the positive and negative training
images of Figure 2a using max as the aggregate function.

Let I+
1 , I+

2 , . . . , be positive training images (images that
contain object o) and I−1 , I−2 , . . . , be negative training im-
ages. Our Phase 2 algorithm starts by assembling the com-
puted values of P (Ii, m

a) for each image Ii and each type-a
component ma into the following training matrix:

I+
1

I+
2
...

I−1
I−2
...




P (I+
1 , 1a) P (I+

1 , 2a) · · · P (I+
1 , Ma)

P (I+
2 , 1a) P (I+

2 , 2a) · · · P (I+
2 , Ma)

...
P (I−1 , 1a) P (I−1 , 2a) · · · P (I−1 , Ma)
P (I−2 , 1a) P (I−2 , 2a) · · · P (I−2 , Ma)

...




This matrix is used to train a second-stage classifier,
which can implement any standard learning algorithm (sup-
port vector machines, neural networks, etc.) The clas-
sifier will learn how these aggregated scores correspond
to the presence or absence of the object class. For no-
tational purposes, let Y ma

Ii
= P (Ii, m

a) and Y 1a:Ma

Ii
=

[Y 1a

Ii
, Y 2a

Ii
, · · · , Y Ma

Ii
], which is just one row of the matrix.

The second-stage classifier will learn P (o|Ii) = g(Y 1a:Ma

Ii
)

for object class o, image Ii. We use 3-layer feedforward
multi-layered perceptrons (referred to as MLP). The acti-
vation function used on the hidden and output nodes is a
sigmoid function. In the test stage, given a new image Ij

and its feature vectors for all type-a regions, the aggregated
vector Y 1a:Ma

Ij
is calculated and the second-stage classifier

calculates the likelihood that image Ij contains target object
o based on feature type a using the learned function.

3.2. Multiple-Feature Case

To use multiple features, the generative step is run sep-
arately for each feature type, producing a separate Gaus-
sian mixture model for each. We will denote the color
feature vectors by Y 1c:Mc

Ii
, the texture feature vectors by

Y 1t:Mt

Ii
, and the structure feature vectors by Y 1s:Ms

Ii
. To

fuse these different information sources, we simply con-
catenate Y 1c:Mc

Ii
, Y 1t:Mt

Ii
, and Y 1s:Ms

Ii
to obtain a new com-

bined feature vector Vi = [Y 1c:Mc

Ii
Y 1t:Mt

Ii
Y 1s:Ms

Ii
] for im-

age Ii.

I+
1

I+
2
...

I−1
I−2
...




· · · Y mc

I+
1

· · · Y mt

I+
1

· · · Y ms

I+
1

· · ·
· · · Y mc

I+
2

· · · Y mt

I+
2

· · · Y ms

I+
2

· · ·
...

· · · Y mc

I−
1

· · · Y mt

I−
1

· · · Y ms

I−
1

· · ·
· · · Y mc

I−
1

· · · Y mt

I−
1

· · · Y ms

I−
1

· · ·
...




=

color texture structure


· · ·Y mc

I+
1

· · ·
· · ·Y mc

I+
2

· · ·
...

· · ·Y mc

I−
1

· · ·
· · ·Y mc

I−
1

· · ·
...







· · ·Y mt

I+
1

· · ·
· · ·Y mt

I+
2

· · ·
...

· · ·Y mt

I−
1

· · ·
· · ·Y mt

I−
1

· · ·
...







· · ·Y ms

I+
1

· · ·
· · ·Y ms

I+
2

· · ·
...

· · ·Y ms

I−
1

· · ·
· · ·Y ms

I−
1

· · ·
...




A classifier is then trained on these combined feature
vectors to predict the existence of the target object using
the same method just described for the single-feature
case. The classifier will learn a weighted combination of
components from different feature types that are important
for recognizing the target objects and find the best weights
to combine different feature types automatically.

The two-phase generative/discriminative approach has
several potential advantages. It can combine any number of
different feature types without any modeling assumptions.
Regions from different segmentations do not have to align
or to correspond in any way. Segmentations that produce a
sparse set of features can be handled in the same manner as
those whose features cover the entire image. Our method
can learn object classes whose members have several dif-
ferent appearances, such as trees or grass. It can also learn
high-level concepts or complex objects composed of sev-
eral simpler objects, such as a football stadium, which has
green turf, a pattern of white lines, and a red track around
it, or a beach with sand, dark blue water, and sky. Finally,



Figure 3. Highest-scoring image retrieval re-
sults for several categories of the groundtruth
data set. Queries are key words. Row 1:
spring flowers; Row 2: water; Row 3: parks;
Row 4: Italy.

since it learns only one object at a time and does not re-
quire training images to be fully labeled, new training im-
ages with a new object label can be added to an already ex-
istent training database. A model for this new object class
can be constructed, while the previously-learned models for
other object classes are kept intact.

4. Experiments

Our approach was developed for image annotation in
the image and video retrieval application. For this do-
main we ran several sets of experiments in order to 1) test
our two-phase learning approach on several different image
databases, 2) try several different combinations of features,
and 3) compare it to previous approaches in the literature.
We tested our two-phase approach on three local data sets:
a groundtruth database of 1,224 outdoor scene images with
multiple object and concept classes , another local database
of 1,951 images of buses, small buildings, and skyscrapers,
and a third database of 828 frames from aerial videos. The
groundtruth database and the video frame database were
hand-labeled with multiple labels per image, while the bus,
building, and skyscraper images were assigned to just one
category. For the image annotation task, we compared our
two-phase approach to the ALIP approach of Li and Wang
[6] and to the machine translation approach of Duygulu et
al. [2] using their databases. For the object recognition do-
main, we compared our approach to the work of Fergus et

tree (97.3) Italy (99.9) sky (95.1)
bush (91.6) grass (98.5) Iran (89.3)

spr. flowers (90.3) sky (93.8) house (88.6)
flower (84.4) rock (88.8) building (80.1)
park (84.3) boat (80.1) boat (71.7)

sidewalk (67.5) water (77.1) bridge (67.0)
grass (52.5) European (56.3) water (13.5)
pole (34.1) house (5.3) tree (7.7)

Figure 4. Classifier-produced likelihood
scores from the groundtruth data set. For
each image, the boldface labels under it are
human annotations, and the nonbold labels
are other high-scoring categories.

al [3] and that of Dorko and Schmidt [1] using the database
of airplane, face, and motorbike images from their work.

4.1. Performance on Groundtruth Data Set

We are interested in images in which the target object
can be anywhere in the image and is not necessarily
the main theme of the image. For example, we want
to recognize the category tree in images containing
trees whose main theme is house, beach, or flower. For
this purpose we have constructed a groundtruth image
set containing 1,224 images and growing. The set in-
cludes our own images and those contributed by other
researchers around the world. The whole image set is
free for research purpose and is fully labelled. The URL
is http://www.cs.washington.edu/research/imagedatabase/
groundtruth/

In the groundtruth image set there are 31 elementary
object categories and 20 high-level concepts represented
in this database. Our qualitative experiments were image
retrievals according to classifier-produced likelihood val-
ues for each of the 51 classes. Figure 3 shows some of
the images that received the highest likelihood scores for
each of four categories: spring flowers, water, parks, and
Italy. Figure 4 shows three representative images from the
groundtruth set and their likelihood scores. In our quanti-
tative experiments, the recognition threshold for the output
of the MLP classifier was varied to obtain a set of ROC
curves to display the percentage of true positives vs. false
positives for each object class. The measure of performance



bus (100.0) building (100.0) skyscraper (99.9)
building (58.1) bus (2.79) building (6.8)
skyscraper (1.1) skyscraper (0.04) bus (0.0)

Figure 5. Classifier-produced likelihood
scores from the structure image set. Bold-
face labels are human-identified categories.

for each class was the percentage of the whole area under
its ROC curve, which ranges from 0 to 100 and which we
will henceforth call a ROC score. Table 1 shows the ROC
scores in ascending order for these categories obtained us-
ing color, texture, and structure features. In general, the
lower scores are obtained for object classes that have both
high variance in appearance and insufficient samples in the
database to learn those variations. We have no feature ex-
pressly designed for recognizing people, so they are recog-
nized mostly by context and the performance is low.

4.2. Performance of the Structure Feature

To more thoroughly investigate the performance of the
structure feature, we created a database of 1,951 images
from freefoto.com including 1,013 images of buses, 609 im-
ages of buildings, and 329 images of skyscrapers. For these
experiments we used the 10 attributes for the structure fea-
ture given in Section 2. We tested the structure feature alone
and combined with the color segmentation feature. Figure
5 shows some images from the structure set and their like-
lihood scores for the three possible labels. Table 2 shows
the ROC scores for the three categories. While the structure
feature did a pretty good job of identifying the categories,
the addition of the regions from a color segmentation of the
whole image improved the identification of the building cat-
egory.

4.3. Performance on Aerial Video Frames

We also applied our learning framework to recognize ob-
jects in aerial video frames. While tracking can detect ob-
jects in motion, our object recognition system can provide
information about the static objects, such as forest, road,
and field, which are also important in video analysis. The
aerial image set contains 828 video frames. We chose a set
of 10 objects that appeared in at least 30 images for our ex-
periments. Several combinations of color, texture and struc-

Object Class ROC Score Object Class ROC Score
street 60.4 stone 87.1

people 68.0 hill 87.4
rock 73.5 mountain 88.3
sky 74.1 beach 89.0

ground 74.3 snow 92.0
river 74.7 lake 92.8
grass 74.9 frozen lake 92.8

building 75.4 japan 92.9
cloud 75.4 campus 92.9
boat 76.8 barcelona 92.9

lantern 78.1 geneva 93.3
australia 79.7 park 94.0

house 80.1 spring flowers 94.4
tree 80.8 columbia gorge 94.5
bush 81.0 green lake 94.9

flower 81.1 italy 95.1
iran 82.2 swiss mountains 95.7

bridge 82.7 sanjuans 96.5
car 82.9 cherry tree 96.9
pole 83.3 indoor 97.0

yellowstone 83.7 greenland 98.7
water 83.9 cannon beach 99.2

indonesia 84.3 track 99.6
sidewalk 85.7 football field 99.8
asian city 86.7 stadium 100.0

european city 87.0

Table 1. Groundtruth Experiments

bus building skyscraper
structure 90 79 89

structure + color 92 85 93

Table 2. Structure Experiments (ROC scores)
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Table 3. Learning performance on aerial video
image set. “cs" stands for “color segmenta-
tion", “ts" stands for “texture segmentation",
and “st" stands for “structure".



runway (99.9) car (94.3) car (97.9)
field (98.7) dirt road (91.7) forest (94.2)
car (96.2) field (16.17) paved road (85.0)

dirt road (72.4)
tree (68.8)

Figure 6. Classifier-produced likelihood
scores from the aerial video image set. Bold-
face labels are human annotations; nonbold
labels are other high-scoring categories.

ture features were tested within our learning framework.
Sample results are shown in Figure 6. The ROC scores are
given in Table 3.

4.4. Comparison to the ALIP Algorithm

We measured the performance of our system on the
benchmark image set used by SIMPLIcity [16] and ALIP
[6]. We chose ALIP (which outperformed SIMPLIcity) for
our comparison, because it uses local features, employs
a learning framework, and provides a set of 1000 labeled
images for training and testing. The image set contains
10 categories (100 images each) from the COREL image
database.

In ALIP, image feature vectors are extracted from multi-
ple resolution wavelets, and objects are represented by 2D
multiple-resolution hidden Markov models. We applied dif-
ferent combinations of color, texture, and structure features
in our framework; the number of correctly categorized im-
ages are shown in Table 4. The performance of our system
is similar to ALIP using only color feature, significantly ex-
ceeds ALIP’s performance with color and structure features
combined, and achieves even better performance with the
combination of color, texture, and structure. This experi-
ment shows the power of our learning framework and also
the benefit of combining several different image features.

4.5. Comparison to Machine Translation

We also compared our two-phase learning approach to
that of Duygulu et al. [2]. In this work, image regions were
treated as one language and the object labels as another, so
the task of annotating images can be viewed as machine
translation. Using their region-based, 33-attribute feature
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Table 4. Comparison to ALIP
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Figure 7. The number of good words vs. the
threshold. Three of the words appeared in
more than 15% of the total images, so that
even when the threshold was set to 0, there
were still 3 good words.

vectors, we extracted 3 color attributes to form a color
feature vector and 12 texture attributes to form a texture
feature vector and combined them in our Phase 2 learning
step. From the 5000 Corel images provided, 4500 images
were used for training and 500 for testing.

In [2] the evaluations were based on recall-precision
pairs from varying a minimum-probability threshold that
controls whether a region predicts a word or not. Perfor-
mance was characterized by the number of “good words”
with recall greater than 0.4 and precision greater than 0.15;
a high of 14 of the 371 keywords was achieved. We selected
81 keywords, each having at least 50 corresponding images.
In our experiments, we varied from 0 to 1 the threshold that
determines from our MLP output whether an image is pos-
itive or negative. Our results are shown in Figure 7. The
number of good words from our approach was much higher
than that from [2], which is a further endorsement of our
generative/discriminative learning algorithm.



Fergus Dorko/Schmid Ours
airplanes 90.2% 96.0% 96.6%

faces 96.4% 96.8% 96.5%
motorbikes 92.5% 98.0% 99.2%

Table 5. Comparisons to results of [3] and [1]

4.6. Comparison to Salient Features Work

In order to test the validity of our approach in the object
recognition domain, we applied it to the airplane, motor-
bike, and face data sets of Fergus et al. [3] using the same
entropy-based salient regions [4]. The data set we used con-
tains 1074 airplane images, 826 motorbike images, 450 face
images, and 900 background images. For each object cat-
egory, half of the positive images were used for training
and half for testing as in [3]. Fergus’ approach used the
EM algorithm to find constellations of parts and required
no negative training images. Our discriminative stage re-
quires negative images, so we added half of the background
images to the training set and left the other half for test-
ing. About 100-300 salient regions were detected in each
image, and SIFT features [9] were used to represent each
by a length-128 feature vector. This representation is from
the recent work of Dorko and Schmid [1] and differs from
that of [3]. A comparison of our experimental results to
those of [3] and [1] are shown in Table 5. Since our algo-
rithm was designed to handle general object classes in out-
door images, our approach does not explicitely learn spatial
configurations that might be helpful for recognizing objects
made of distinctive parts. However, the results show that
our approach can achieve better performance than [3] and
similar performance to [1] without using the explicit spatial
information.

5. Conclusions and Future Work

We have described a new two-phase genera-
tive/discriminative learning algorithm for object and
concept recognition. The generative phase normalizes
the description length of images, which in general will
have an arbitrary number of abstract region features. The
discriminative step learns which images, as represented
by this fixed-length description, contain the target object.
We have experimented with several different combinations
of features on several different image data sets. We have
compared our new method to the ALIP approach [6] and
to the machine translation approach [2] with favorable
results. We have also shown that our system’s performance
exceeds that of Fergus [3] and is similar to that of Dorko
and Schmid [1] when we use the salient-region features. In

future work we have more experiments planned to compare
different variants of our approach. We are also working
on a probabilistic mechanism for identifying the regions
within an image where the target object is likely to lie.
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