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Abstract. Craniosynostosis is a serious and common pediatric disease
caused by the premature fusion of the sutures of the skull. Early fu-
sion results in severe deformities in skull shape due to the restriction
of bone growth perpendicular to the fused suture and compensatory
growth in unfused skull plates. Calvarial (skull) abnormalities are fre-
quently associated with severe impaired central nervous system func-
tions due to brain abnormalities, increased intra-cranial pressure and
abnormal build-up of cerebrospinal fluid. In this work, we develop a
novel approach to efficiently classify skull deformities caused by metopic
and sagittal synostoses using our newly introduced symbolic shape de-
scriptors. We demonstrate the efficacy of our methodology in a series of
large-scale classification experiments that compare the performance of
our symbolic-signature-based approach to those of traditional numeric
descriptors that are frequently used in clinical research. We also demon-
strate an application of our symbolic descriptors in shape-based retrieval
of skull morphologies.

1 Introduction

Craniosynostosis, the premature fusion of the fibrous skull joints or sutures, is
a common condition of childhood, affecting 1 in 2500 individuals. As an infant’s
brain grows, open sutures allow the skull to develop normally. The early closure
of one or more sutures results in abnormal head shapes due to the restriction
of osseous growth perpendicular to the closed sutures and compensative growth
of unaffected calvarial plates. Sagittal synostosis is the most common form of
isolated suture synostosis with an incidence of approximately 1 in 5000 [8]. Early
closure of the sagittal suture results in scaphocephaly, denoting a long narrow
skull often associated with prominent ridges along the prematurely ossified sagit-
tal suture (Fig. 1b). Metopic synostosis is less common than sagittal synostosis,
affecting 1 in 15,000 individuals [8]. The premature fusion of the metopic suture
produces trigonocephaly, denoting a triangular shaped head (Fig. 1c).

The diagnosis of craniosynostosis is typically made on the basis of clinical
judgments, with CT imaging to confirm the clinician’s impression. Although
quantitative measures of head shape are not often used for clinical diagnosis,
research has been conducted to compare the timing [12] and outcomes of serious
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surgical procedures that involve the complete reconstruction of the skull (Fig.
1b and c), sometimes in combination with cranial molding techniques [4] [5] [12].

Recent advances in multi-detector computed tomography (CT) technology
enable unprecedented accuracy in the detection of fused skull sutures. However,
image interpretation remains largely confined to subjective description. Most
imaging studies in patients with craniosynostosis emphasize qualitative shape
features and relegate quantitative assessments to the measurement of a ratio or
an angle between anthropometric landmarks, therefore disregarding the broad
range of shape variations that are of fundamental interest in understanding the
pathogenesis and clinical course of affected patients.

Fig. 1. Frontal and top views of a) a normal skull, b) a patient affected with sagittal
synotosis, and c) a patient affected with metopic synostosis. Post-surgical reconstruc-
tions are also shown.

Attempts to classify craniosynostosis malformations by combining morpho-
metric techniques [2][9] and likelihood-based or dissimilarity-based classification
methods have been published in [9], with high cross-validation error rates (32-
40% average for sagittal synostosis and 18-27% average for metopic synostosis),
likely due to the limited sampling of skull anatomy. More recently, alternative
numeric shape descriptors have been proposed to predict sagittal synostosis with
high true positive (TP) and true negative (TN) classification rates [15] [16] [17].

In this paper, we develop a novel methodology to accurately and efficiently
predict sagittal and metopic synostosis diagnosis using off-the-shelf support vec-
tor machines and our newly introduced symbolic shape descriptors [10]. Our
approach utilizes a folding technique proposed in [7] to significantly reduce the
computational complexity at classification time as compared to that of the algo-
rithm described in [10]. Furthermore, we utilize bootstrap [3] and cross-validation
techniques for model selection [19] to show that our efficient algorithm does not
compromise classification accuracy, and outperforms numeric descriptors that
are traditionally used in clinical settings. Finally, we suggest that our proposed
technique to quantify synostotic phenotypes will be important for future studies
to determine correlations with surgical planning, long term outcome measure-
ments, deficits in neurocognition and potential genetic and environmental causes.

The task we want to approach can be formally described as follows. We
are given a random sample of M skull shapes labeled as sagittal (1), metopic
(2) and normal (3), respectively. Using the skull shape information, we wish to
construct a set of symbolic shape descriptors and a classification function in
order to accurately and efficiently predict the label of a new skull shape.

2 Source of Images

Our shape descriptors are extracted from CT image slices from skull imaging. In
order to standardize our computations, we use a calibrated lateral view of a 3-D
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Fig. 2. The scaphocephaly severity indices SSI-A, SSI-F and SSI-M are computed as
the head width to head length ratio β/α as measured on CT bone slices that are defined
by internal anatomical landmarks on cerebral ventricles.

reconstruction of the skull to select three CT slice planes defined by internal brain
landmarks. These planes are parallel to the skull base plane, which is determined
by using the frontal nasal suture anteriorly and the opisthion posteriorly. The A,
F and M planes are shown in Figure 2. The A-plane is at the top of the lateral
ventricle, the F-plane is at the Foramina of Munro, and the M-plane is at the
level of the maximal dimension of the fourth ventricle. Using standard image
segmentation and spline interpolation techniques [6], it is possible to extract the
oriented outline from a CT bone image at the level of any of the planes defined
above (Fig. 3a). The points of an oriented outline (such as point P in Fig. 3b)
have a direction defined by their corresponding tangent vectors.
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Fig. 3. a) Bone CT slice at the level of the A-plane. b) Oriented outline counter with
clockwise direction; c) same outline represented in polar coordinates (ρ, θ); and d) 21
components of the corresponding cranial spectrum. Key: α (maximum outline length),
T (tangent vector), N (normal vector), and (CM) center of mass.

3 Numeric Shape Descriptors

Numeric shape descriptors can range from a single number per planar slice to
a large matrix of numbers. In our previous work, we proposed three descriptors
of increasing complexity. The scaphocephaly severity indices (SSIs) [17] describe
skulls with numbers representing ratios. These ratios are the head width to
length, β/α, computed at the three planes defined above and are denoted by
SSI-A, SSI-F, and SSI-M, respectively (Fig. 2). Note that the ratio β/α mea-
sures the deviation of a skull outline shape from a perfect circle (β/α = 1).
The cranial spectrum (CS) [16] describes a skull shape with the magnitude of
the Fourier series coefficients of a periodic function. This function is derived
from a normalized oriented outline by using polar coordinates with origin at the
center of mass of the outline (Fig. 3b). This representation encompasses shape
information that cannot be captured by the SSI ratios, and is closely related to
traditional DFT-based descriptors [13]. We use the first R = 50 coefficients of
the spectrum in our experiments.

The Cranial Image (CI) [15] descriptor is a matrix representation of pairwise
normalized square distances computed for all the vertices of an oriented outline
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Fig. 4. a) Oriented contour represented as a sequence of N evenly spaced points. b)
Cranial image. c) Top view of cranial image with normalized distance scale.

that has been discretized into N evenly spaced vertices. Let D be a symmetric
matrix with elements Dij = dij/α, for i, j = 1 · · · , N , where dij is the Euclidean
distance between vertices i and j, α is the maximum length of the contour (Fig.
4a ), and N is a number between 100 and 500. Since the outline is oriented,
the vertices can be sequentially ordered up to the selection of the first vertex.
As a consequence, the matrix D is defined up to a periodic shift along the
main diagonal. The CI of an oriented outline is defined as an equivalence class
of distance matrices parametrized by a set of operators Θn that permutes the
rows and columns of D to produce the aforementioned shift; more precisely,
CI= D(Θn), n = 1, · · · , N . The definition of CI can be extended to incorporate
an arbitrary number of oriented outlines by computing inter and intra-oriented
outline distances for each of the vertices of all of the outlines representing a
skull. For example, the vertices of outlines at the A, F, and M planes could be
arranged from 1 to N , from N + 1 to 2N , and from 2N + 1 to 3N , respectively
(Fig. 5).

Fig. 5. Cranial images for a patient diagnosed with a) sagittal synostosis, b) metopic
synostosis, and c) normal head shape. Cranial images were constructed using three
consecutive oriented outlines at the levels of the A-plane, F-plane and M-plane.

4 Symbolic Shape Descriptors

Symbolic shape descriptors (SSDs) were developed in [10] to overcome the com-
putational complexity of cranial image descriptors. More specifically, the worst
case complexity of a ν-SVM classification function that uses cranial images is
O(ML3N3), where M is the number of skulls in the training set, L is the number
of oriented outlines used to represent a skull, and N is the number of vertices
per outline. Such complexity limits the practical use of CIs in applications where
several outlines are required to represent a 3-D skull shape.

The goal of symbolic shape descriptors is to encode global geometric proper-
ties that differentiate our shape classes (sagittal, metopic and normal) by proba-
bilistic modeling of their local geometric properties. This paradigm can produce
a compact representation of 3-D shape that improves the classification perfor-
mance of numeric descriptors and reduces the computational complexity of the
classification function to O(MP ) with P � L3N3. However, the standard SSD
algorithm in [10] requires the computation of (M +1)V +(M +1)P +P param-
eters for every test skull shape, where V is the vocabulary in the training set(to
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be defined below) and where the typical values of M , V and P are 100, 5× 103,
and 20, respectively. To overcome this issue, we adapt the folding technique de-
scribed in [7], which only requires the computation of P parameters for every
new skull shape. The training and testing steps of our efficient SSD algorithm
are described below.

Fig. 6. Symbolic labels are assigned to the vertices of the oriented outlines by applying
k-means clustering to their numeric attributes. Oriented outlines of a) sagittal, b)
metopic and c) normal head shapes, respectively, taken at the level of the A-plane.

Training Algorithm. The input of the efficient SSD learning algorithm is
a set of skull shapes S = {S1, · · · , SM}. Each shape is represented by L oriented
outlines, and each outline is discretized into N evenly spaced vertices. For the
sake of simplicity, we assume that L = 1. The training algorithm is as follows:

1. For each shape Sj in S and each vertex vi of Sj , compute the vector of distances
from all other vertices of Sj to vi. This vector is the same as the i-th row of the
CI matrix descriptor (Fig. 5).

2. Cluster these vectors by k-means clustering with user-selected k and assign each
cluster a symbolic label. Each vertex receives the label of its cluster.

3. Compute a bag of words (BOW) representation of the skull outlines in S. More
specifically, the symbols associated with the vertices of an oriented outline are
used to construct strings of symbols or words. The word size is fixed at some
integer 1 ≤ W ≤ N . For instance, when W = 3, each word contains three sym-
bols. A BOW representation for the outline in Figure 7a is the unordered set
s={′CAA′,′AAB′,′ABB′,′BBC ′,′BCD′, ′CDB′,′DBC ′,′BCA′}.

4. Compute a M × V co-occurrence matrix of counts [n(si, wj)]ij for the training set
where n(si, wj) denotes the number of times the word wj occurs in the BOW si

associated with the skull outline Si.
5. Apply probabilistic latent semantic analysis (PLSA) to the co-occurrence matrix of

the training set [7]. PLSA is a latent variable model which associates an unobserved
class variable zk ∈ z1, . . . , zP with each observation, and an observation being
the occurrence of a word in a particular BOW. The PLSA (also called aspect

model) is formally defined as P (si, wj) = P (si)
∑P

k=1
P (wj |zk)P (zk|si), where

P (si, wj) denotes the probability that a word occurrence will be observed in a
particular BOW si, P (wj |zk) denotes the class-conditional probability of observing
the word wj given the aspect zk, and P (zk|si) denotes a BOW-specific probability
distribution over the latent variable space. The equation above can be conveniently
parametrized as P (si, wj) =

∑P

k=1
P (zk)P (wj |zk)P (si|zk), which is symmetric in

both entities, BOW and words, and where P (si|zk) denotes the class-conditional
probability of a specified BOW conditioned on the unobservable class variable zk.

6. Use the class-conditional probabilities P (s|z) estimated in the previous step to
construct the symbolic shape descriptors for the outlines in S. More specifically, for
each outline Si in the training set, form its corresponding symbolic shape descriptor

as the P -dimensional vector [P (si|z1), · · · , P (si|zP )].
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7. Use cross-validation on the training set of symbolic shape descriptors computed in
the previous step for selecting the model of a ν-SVM classification function.

The outputs of the training algorithm are the k-means cluster centers, the set
of words in the training set (vocabulary), the P (w|z) parameters of the PLSA
model, and a ν-SVM classification function for the symbolic shape descriptors.

An intuitive interpretation for the aspect model can be obtained by observing
that the conditional distributions P (wj |si) are convex combinations of the P
class conditionals or aspects P (wj |zk). Loosely speaking, the modeling goal is
to identify conditional probability mass functions P (wj |zk) such that the BOW-
specific word distributions are as faithfully as possible approximated by convex
combinations of the aspects [7]. In our context, words encode local geometric
properties of the outline shapes; therefore, the global geometric properties of
the outlines in S are modeled as convex combinations of local geometric aspects.
This means that BOWs that have similar co-occurrence word distributions can
be represented by similar geometric aspects. In fact, the PLSA model tends to
cluster BOW-word pairs [7]. The parameters of the PLSA model can be estimated
using the standard Expectation Maximization algorithm [1]. For the sake of
space, the reader is invited to consult [7] for a comprehensive description of the
PLSA model and its implementation details.

Testing algorithm. The inputs are a new skull shape Snew, the k-means
cluster centers, the vocabulary of the training set, the P (w|z) parameters of the
PLSA model, and a ν-SVM classification function.

1. Use the k-means cluster centers and a nearest neighbor rule to assign symbolic
labels to the vertices of the test skull outline Snew.

2. Compute the occurrence vector corresponding to the test skull Snew using the
vocabulary of the training set.

3. Use the class-conditional probabilities P (w|z) estimated from the training set to
compute P (snew|z) for the test skull Snew, and form the symbolic shape descrip-
tor [P (snew|z1), · · · , P (snew|zP )]. Note that the P (w|z) parameters are kept fixed
(not updated at each M-step) for estimation of P (snew|z). In doing so, P (snew|z)
maximizes the likelihood of the skull shape Snew with respect to the previously
trained P (w|z) parameters.

4. Use the classification function and the symbolic shape descriptor computed in the
previous step to predict the label of Snew.

The output of the efficient SSD algorithm is the label of Snew.

4.1 ν-SVMs and Model Selection

We use ν-SVMs with a Gaussian kernel k(x, x′) = exp(−d(x, x′)2/σ2) to mea-
sure similarities between shape descriptors (SSIs, cranial spectrum, and symbolic
shape descriptors), where the function d is the Euclidean distance, and σ is the
width parameter of the kernel. The worst case computational complexity for this
kernel is O(Mr), where r is the dimension of the x vectors. We use the kernel
kΘ(D,D′) = maxn k(D(Θn), D′) to measure the similarity between cranial
images. We select the width σ of the kernel (and the k, W and P parameters of
the symbolic shape descriptors) by minimizing the leave-one-out error (LOOE)
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estimate of the expected classification error [18]. We bound the variance of our
statistical estimators (LOOE and confusion matrices) by computing bootstrap

confidence intervals [3].

5 Experimental Results

Our sample population consists of 60 CT head scans from children with sagittal
synostosis, 13 head scans diagnosed with metopic synostosis and 41 scans of
age-matched controls with normal head shapes. Computed tomography data are
acquired with a multi-detector system that produces isotropic 3-D images with
0.5 mm resolution. Three-dimensional reconstructions of each patient’s skull are
generated with a high performance workstation (Figs. 1 and 2).

Words

O
ut

lin
e 

sk
ul

l s
ha

pe
s

(B
O

W
s)

S

N

M

Fig. 7. Co-occurrence matrix of word counts (displayed as a color image) corresponding
to the skull shapes in our sample population. Each skull shape is represented using three
outline shapes (L = 3) at the level of the A, F and M planes. Key: Sagittal (S), Normal
(N) and Metopic (M).

5.1 BOW Representation

We compute co-occurrence matrices of counts for the BOW representation of the
skull outlines in our population sample. Our data reveal that this symbolic repre-
sentation encodes distinctive shape information that can be used to differentiate
sagittal, metopic and normal skull shapes. This can be seen in Fig. 7, which
shows as a color image of a co-occurrence matrix for skull shapes represented by
three oriented outlines at the A, F and M levels (L = 3, k = 150 and W = 5). It
is clear from the figure that the distributions of word frequencies for each of the
classes differ significantly. Our data also show that for both W > 5 and k > 250
the co-occurrence matrix becomes too sparse and word count estimates become
unreliable. Values k < 30 do not allow us to discriminate between skull shape
classes.

5.2 Classification Results

Table 1 shows the classification performance for the SSI, CS, CI and standard
SSD descriptors computed separately for the three oriented outlines (N=200,
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SSI CS CI SSD

S M N S M N S M N S M N

S 0.98 0.00 0.05 0.98 0.00 0.04 1.00 0.00 0.05 1.00 0.00 0.07

OA M 0.00 0.85 0.54 0.00 0.62 0.07 0.00 0.31 0.00 0.00 0.77 0.12

N 0.02 0.15 0.41 0.02 0.38 0.88 0.00 0.69 0.95 0.23 0.80 0.88

S 0.93 0.00 0.00 0.98 0.00 0.00 0.95 0.00 0.05 1.00 0.00 0.07

OF M 0.00 0.85 0.51 0.00 0.93 0.07 0.00 0.92 0.05 0.00 0.92 0.05

N 0.07 0.15 0.49 0.02 0.07 0.93 0.05 0.08 0.90 0.00 0.08 0.88

S 0.88 0.00 0.20 0.90 0.00 0.10 0.91 0.08 0.12 0.97 0.00 0.10

OM M 0.00 0.76 0.51 0.00 0.85 0.00 0.02 0.85 0.02 0.00 0.85 0.00

N 0.12 0.23 0.29 0.10 0.15 0.90 0.07 0.07 0.85 0.03 0.15 0.90
Table 1. Classification confusion matrices for SSIs, CS, CI and standard SSD de-
scriptors computed for individual oriented outlines OA, OF and OM. Outlines were
generated at the A, F and M planes, respectively. Key: Sagittal (S), Metopic (M) and
Normal (N).

Standard SSD Algorithm

S M N

S 1.00 [0.99,1.00] 0.00[0.00, 0.01] 0.07 [0.05, 0.09]

M 0.00 [0.00 0.01] 1.00 [0.98, 1.00] 0.00 [0.00, 0.02]

N 0.00 [0.00 0.01] 0.00 [0.00 0.08] 0.93 [0.90 0.96]
Table 2. Classification confusion matrix and p = 0.05 confidence intervals for standard
SSD computed using all three oriented outlines associated with the A-plane, F-plane
and M-plane levels. Key: Symbolic shape descriptors (SSD), Saggital (S), Metopic (M)
and Normal (N).

Efficient SSD Algorithm

S M N

S 1.00 [0.99,1.00] 0.00[0.00, 0.01] 0.07 [0.05, 0.09]

M 0.00 [0.00 0.01] 1.00 [0.94, 1.00] 0.00 [0.00, 0.02]

N 0.00 [0.00 0.01] 0.00 [0.00 0.06] 0.93 [0.89 0.97]
Table 3. Classification confusion matrix and p = 0.05 confidence intervals for efficient
SSD computed using all three oriented outlines associated with the A-plane, F-plane
and M-plane levels. Key: Symbolic shape descriptors (SSD), Saggital (S), Metopic (M)
and Normal (N).

R=50, L=1, k=150 and W=3). Standard SSD descriptors computed from single
outlines perform better than SSIs and have comparable performance to those of
CS and CI descriptors.

Table 2 shows the results for standard SSDs computed from all three out-
lines (L=3). Table 3 shows the related results for efficient SSDs. These results
are superior than those on single slices alone. Although the performance of effi-
cient SSDs and standard SSDs are comparable, the standard SSDs requires the
computation of (M +1)V +(M +1)P +P parameters (∼ 105), while the efficient
SSDs only requires the calculation of P parameters (M=113, V =5 × 103 and
P=15).

5.3 Shape-based Skull Ranking

The five skull shapes with the highest P (si|zk) for z = 1, 4, 12, 13, 14 are shown
in Fig. 8. Note that the top ranked shapes for aspects z12 and z14 represent
shape features only evident in sagittal synostosis, while aspect z1 encodes fea-
tures only observed in the metopic class. Aspect z4 encodes features that are
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only evident in the class of normal shapes. Also note that the sagittal skulls
in column z12 have flatter and wider tops in contrast to the sagittal skulls in
column z14. These observations suggest that SSD descriptors could be used to
stratify skull shapes in different subcategories. This kind of aspect-based shape
ranking can be potentially used to develop automatic retrieval applications of
skull morphologies.

Fig. 8. Skull shapes are ranked based on the computed P (s|z). Shapes in aspect z1

belong to metopic, in aspect z4 belong to normal, and aspect z12 and z14 belong to
sagittal. Aspect z13 includes a mix of metopic and normal skull shapes.

6 Conclusions

This paper presents an improved and efficient approach to the symbolic shape
descriptors proposed in [10]. This method is compared with our previous work on
numeric shape descriptors and standard SSDs for accurate prediction of sagittal
and metopic diagnoses. We show that the symbolic shape descriptors computed
from three oriented outlines outperform all of the numeric shape descriptors. We
also show that efficient SSDs have equal classification performance to standard
SSDs. Because the computational complexity of the efficient SSD approach is
further reduced from that of the standard SSD method, efficient SSD is the
preferred algorithm that can be potentially used to represent 3-D skull shape
of large data sets without significant increase in the complexity at classification
time.
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