
Acquisition and Visualization of Colored 3D Objects

Kari Pulli
Stanford University
Stanford, CA, U.S.A

kapu@cs.stanford.edu

Habib Abi-Rached, Tom Duchamp, Linda G. Shapiro and Werner Stuetzle
University of Washington

Seattle, WA, U.S.A
{ habib@ee | duchamp@math | shapiro@cs | wxs@stat }.washington.edu

Abstract

This paper presents a complete system for scanning the
geometry and surface color of a 3D object and for display-
ing realistic images of the object from arbitrary viewpoints.
A stereo system with active light produces several views of
dense range and color data. The data is registered and a sur-
face that approximates the data is constructed. The surface
estimate can be fairly coarse, as the appearance of fine de-
tail is recreated by view-dependent texturing of the surface
using color images.

1. Introduction

Convincing virtual reality environments require realistic
object models, but such models are often difficult to con-
struct synthetically. We have built a semi-automatic system
that can acquire range data, register it, construct a model that
incorporates both geometry and color, and render it from an
arbitrary viewpoint. In this paper, we describe the system,
emphasizing view-dependent texturing of geometric models.

2. 3D object reconstruction

3D object reconstruction consists of three steps: data ac-
quisition, registration, and surface reconstruction.

2.1. Data acquisition

In order to keep our system inexpensive and to better
control the acquisition process, we built our own scanner
for acquiring range and color data. Our scanner consists of
four digital color cameras and a slide projector sitting on a
computer-controlled turntable (see Fig. 1). The slide pro-
jector emits a vertical stripe of white light into the working
volume.

The range data is obtained through triangulation. In an
otherwise dark room, the vertical light stripe illuminates the

Figure 1. The scanner hardware.

Figure 2. Range through triangulation.

scene and the objects, and appears in the camera images as
shown in Fig. 2. The illuminated pixels in the center of the
stripe are paired with pixels in the other images by inter-
secting the epipolar line (shown dotted) of a pixel in the
left image with the image of the stripe in the right image.
Triangulation yields the 3D coordinates of the surface point
corresponding to the paired pixels. The whole scene can be
digitized a stripe at a time, by sweeping the stripe across the
scene in small steps. Finally, we take a color image. Back-
ground pixels are determined by back lighting objects and
tracking which pixels change color and intensity.

Accurate triangulation requires accurately locating the
center of the stripe in a camera image. However, the in-
tensity distribution across the width of the stripe is approx-
imately Gaussian only if the illuminated surface is locally
planar and the whole width of the stripe is visible to the cam-

(a) (b)

(c) (d)

camera camera
light

Figure 3. Error sources in range by triangulation.

era. Curless and Levoy [2] noticed that with more compli-
cated geometry the range estimates become systematically
distorted. Figure 3 (adapted from [2]), shows three sources
of error in estimating range by triangulation.

Figure 3(a) shows the ideal situation. In Fig. 3(b) the
beam is partially occluded in the right camera, and the es-
timate of the stripe center is shifted to the left. In Fig. 3(c)
the beam is aimed at a sharp silhouette corner of the object,
and only half of the beam hits the surface. Both stripe center
estimates are shifted to the left. Figure 3(d) shows the beam
at a crease on the surface. Both the right and the left beams
are foreshortened.

To solve these problems, we implemented an algorithm
for locating centers of stripes based on spacetime analysis
[2]. Our algorithm reduced both the magnitude and the fre-
quency of the errors illustrated in Fig. 3. Let us assume that
the beam is wide enough to cover several pixels in the im-
age, that its intensity has Gaussian distribution, and that we
move the beam in steps that are small compared to the beam
width. As the beam sweeps past the point on the surface that
corresponds to a given pixel, the intensity of the pixel first
increases and then decreases. Because the shape of the time-
varying intensity profile is always Gaussian, the time when
the beam was centered on the pixel can be reliably estimated
from that profile.

Spacetime analysis assigns to each pixel in each image
the time at which the beam was centered on it. We can use
this information to find a corresponding pixel in the right
image for each pixel in the left image as follows. Choose a
pixel in the left image and note the time when the beam was
centered at that pixel. The epipolar line of that pixel in the
right image is parameterized by the time when the pixels un-
der the line were illuminated by the beam. The image loca-
tion corresponding to the original pixel is found in subpixel
accuracy by finding the location on the line that corresponds
to the time associated with the original pixel. The 3D co-
ordinates of the surface point are found by triangulation as
before.

2 4 6

3 5 7

initial mesh

optimized mesh

Figure 4. The results of hierarchical space carving
after 2 to 7 octree subdivisions. On the right: the
smoothed initial surface, and the result after mesh
optimization.

2.2. Registration

To obtain complete coverage of the an object we have
to perform scans from several viewpoints. Between scans,
the object is moved. Because the range data in each view
is expressed in the sensor coordinate system, to estimate a
surface from the data, and to project the color images to that
surface, we have to align, or register, the views. To register
a view to another one, we obtain an approximate solution
by interactively matching features and aligning the views in
3D. Then the colored range data of one view is projected
onto the color image of the other one, the color images are
aligned, and the 3D data points that project to the same pixel
are paired. Using the paired points a rigid transformation is
found that aligns most of the pairs. The process is iterated
until convergence in the same manner as in the Iterated Clos-
est Points method [1]. Multiview registration is handled by
first registering views pairwise, determining and storing a set
of reliable point pairs, and finally simultaneously minimiz-
ing the distances between all the stored point pairs. More
detail for both pairwise and multiview registration can be
found in [6].

2.3. Surface reconstruction

Once the data is registered to a common coordinate sys-
tem, we construct a model of the surface of the scanned ob-
ject through a two-phase process. We create an initial sur-
face estimate using a hierarchical space carving method [8].
Space carving relies on the fact that if the scanner can ob-
serve a surface, the space between the surface and the scan-
ner is empty. The space is tessellated into cubes, and if
there is a view (a range scan) such that the cube is either
in front of the data or projects onto the background, the cube
is removed. The space carving is done hierarchically using
an octree. Initially a large cube surrounds the data. Since
by definition it intersects the data, it is immediately subdi-
vided into eight smaller cubes, which the algorithm tries to
remove. If a cube cannot be removed (and is not behind the
surface in every view) it is recursively subdivided and tested.

viewing direction
of the virtual camera

views surrounding
the virtual camera

(a) (b)

i

j k
i

j
k

l

Figure 5. (a) The triangle containing the view-
ing direction of the virtual camera determines the
three views used to search for candidate rays. (b)
Though view l is closer to the current viewing di-
rection, view k is a better choice.

The surface estimate consists of the free faces of the remain-
ing cubes. The initial mesh is simplified and better fitted to
the data using the mesh optimization algorithm by Hoppe
et al. [5]. The surface reconstruction process is illustrated in
Fig. 4.

3. View-dependent texturing

The model of the surface that we construct is displayed
by a view-dependent texturing algorithm that uses the orig-
inal color images. Rather than calculating a texture map
that is pasted onto the surface, we use the surface geome-
try to synthesize new color images from the original input
images. In the following we first describe how the input im-
ages used to synthesize a new image are chosen. Then we
explain how the pixels in the input images that correspond
to the object surface location visible to a particular pixel in
the viewer are found. We describe our averaging scheme
for combining those rays, and we finally discuss the prepro-
cessing steps that allow an interactive implementation of our
texturing method.

3.1. Choosing views

In principle, any camera view that sees the same surface
point as the viewer (a virtual camera) could contribute to
the color of the corresponding pixel. However, views with
viewing directions far away from that of the virtual cam-
era should not be used if closer views are available. Other-
wise, self-occlusions become much more frequent and only
a small portion of the surface, if any, is likely to be visi-
ble both to the viewer and to the distant view. Additionally,
small errors in registration, camera calibration, and surface
reconstruction lead to larger errors in backprojecting surface
points to the color images. In our implementation we only
search for compatible rays from three input images that have
been taken from nearby viewing directions.

Viewer

Camera 1

Camera 2

(a) (b) (c)

Figure 6. (a) A ray from the viewer is cast through
a pixel, intersecting the object surface, and is pro-
jected back to color images, producing candidate
pixels for coloring the original pixel. (b) A false
color rendering of the surface geometry is used to
find the surface point visible through each pixel. (c)
The 3D point corresponding to the pixel pointed to
in (b) is projected into three color images.

To facilitate the selection of suitable views, the views are
organized as illustrated in Fig. 5(a). Our algorithm places
a vertex corresponding to each viewing direction of the in-
put images on a unit sphere, and then computes a Delau-
nay triangulation of the sphere using those vertices. When
rendering a frame, an extra vertex corresponding to the cur-
rent viewing direction is placed on the unit sphere as shown
in Fig. 5(a). The triangle containing that vertex determines
the three views within which the algorithm will search for
candidate rays for the surface points visible to the viewer.
Note that these views are not always the three closest views,
though the closest one is guaranteed to be among the three.
For example, in Fig. 5(b) view l is closer to the current view
direction than view k. However, we prefer to use view k
because i, j, and l all lie to the “left” of the current view.
If there is some part of the surface visible to the viewer but
occluded in views i and j, that location is more likely to be
visible in view k than in view l.

3.2. Finding compatible rays

When our viewer is aimed at an object, the first task in
determining the color of a particular pixel is to locate the
point on the object surface that is visible through that pixel.
Figure 6(a) shows a ray through one of the viewer’s pixels
ending at its first intersection with the object surface. Candi-
date rays that might see the same surface point are obtained
by projecting the intersection point back to the input im-
ages. For example, the viewer pixel marked by the arrow
in Fig. 6(b) corresponds to a point on the dog’s snout, which
projects back to the dots displayed in the three images in
Fig. 6(c).

We can use graphics hardware to determine the surface
point visible through a given pixel. The method (also used
by Gortler et al. [4]) is illustrated in Fig. 6(b). First, the axis-
aligned bounding box for the triangle mesh representing the

a

b

V

1

2

c

d

Figure 7. The virtual camera sees two points a and
b, but they project back to pixels of camera 1 that
actually see points c and d.

object is calculated. Then the coordinates of each vertex are
scaled and translated so that the bounding box becomes a
cube with unit-length sides. Now the x, y, and z coordinates
of each vertex can be encoded in the red, green, and blue
components of its color, so that when the mesh is rendered
in the viewer, an image like the one in Fig. 6(b) is produced.
Within each triangle, the graphics hardware interpolates the
color, and therefore also the encoded surface location. The
surface location visible through a pixel is then given by the
pixel’s color. A slightly slower alternative would be to con-
sult the z-buffer to determine the surface coordinates.

Once the surface point corresponding to a viewer pixel
has been determined, candidate rays are obtained by project-
ing that point back to the input images as shown in Fig. 6(c).
To perform these projections, each camera’s internal and ex-
ternal parameters must be known. In our case, the internal
parameters are obtained from camera calibration parameters;
the external parameters are obtained by registering the range
maps into a common coordinate system.

As Fig. 7 illustrates, not all the candidate rays obtained
through backprojection should be accepted. The virtual
camera of the viewer sees two surface points, a and b, and
those points are also clearly visible to camera 2. However,
point a is not visible to camera 1 due to self-occlusion; the
ray from camera 1 pointing at a sees point c instead. Point b,
on the other hand, is visible to camera 1, though just barely,
but in this case minute errors in calibration, registration, or
surface reconstruction lead point b to project to a pixel that
really sees d instead. We can detect these problems easily
if we retain the original range maps for each camera. For
example, we can calculate the distance from point a to cam-
era 1 and compare it to the range map value for the pixel a
projects to. If these distances differ significantly (as they do
in this case), then the ray is rejected.

3.3. Combining rays

The colors of the compatible rays are averaged together
via a weighting scheme that uses three different weights: di-

(a) (b) (c)

Figure 8. (a) A view of a toy dog. (b) The sampling
quality weight. (c) The feathering weight.

rectional weight, sampling quality weight, and feathering
weight.

The task of the directional weight is to favor rays origi-
nating from views whose viewing direction is close to that
of the virtual camera. Not only should a view’s weight in-
crease as the current viewing direction moves closer, but the
other views’ weights should decrease, leaving only the clos-
est view when the viewpoints coincide. Our algorithm uses
the barycentric coordinates of the current viewing direction
with respect to the directions of the three surrounding views
as the directional weight. The barycentric coordinates lin-
early interpolate the three points to produce the fourth. In
our case the points lie on a sphere rather than a plane, but
the barycentric coordinates can still be computed by radially
projecting the vertex of the current view direction onto the
planar triangle formed by the surrounding three views.

The sampling quality weight directly reflects how well
a ray samples the surface. Our algorithm assigns to each
ray/pixel of each input image a weight that is defined as the
cosine of the angle between the local surface normal and the
direction from the surface point to the sensor. This weight is
illustrated in Fig. 8(b) for a view of the toy dog. The feather-
ing weight is used mostly to hide artifacts due to differences
in lighting among the input images. Without the feathering
weight, the silhouettes of the input views cause noticeable
discontinuities in coloring as a view contributes to pixel col-
ors on one side of a silhouette edge but not on the other. As
illustrated in Fig. 8(c), the feathering weight is zero outside
of the object, and it grows linearly to a maximum value of
one within the object.

3.4. Precomputation for run-time efficiency

The directional weight changes every time the viewer
moves with respect to the object, so it must be recom-
puted for each frame. However, since the sampling qual-
ity and feathering weights remain constant, we preprocess
each pixel of each image by storing the product of those two
weights in the alpha channel of a pixel, where it is readily
accessible.

A large part of the viewer’s processing time is spent pro-
jecting object surface points onto input images and a large
part of that time is spent in correcting for the cylindrical lens

Figure 9. Our interactive viewer. Left: the colors
code the visible surface points. Middle: the three
views that have been chosen as inputs, along with
bars that show the directional weight. Right: the
final image.

distortion. We avoid this calculation by preprocessing the
input images (along with associated information such as the
weights and range data) to remove the distortions before-
hand. The projection is further optimized by collapsing each
view’s registration and projection transformations into a sin-
gle 3× 4 matrix that transforms a homogeneous 3D surface
point into a homogeneous 2D image point.

3.5. Results and discussion

We have implemented an interactive viewer for display-
ing view-dependently textured objects (see Fig. 9). Our ap-
proach does not require hardware texture mapping, yet we
can display complex textured models at interactive rates (5
to 6 frames per second on an SGI O2). The only part of
the algorithm that uses hardware graphics acceleration is the
rendering of z-buffered Gouraud-shaded polygons to deter-
mine which points on the object surface are visible in each
frame. The algorithm can be easily modified to work with ar-
bitrary surface descriptions (NURBS, subdivision surfaces,
etc.) by finding the visible surface points using the z-buffer
instead of rendering triangles colored by location.

The weighting scheme is the same as in view-based ren-
dering (VBR) [7]. In VBR each range scan is modeled sepa-
rately as a textured mesh and several meshes are composited
during rendering. However, if the object has depth discon-
tinuities, we cannot get any range data for many pixels (we
can only triangulate surface points visible to both cameras
and the light source), and although the color information is
valid, it cannot be used. In the current method the range data
is first combined into a single surface model over which the
color data is projected. This means that all valid color data
can contribute to coloring a surface location even where no
range value was recovered, as long as the surface was mod-
eled using either data from another viewpoint or by space

carving. In practise, the new method produces better render-
ings than VBR with the same input data.

Our view-dependent texturing is also related to the work
of Debevec et al. [3], but exact comparison is not possible
as no implementation details were given in that work.

4. Conclusions

We have described a complete system for scanning and
displaying realistic images of colored objects. The output of
our stereo system with active lighting was considerably im-
proved by adapting spacetime analysis from [2] to our sys-
tem. The data are registered into a common coordinate sys-
tem, and an initial surface estimate created by hierarchical
space carving is simplified and better fitted using a mesh op-
timization algorithm. Realistic images from arbitrary view-
points are interactively displayed using our view-dependent
texture mapping method.

5. Acknowledgements

This research was supported by grants from NSF (IRI-
9520434 and DMS-9402734), Academy of Finland, and Hu-
man Interface Technology Laboratory.

References

[1] P. J. Besl and N. D. McKay. A method for registration of 3-d
shapes. IEEE Trans. Patt. Anal. Machine Intell., 14(2):239–
256, Feb. 1992.

[2] B. Curless and M. Levoy. Better optical triangulation through
spacetime analysis. In Proc. IEEE Int. Conf. on Computer Vi-
sion (ICCV), pages 987–994, June 1995.

[3] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry- and
image-based approach. In SIGGRAPH 96 Conference Pro-
ceedings, pages 11–20. ACM SIGGRAPH, Addison Wesley,
Aug. 1996.

[4] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The
lumigraph. In SIGGRAPH 96 Conference Proceedings, pages
43–54. ACM SIGGRAPH, Addison Wesley, Aug. 1996.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In Computer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 19–26, Aug.
1993.

[6] K. Pulli. Surface reconstruction and display from range and
color data. PhD thesis, Dept. of Computer Science and Engi-
neering, Univ. of Washington, Dec. 1997.

[7] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and
W. Stuetzle. View-based rendering: Visualizing real objects
from scanned range and color data. In Proc. 8th Eurographics
Workshop on Rendering, June 1997.

[8] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro,
and W. Stuetzle. Robust meshes from multiple range maps. In
Proc. Int. Conf. on Recent Advances in 3-D Digital Imaging
and Modeling, pages 205–211, May 1997.

