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This paper addresses the problem of recognizing 3D objects from 2D intensity
images. It describes the object recognition system named RIO (relational indexing of
objects), which contains a number of new techniques. RIO begins with an edge image
obtained from a pair of intensity images taken with a single camera and two different
lightings. From the edge image, a set of new high-level features and relationships are
extracted, and a technique called relational indexing is used to efficiently recall 2D
view-class object models that have similar relational descriptions from a potentially
large database of models. Once a model has been hypothesized, pairs of 2D–3D
corresponding features, including point pairs, line–segment pairs, and ellipse–circle
pairs, are used in a new linear pose estimation framework to produce a hypothesized
transformation from a 3D mesh model of the object to the image. The transformation
is either accepted or rejected by a verification procedure that projects the 3D model
wireframe to the image and computes a Hausdorff-like distance measure between
the projected model and the edge image. The resultant object recognition system
is able to recognize 3D objects having planar, cylindrical, and threaded surfaces in
complex, multiobject scenes.c© 2000 Academic Press
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1. INTRODUCTION

Three-dimensional object recognition has seen a great deal of activity in the past decade,
as has been pointed out in recent surveys [3, 6, 13, 46, 53]. Most systems fall into three
main categories: (1) systems that use intensity data alone [1, 7, 9, 11, 35, 42, 43, 48, 59],
(2) systems that use range data alone [5, 10, 24, 26, 27, 38, 30, 37, 40, 50], and (3) systems
that use both range and intensity (sometimes including color) data [31, 34, 52].

In intensity-image-based systems, points and straight line segments are still the most
commonly-used features. In fact, the recent popularity of the alignment method [36] has
led to a significant number of systems that blindly match triples of points or line segments
from the image to similar triples from the model, using little or no contextual information.
These algorithms all make the assumptions that (a) the points or line segments are reasonably
reliable features of the class of objects to be recognized or located and (b) the pose of the
object can be uniquely determined from a small set of these features. These assumptions are
only true for polyhedral objects or those with a number of sharp, straight edges. They fall
apart for most curved-surface objects. Figure 1a shows a polyhedral object where points
and line segments make good features, and Fig. 1b shows another simple object with both
curved and planar surfaces where they are not very useful. Our system can recognize objects
that have planar, cylindrical, and threaded surfaces, and it is designed to handle occlusion.

In range-image-based systems, primitive surfaces (usually planar or quadric) are the most
common features, but 3D line segments and points are also used. Because surfaces from
range data are more reliable than surface regions from grayscale, a number of systems
use the properties of and relationships among surfaces in matching algorithms. This type
of approach has worked well for simple objects with a small number of simple surfaces.
Systems that work with more complex, free-form surfaces generally look for interest points
and perform point matching. Again, the reliable detection of feature points is crucial to
success. The recent work of Johnson and Hebert [40] provides a new and powerful way to
hypothesize point correspondences.

This work addresses the problem of recognizing 3D objects from 2D intensity images. It
describes the object recognition system named RIO (relational indexing of objects), which

FIG. 1. (a) Image of a polyhedral object whose junctions and line segments make useful features for recognition
and pose estimation. (b) Image of a nonpolyhedral object for which line segments and junctions alone are virtually
useless as recognition features.
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performs feature-based alignment and contains a number of new techniques. RIO begins
with an edge image obtained from a pair of intensity images taken with a single camera and
two different lightings. From the edge image, a set of new high-level features and relation-
ships are extracted, and a technique calledrelational indexingis used to efficiently recall
2D view-class object models that have similar relational descriptions from a potentially
large database of models. Once a model has been hypothesized, pairs of 2D–3D corre-
sponding features, including point pairs, line–segment pairs, and ellipse–circle pairs, are
simultaneously used in a new linear pose estimation framework to produce a hypothesized
transformation from a 3D mesh model of the object to the image. The transformation is
optimized (and subsequently accepted or rejected) by a verification procedure that projects
the 3D model wireframe onto the image and minimizes a Hausdorff-like distance measure
between the projected model and the image edges. The resultant object recognition system
is able to recognize 3D objects having planar, cylindrical, and threaded surfaces in complex,
multiobject scenes.

This paper describes the major research contributions of the RIO system. Section 2 dis-
cusses the related literature. Section 3 defines the features and relations used for recognition.
Section 4 gives the relational indexing algorithm and some initial experiments. Section 5
describes the new pose-estimation algorithm, and Section 6 discusses the full experiments
and results.

2. RELATED WORK

This section briefly describes a few existing systems which are closely related to the
system developed in this work. Whenever possible, an attempt has been made to compare
or relate characteristics of the system being described to the philosophical aspects of the
work described in this paper.

Features can be predicted analytically or by applying graphics software to CAD models
[9, 29, 30, 56]. In [30], Gremban and Ikeuchi use the term appearance-based vision to refer
to methods in which the recognition system analyzes and predicts the appearances of the
object models based on CAD data and on physical sensor models. The prediction can be
either analytical or based on synthesized images of the objects in the model database. The
predicted appearance is the set of features that are visible under a specific set of viewing
conditions. The analysis of the predicted appearance allows for the generation of an object
recognition program to be used in the online phase of the recognition process. This process
is also called VAC (vision algorithm compiler), because it takes a set of object and sensor
models and outputs an executable object recognition program. The framework is general in
the sense that it does not require any specific type of sensor. Their system has successfully
recognized simple objects from range data in a bin-picking environment. However, there are
two drawbacks to this approach: (1) analytical prediction is impractical in some domains;
and (2) synthetic images are not yet realistic enough for general use. More recently, Dorai
and Jain [22] have developed a method of view grouping for free from objects, using range
images.

The use of synthetic images also affected the performance of the PREMIO system of
Campset al. [9]. This system utilizes artificially rendered images to predict object appear-
ances under various environmental conditions (sensor, lighting, and viewpoint location).
The predictions generated by the system did not agree well with the real images acquired
under the same set of conditions. In order to improve PREMIO’s predictions, Pulli [47]
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developed the TRIBORS system. He initially attempted to improve the predictions by us-
ing a better ray tracer, but that was also insufficient. The solution he found was to bootstrap
the prediction process with synthetic images and to train on real images. These new pre-
dictions led to better and faster object recognition. The use of real training images seems to
be a step in the right direction. In this paper, the “predictions” are derived exclusively from
real images of the objects. These predictions are described in detail in Section 2.

Despite the fact that it only deals with two-dimensional objects, Bolles and Cain’s local-
feature-focus method [4] is very relevant to the work herein. Their method automatically
analyzes the object models and selects the best features for recognition. Typical features
include holes and corners. The basic principle is to locate one relatively reliable feature and
use it to partially define a coordinate system within which a group of other key features is
located. If enough of these secondary features are located and if they can uniquely identify
the focus feature, then the hypothesized position and orientation of the object (of which this
feature is a part) is determined. A verification step that utilizes template matching is then
performed to prove or disprove the hypothesis. The system has been proven to efficiently
recognize and locate a large class of partially visible two-dimensional objects.

The work of Murase and Nayar [43] also involves appearance of objects and the training
is performed on real images. They argue that since the appearance of an object is dependent
on its shape, its reflectance properties, its pose in the scene, and the illumination conditions,
the problem of recognizing objects from brightness images is more a problem of appearance
matching than of shape matching. They define a compact representation of object appearance
that is parameterized by pose and illumination only, since shape and reflectance are intrinsic
(constant) properties. This representation is obtained by acquiring a large set of real images
of the objects under different lighting and pose configurations and then compressing the
set into an eigenspace. A hypersurface in this space represents a particular object. At
recognition time, the image of an object is projected onto a point in the eigenspace and
the object is recognized based on the hypersurface on which it lies. The exact location of
the point determines the pose of the object. The major drawback of this method is that it
cannot handle multiple-object scenes. Occlusion also adversely affects the performance of
the system.

Though the work of Bergevin and Levine [2] on generic object recognition does not make
use of the specific model-based paradigm, it is philosophically related to the work herein.
They utilize coarse, qualitative models that represent classes of objects. Their work is based
on the recognition by component (RBC) theory of Biederman. The system is divided into
three main subsystems: part segmentation, part labeling, and object model matching. The
part segmentation algorithm is boundary-based, and it is independent of the specific shape of
the parts making up an object. The part (geon) labeling algorithm makes use of the concept
of faces to further categorize the geons into generalized solids. At the matching stage, the
labeled geons are used to index into the database of models. A measure of similarity is
defined in order to discriminate among the models. An important observation made by
the authors themselves is that it is not clear that suitable line drawings may eventually be
obtained from real images. All their examples and tests have made use of ideal line drawings.

The evidence-based recognition technique proposed by Jain and Hoffman [38] defines an
object representation and a recognition scheme based on salient features in range images.
The objects are represented in terms of their surfaces, boundaries, and edges. The recogni-
tion scheme makes use of an evidence rulebase, which is a set of evidence conditions and
their corresponding weights for various models in the database. The similarity between a set
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of observed image features and the set of evidence conditions for a given object determines
whether there is enough evidence that the particular model is in the image. The model
features must be carefully chosen in order to make possible the distinction between object
classes.

Geometric hashing [15, 41] is a matching scheme that achieves rapid online matching
performance via a large offline preprocessing step. In the offline database creation step
of geometric hashing, salient feature points in the object models are converted into an
affine-invariant model representation by using three points as a basis and transforming the
coordinates of the remaining points. These new coordinates are encoded and used as an
entry to a hash table where the basis triplet and the model from which the coordinates
came are recorded. This is done for all possible basis triplets in the models. In the matching
step, salient points in the image are detected, a basis triplet is chosen, and the remaining
points are transformed with respect to this basis and are used to access the table. For each
bin accessed, votes are cast for the model-basis pairs associated with the bin. After all the
points are used in this fashion, if a particular model-view has high enough votes, an object
match hypothesis is declared found. The recognition part of the system described in this
paper is accomplished by utilizing the high-level features and relationships of an object
in a paradigm called relational indexing. This indexing technique is related to the original
geometric hashing technique, except that the database of models is indexed by encoding
(without quantization) small relational graphs of features, as opposed to affine-invariant
point coordinates. Because we use symbolic information and because the information we
store is much smaller than the information required for geometric hashing, our current
implementation uses only an array for table lookups, instead of a hash table.

The work of Stein and Medioni [50] is particularly related to our indexing scheme. In
their structural indexing technique boundaries of objects are approximated by polygons
and groups of consecutive segments are encoded and used to index the database and to
retrieve possible hypotheses. In their MULTIHASH system, Grewe and Kak [31] propose
an interactive framework for learning the structure of a multiple-attribute hash table for use
in the recognition and localization of 3D objects. The system makes use of both qualitative
and quantitative attributes, such as shape of a surface and color, respectively. Decision trees
and uncertainty modeling are used in the construction of the hash tables, after a human
trainer shows objects to the vision system and tells the system the identities of the models
corresponding to the several attributes considered.

The work of Chen and Stockman [12] uses a hypothesize-and-test approach to generic
object recognition. Their recognition system uses an alignment paradigm consisting of three
stages: modeling, indexing, and matching. In the first stage, model aspects are constructed
for predicting the object contours visible from an arbitrary viewpoint. Model aspects and
pose hypotheses are generated by the indexing module, which makes use of the concept
of “parts.” In the matching stage, verification of model hypotheses is carried out by an
alignment technique that makes use of Newton’s method along with a Levenberg–Marquardt
minimization, to estimate or refine the object pose iteratively. The hypotheses are refuted
or supported by the matching results.

3. FEATURES AND RELATIONS

The features used in this work are derived from edge images. These edge images actually
come from a pair of intensity images taken from the same viewpoint, but with the light source
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on the left in one and on the right in the other. This aspect of the work will be discussed
briefly when we describe the experimental system used to evaluate the algorithms.

3.1. Features

Once the edge image is obtained, it is used for feature extraction. The feature extraction
module of the system makes use of the ORT (object recognition toolkit) public domain
software package developed by A. Etemadi which extracts line segments and circular arc
segments from edge images [23]. These primitive features are used to generate higher-
level features such as pairs of parallel lines, junctions, triplets, clusters of coaxial arcs,
and ellipses. All higher-level features are generated by the ORT package with the ex-
ception of ellipses and clusters of arcs. The procedures for detecting those features were
developed in cooperation with Yu-Yu Chou and are reported in [14]. The complete list of
features used in this work is given below, and their pictorial representation can be seen in
Fig. 2.

• Ellipses
• Coaxials-3: cluster of three coaxial arcs
• Coaxials-multi: cluster of four or more coaxial arcs
• Parallel-far: pair of parallel lines 40 pixels or more apart
• Parallel-close: pair of parallel lines 40 pixels or less apart
• U-triples: set of three line segments in a U shape
• Z-triples: set of three line segments in a Z shape
• L-junctions
• Y-junctions
• V-junctions

3.2. Relationships Among Features

The relationships used for matching must be translation, scale, and rotation invariant. Note
that they are relationships among two-dimensional features in a two-dimensional view class
of the 3D object. Different features appear and different relationships among features hold
in different view classes of the same object. The list of relations among features used in this
work is given below.

• Share one arc
• Share one line
• Share two line
• Coaxial
• Close at extremal points
• Bounding box encloses
• Enclosed by bounding box

Each of the above relations is defined between a pair of features. All of the relations
are symmetric relations, except forbounding box enclosesandenclosed by bounding box,
which are both one-way relations. Figure 3 shows examples of the above relations.

3.3. View-Class Models

A feature-based model of an object is a description of the object in terms of features that
are detectable in real images of the object. A feature isdetectableif there is a computer
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FIG. 2. Features used in this work. (a) Ellipses; (b) coaxials-3; (c) coaxials-multi; (d) parallel-far;
(e) parallel-close; (f) U-triple; (g) Z-triple; (h) L-junction; (i) Y-junction; (j) V-junction.

program that can extract the feature from an image of the object, through some well-defined
procedure. Feature-based models can befull-object modelsincluding all the features that
appear in any view of an object or they can beview-classmodels in which an object is
represented by a small set of characteristic views, each having its own distinct feature set.
In this work, view-class models of industrial parts made of metal with planar, cylindrical,
and threaded surfaces are utilized. The view classes used were generated manually by
a human designer, but the same can be done automatically as proposed by Thornton in
[54].

Let C be the class of objects to be recognized, and letT be the set of feature types to be
used in the recognition task. Features may be 2D or 3D, depending on the sensors used to
detect them. Each type of feature has a 3D source, an explanation for the appearance of the
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FIG. 3. Relations between sample pairs of features. (a) Share one arc; (b) share one line; (c) share two lines;
(d) coaxial; (e) close at extremal points; (f) bounding box encloses/enclosed by bounding box.

feature in an image. In general, 3D image features correspond to 3D object features. For
example, 3D surfaces detected in range images correspond to object surfaces, and 3D edges
correspond to object edges or boundaries between objects. Some 2D features correspond
directly to 3D features of the object. Straight and curved 2D segments, for instance, can
correspond directly to straight and curved 3D edges. 2D ellipses can correspond directly to
3D circles or ellipses. Other 2D features come about due to a mixture of factors including
the geometry of the object, the viewpoint, and the lighting. Limb edges are viewpoint
dependent and have no corresponding 3D edge at all on the object. Highlight edges are
caused by the shape and reflectance properties of the object and the lighting; they are also
highly viewpoint-dependent.

Let SV,M be a set of training images for view classV of object modelM . The images are
all taken from a connected volume of the viewing sphere, which is assumed to be centered
at the origin of the object and to be of a fixed radius equal to the maximum viewing distance.
If the object has symmetries, then the connected volume can be replaced by the union of
several connected volumes. Each imageI ∈ SV,M is processed to yield a set of features
FI . A feature f I

n from imageI is equivalentto another featuref J
m from imageJ if they

have the same type and are judged to have come from the same 3D source. The set of
features that represent the view class is the setFV,M of equivalence classes of the union of
the feature sets. The feature types used in this work are coaxial circular arcs (two-cluster,
three-cluster, and multicluster), ellipses, triples of line segments (U-shaped and Z-shaped),
junctions (V-junction, T-junction, Y-junction, and Arrow), and parallel line segments (close
and far apart).
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FIG. 4. A set of features extracted from the training image of Fig. 1b. (a) Edges; (b) straight lines; (c) circular
arcs; (d) line features; (e) arc clusters; (f ) ellipses.

Figure 4 illustrates some of the features that were extracted from the edge image of the
nonpolyhedral object of Fig. 1b. Figure 4a shows the raw edge image. Figures 4b and 4c
show the straight line segments and circular arcs extracted. Figure 4d shows the line features
identified by the system. Line segments 5 and 7 form a far-apart, parallel pair, while line
segments 8 and 9 form a V-junction as do line segments 5 and 6. Figure 4e shows the single
cluster of three coaxial arcs detected by the system, and Fig. 4f shows the single ellipse
detected.

The features shown in Fig. 4 are from one training sample of View Class 1 of Model 1
of the model database. Of the five samples of that view class that were analyzed, the three
coaxial arcs and the ellipse were detected in all five; the V-junctions were detected in three;
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FIG. 5. Sample model views in the database. (a) Model 1 view class 1; (b) model 1 view class 2; (c) model 1
view class 3; (d) model 1 view class 4.

the far-apart, parallel lines were detected in three; another pair of parallel lines was detected
in two; and a U-shaped triple of line segments was detected in two. Figure 5 illustrates
samples of the edge images obtained from training images of the four view classes of
Model 1.

3.4. 3D Mesh Models

In addition to the feature-based models described in the previous section, full geometric
CAD models are utilized by the system. The CAD models are used in the verification and
pose estimation steps as described in Sections 5.7 through 5.9.

4. RELATIONAL INDEXING FOR HYPOTHESIS GENERATION

In a model-based object recognition system [49], the task of matching image features to
model features, in the general case, implies searching the space of all possible correspon-
dences. Indexing is one of the techniques that has been utilized to reduce this search space.
In recent years, several systems have made use of different approaches to indexing [8, 41,
44, 50]. In this section a novel approach to indexing into a database of models that makes
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use of features and the relationships among them is described. This new technique is called
relational indexing.

In relational indexing each view-class model in the database is described by a relational
graph of all its features, but small relational subgraphs of the image features are utilized to
index into the database and retrieve appropriate model hypotheses. In this section the use
of this new technique for hypothesis generation is demonstrated.

4.1. Relational Indexing Notation

An attributed relational description Dis a labeled graphD = (N, E) whereN is a set
of attributed nodes andE is a set of labeled edges. For each attributed noden∈ N, let A(n)
denote the attribute vector associated with noden. Each labeled edgee∈ E will be denoted
ase= (ni , nj , Li, j ), whereni andnj are nodes ofN, andLi, j is the label associated with
the edge between them.Li, j is usually a scalar, but it can also be a vector.

A relational descriptionD = (N, E) can be broken down into subgraphs, each having
a small number of nodes. Subgraphs of two nodes, called2-graphs, are considered. In the
worst case, a complete graph ofk nodes has

(k
2

)
2-graphs, each consisting of a pair of

attributed nodes and the labeled relationship between them. The relationship between the
two nodes may be a meaningful spatial relationship or the null relationshipnone. The set of
2-graphs with nonnull relationships of a relational descriptionDl is denoted asTl . Figure 6
illustrates a partial graph representing an object and all the 2-graphs for the given relational
graph.

4.2. Relational Indexing Algorithm

Let DB = {M1,M2, . . . ,Mm} be the database of view-class models, where eachMi =
(Ni , Ei ) is an attributed relational description. LetD = (N, E) be a relational description
that has been extracted from an image andT be the set of all 2-graphs ofD. In order to

FIG. 6. Sample graph and corresponding 2-graphs for the hexnut object.
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find the closest models toD two steps are performed: an offline preprocessing step that sets
up the indexing mechanism and an online hypotheses generation step. The offline step is
as follows. LetT Mi be the set of 2-graphs ofMi . Each elementGMi

l in this set is encoded
to produce an indexI Mi

l , which is used to access a lookup table. The bin corresponding to
an encoded 2-graphGl stores information about which models gave rise to that particular
index. Whenever a particular 2-graphGMi

l of modelMi produces an index that accesses a
bin B, modelMi is added to the list of models inB. This encoding and storing of information
in the lookup table is done offline and for all models in the databaseDB.

In the online step the relational indexing procedure keeps an accumulatorAi for each
model Mi in the database; all the accumulators are initialized to zero. Each 2-graphGl

in T is encoded to produce an indexIl . The procedure then uses that index to retrieve
from the precomputed lookup table all modelsMi that contain a 2-graph that is identical
to Gl . Identical means that the two nodes have the same attributes and the edge has the
same label. For each 2-graphGl of T , the accumulatorAi of every retrieved modelMi is
incremented by one. After the entire voting process, the models whose accumulators have
the highest votes are candidates for further consideration. Since the procedure potentially
goes through all (k2) 2-graphs ofT and for each one can retrieve a maximum ofm models,
the worst-case complexity isO(m( k

2)). However, the work performed on each model is very
small, merely incrementing its accumulator by one. This is very different from methods
that perform full relational matching on each model of the database. Furthermore, in real
imaging applications, many of the 2-graphs have the null relationship and are not included
in the voting process. The relational indexing algorithm is given below.

RELATIONAL INDEXING ALGORITHM.

Preprocessing (offline) Phase

1. For each modelMi in the databaseDB do:
• Encode each 2-graphGMi

l to produce an index.
• StoreMi and associated information in the selected bin of the lookup table.

Matching (online) Phase

1. Construct a relational descriptionD for the scene.
2. For each 2-graphGl of D do:
• Encode it, produce an index, and access the lookup table.
• Cast a vote for eachMi associated with the selected bin.

3. SelectMi ’s with enough votes as possible hypotheses.

Since some models share features and relations, it is expected that some of the hypotheses
produced will be incorrect. This indicates that a subsequent verification phase is essential
for the method to be successful. It is important to mention that the information stored
in the lookup table is actually more than just the identity of the model that gave rise to a
particular 2-graph index. It also contains information about which specific features (and their
attributes) are part of the 2-graph. This information is essential for hypothesis verification
and eventual pose estimation.

4.3. Encoding, Indexing, and Voting Schemes

In the scope of this work, only subgraphs of size two nodes were used. This means
that each index, in the general case, is made up of a combination of two features and two
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FIG. 7. Lookup table and indexing scheme.

relations, indicating the two-way relationship between the features. In the implementation,
each feature type and each relation are represented by distinct labels (integers). Therefore,
each subgraph index is uniquely represented by a 4-tuple of integers (f1, f2, r1, r2), which
is used to access a lookup table, as shown in Figure 7. Each entry of the lookup table holds
a linked list of all model-views that gave rise to the particular 2-graph corresponding to the
table indices.

The overall voting scheme associated with the relational indexing technique is illustrated
in Fig. 8. In the 2-graph shown, the ellipse and the coaxial cluster of arcs are related by the

FIG. 8. Overall voting scheme.
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two-way relationshare an arc.The ellipse is represented by the label “1” while the coaxial
arc cluster is represented by label “2”. The relationshare an arcis represented by label
“9”. Therefore, the particular 2-graph illustrated is uniquely represented by the 4-tuple (1,
2, 9, 9). This gives rise to the indices used to access the lookup table: (x = 12, y = 99).
The indexed bin contains a list of all models in the database which contain the subgraph
used to generate the indices. In the example shown, modelsM1, M5, M23, and M81 are
retrieved. The accumulators of these models are incremented by one, meaning that each
model receives one vote from the specific 2-graph used.

4.4. Matching with Relational Indexing: An Example

This section illustrates an example of the experiments conducted to demonstrate the use of
the relational indexing technique for 3D object recognition with feature-based models [16].
In order to illustrate the relational indexing technique, nine test images of both single and
multiple object scenes were matched to the database of model-views. The nine test images
used are shown in Fig. 9. The database of models was created by encoding all 2-graphs
for each of the model-views. For each test scene, features and relations were detected, the
relational description was built, and all 2-graphs were encoded. Relational indexing was
then performed and the generated hypotheses were normalized by the number of 2-graphs
in the original models and ranked in order of strength. Hypotheses that exceeded a preset
strength threshold of 50% were dubbed “strong hypotheses.” These hypotheses are to be
passed to the verification procedure for further consideration. The results obtained for the
nine test images are summarized in Table 1.

In each of the nine tests, the strong hypotheses were classified as type A, type B, or type
C. Type A hypotheses are those where the correct model and the correct (closest) view class
were identified. Type B hypotheses are those where the correct model was identified, but
the chosen view class was not closest to the view in the image. Type B hypotheses can still
be verified and used to determine pose if enough corresponding features are found. Type C
hypotheses are those where an incorrect model was selected. These incorrect hypotheses

TABLE 1

Results of the Hypotheses Generation Process

for Nine Test Scenes

Strong hypotheses
Number of

Scene objects Type A Type B Type C

1 1 1 1 0
2 1 1 0 1
3 1 1 1 1
4 1 1 0 0
5 2 2 3 0
6 2 2 1 1
7 3 3 1 1
8 3 3 1 0
9 4 4 1 0

Note.Hypotheses types are as follows: A, correct model, correct
view; B, correct model, incorrect view; C, incorrect model.
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FIG. 9. The nine test scenes used. The labels left and right indicate the direction of the light source. (a) Image 1
(left); (b) image 2 (right); (c) image 3 (left); (d) image 4 (left); (e) image 5 (left); (f) image 6 (right); (g) image 7 (left);
(h) image 8 (right); (i) image 9 (right).

should be ruled out in the verification step. The results of the nine tests are as follows: all
the objects in the scenes have been correctly recognized (18 type A hypotheses); there were
nine type B hypotheses and four type C hypotheses.

Figure 10a shows the results for test scene 9, which contains four objects: the stacked
cylinder, the hexnut, the wrench, and the cylinder-block. The system produced five strong
hypotheses; four were correct and are overlaid on the image. These hypothesized models
were taken through pose computation (affine correspondence of model features and scene
features) without verification. The fifth strong hypothesis (not shown) matched the object
hexnut to an incorrect view of the correct object model. The subgraph indices shown in
Fig. 6 were among those that were used in the matching process.

Figure 10b illustrates the correct (type A) hypotheses generated for test scene 5. Of the
three type B hypotheses generated, one was for the cylinder-block object and two were for
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FIG. 10. (a) Right image of test scene 9 overlaid with the features of the hypothesized model matches. The
objects in this scene are the stacked cylinder, the hexnut, the wrench, and the cylinder-block. (b) Left image
of test scene 5 overlaid with the features of the hypothesized model matches. The objects in this scene are the
cylinder-block and the hexnut.

the hexnut object, both of which are present in the scene. These are preliminary results; the
full evaluation of the RIO system is described in Section 5.

5. POSE ESTIMATION USING MULTIPLE FEATURE TYPES

This section addresses the problem of estimating the position and orientation (pose) of an
object given a set of some of its 3D features and the set of corresponding 2D image features,
and its use in the context of hypotheses verification. In the most common case addressed
in the literature, the feature sets are merely point sets. In a few cases line correspondences
have been used as features to determine pose and so have ellipse–circle correspondences.
But apart from the work of Phong [45] on computing pose from points and lines, alinear
solution to computing pose from different types of feature correspondencessimultaneously
has never been addressed in the literature. Stockman’s work on pose clustering [51] is
one example of a method that can use the computed poses from different types of feature
correspondences, but the pose computations are separate. Wong, Rong, and Liang [58] use
points, line segments, and ellipse–circles for matching, but only points are used to compute
pose; the other features are only used in the verification step.

In this section, a linear method is proposed to directly compute pose from point corre-
spondences and ellipse–circle correspondences simultaneously. A new technique for linear
pose computation from point correspondences is also presented, as well as a generalization
of an existing algorithm for computing pose from an ellipse–circle correspondence, in order
to handle nonrotationally symmetric objects.

5.1. The Camera Model

The model used is that of a pinhole camera, as illustrated in Fig. 11. It is assumed that
the camera has been calibrated, that is, all the interior parameters are known. The camera
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FIG. 11. The camera model used.

coordinate system is at the center of projectivity and itsz-axis coincides with the optical
axis. The optical axis is perpendicular to the image plane and it intersects that plane at
the origin of the (u, v) image coordinate system. Thus,u0 = v0 = 0. The focal length is
f = 25 mm.

5.2. Pose from 2D–3D Point Correspondences

The problem of determining 3D pose from sets of matched 2D image points and 3D object
points has been vastly addressed in the literature [28, 55, 32]. This problem is inherently
a nonlinear one, and nonlinear methods for estimating the pose parameters are necessary.
However, under some conditions, an approximate, linear solution can be found.

Let (x, y, z) be the coordinates of model pointP in its object coordinate system. Also,
let the object coordinate system and the camera coordinate system be related by a transfor-
mationT = {R, t}, described in the form of a rotation matrixR and a translation vectort ,
where

R=
 r11 r12 r13

r21 r22 r23

r31 r32 r33

 and t =

 tx
ty

tz

 .
Then, the perspective projection ofP onto the image plane yields image plane coordinates
(u, v), where

u = f
r11x + r12y+ r13z+ tx
r31x + r32y+ r33z+ tz

(1)

and

v = f
r21x + r22y+ r23z+ ty

r31x + r32y+ r33z+ tz
, (2)

and f is the focal length of the camera.
The transformation between object frame and camera frame corresponds to the pose of

the object with respect to the camera frame. Thus, there are 12 unknowns: nine rotation
matrix entries and three translation parameters. Since for each point there are two equations
in the form of Eqs. (1) and (2), six 2D–3D point correspondences are needed to determine
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all the pose parameters. The resulting system of equations is of the form

Bw = 0, (3)

where

B =



f x1 f y1 f z1 0 0 0 −u1x1 −u1y1 −u1z1 f 0 −u1

0 0 0 f x1 f y1 f z1 −v1x1 −v1y1 −v1z1 0 f −v1

f x2 f y2 f z2 0 0 0 −u2x2 −u2y2 −u2z2 f 0 −u2

0 0 0 f x2 f y2 f z2 −v2x2 −v2y2 −v2z2 0 f −v2
...

...
...

...
...

...
...

...
...

...
...

...

f x6 f y6 f z6 0 0 0 −u6x6 −u6y6 −u6z6 f 0 −u6

0 0 0 f x6 f y6 f z6 −v6x6 −v6y6 −v6z6 0 f −v6


(4)

and

w = (r11 r12 r13 r21 r22 r23 r31 r32 r33 tx ty tz)
T . (5)

However, if one is interested in finding the true pose parameters, and not simply a
transformation that aligns the projected model points well to the image points, conditions
need to be imposed on the elements ofR such that it satisfies all the criteria a true 3D
rotation matrix must satisfy. In particular, a rotation matrix needs to be orthonormal: its row
vectors must have magnitude equal to one, and they must be orthogonal to each other. This
can be written as:

‖R1‖ = r 2
11+ r 2

12+ r 2
13 = 1

‖R2‖ = r 2
21+ r 2

22+ r 2
23 = 1 (6)

‖R3‖ = r 2
31+ r 2

32+ r 2
33 = 1

and

R1 ◦ R2 = 0

R1 ◦ R3 = 0 (7)

R2 ◦ R3 = 0.

In fact, theoretically, there is an infinite number of transformations of the formT = {R, t}
that will produce coordinates (u, v) for a givenP that yield an acceptable “alignment,” but
there is only oneT = {R, t}, for which R and t correspond to the true 3D position and
orientation of the object relative to the camera frame.

It can be seen that the conditions imposed onR turn the problem into a nonlinear one.
If the conditions on the magnitudes of the row vectors ofR are imposed one at a time,
and computed independently, a linear constrained optimization technique similar to the one
used by Faugeras [25] can be used to compute the constrained row vector ofR.
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5.3. Linear Constrained Optimization

Given the system of equations (3), the problem at hand is to find the solution vectorw that
minimizes‖Bw‖ subject to the constraint‖w′‖2 = 1, wherew′ is a subset of the elements
of w. If the constraint is to be imposed on the first row vector ofR, then

w′ =
 r11

r12

r13

 .
To solve the above problem, it is necessary to rewrite the original system of equations
Bw = 0 in the following form

Cw′ + Dw′′ = 0,

wherew′′ is a vector with the remaining elements ofw. Using the example above, i.e., if
the constraint is imposed on the first row ofR,

w′′ = (r21 r22 r23 r31 r32 r33 tx ty tz)
T .

The original problem can be stated as: minimize the objective functionO = Cw′ + Dw′′,
that is

min
w′,w′′
‖Cw′ + Dw′′‖2, (8)

subject to the constraint‖w′‖2 = 1. Using a Lagrange multiplier technique, the above is
equivalent to

min
w′,w′′

[‖Cw′ + Dw′′‖2+ λ(1− ‖w′‖2)
]
. (9)

The minimization problem above can be solved by taking partial derivatives of the objective
function with respect tow′ andw′′ and equating them to zero:

∂O

∂w′
= 2CT (Cw′ + Dw′′)− 2λw′ = 0 (10)

∂O

∂w′′
= 2DT (Cw′ + Dw′′) = 0. (11)

Equation (11) is equivalent to

w′′ = −(DT D)−1DTCw′. (12)

Substituting Eq. (12) into Eq. (10) yields

λw′ = [CTC − CT D(DT D)−1DTC]w′. (13)

It can be seen thatλ is an eigenvector of the matrix

M = CTC − CT D(DT D)−1DTC. (14)
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Therefore, the solution sought forw′ corresponds to the smallest eigenvector associated
with matrixM . The correspondingw′′ can be directly computed from Eq. (12). It is important
to notice that since the magnitude constraint was imposed only on one of the rows ofR, the
results obtained forw′′ are not reliable and therefore should not be used. However, solution
vectorw′′ provides an important piece of information regarding the sign of the row vector
on which the constraint was imposed. The constraint imposed was‖w′‖2 = 1, but the sign
of w′ is not restricted by this constraint. Therefore, it is necessary to check whether or not
the resultingw′ yields a solution that is physically possible. In particular, the translationtz
must be positive in order for the object to be located in front of the camera as opposed to
behind it. If the element of vectorw′′ that corresponds totz is negative, it means that the
magnitude of the computedw′ is correct, but its sign is not, and it must be changed. Thus,
the final expression for the computedw′ is

w′ = sign(w′′9)w′.

5.4. Computing the Transformation T= {R, t}
Row vectorR1 is computed first by computingw′ as described above, since in this case

R1 = w′. MatricesC andD are

C =



x1 y1 z1

0 0 0
x2 y2 z2

0 0 0
...

...
...

x6 y6 z6

0 0 0


(15)

and

D =



0 0 0 −u1x1 −u1y1 −u1z1 f 0 −u1

f x1 f y1 f z1 −v1x1 −v1y1 −v1z1 0 f −v1

0 0 0 −u2x2 −u2y2 −u2z2 0 f −u2

f x2 f y2 f z2 −v2x2 −v2y2 −v2z2 0 f −v2
...

...
...

...
...

...
...

...
...

0 0 0 −u6x6 −u6y6 −u6z6 f 0 −u6

f x6 f y6 f z6 −v6x6 −v6y6 −v6z6 0 f −v6


. (16)

Then row vectorR2 is computed using the same technique, except that now the constraint
is imposed on its magnitude; thus,R2 = w′. In this case, matricesC andD are

C =



0 0 0
f x1 f y1 f z1

0 0 0
f x2 f y2 f z2
...

...
...

0 0 0
f x6 f y6 f z6


(17)
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and

D =



f x1 f y1 f z1 −u1x1 −u1y1 −u1z1 f 0 −u1

0 0 0 −v1x1 −v1y1 −v1z1 0 f −v1

f x2 f y2 f z2 −u2x2 −u2y2 −u2z2 f 0 −u2

0 0 0 −v2x2 −v2y2 −v2z2 0 f −v2

...
...

...
...

...
...

...
...

...
f x6 f y6 f z6 −u6x6 −u6y6 −u6z6 f 0 −u6

0 0 0 −v6x6 −v6y6 −v6z6 0 f −v6


. (18)

R3 could also be computed the same way asR1 andR2 above, but that would not guarantee
it to be normal toR1 andR2. Instead,R3 is computed as follows:

R3 = R1× R2

‖R1× R2‖ . (19)

All the constraints on the row vectors ofR have been satisfied, except one: there is no
guarantee thatR1 is orthogonal toR2. In order to solve this undesired situation,R1, R2,
and R3 need to go through an orthogonalization process such that the rotation matrixR
is assured to be orthonormal. This can be accomplished by fixingR1 andR3 as computed
above and recomputingR2 as:

R2 = R3× R1. (20)

This way, all the rotation parameters have been calculated and they all satisfy the necessary
constraints. The translation vectort is computed using a least squares technique on a new,
nonhomogeneous, overconstrained system of 12 equations:

At = b, (21)

where

A =



f 0 −u1

0 f −v1

f 0 −u2

0 f −v2
...

...
...

f 0 −u6

0 f −v6


(22)

and

b =



− f (r11x1+ r12y1+ r13z1)+ u1(r31x1+ r32y1+ r33z1)

− f (r21x1+ r22y1+ r23z1)+ v1(r31x1+ r32y1+ r33z1)

− f (r11x2+ r12y2+ r13z2)+ u1(r31x2+ r32y2+ r33z2)

− f (r21x2+ r22y2+ r23z2)+ v1(r31x2+ r32y2+ r33z2)
...

− f (r11x6+ r12y6+ r13z6)+ u1(r31x6+ r32y6+ r33z6)

− f (r21x6+ r22y6+ r23z6)+ v1(r31x6+ r32y6+ r33z6)


. (23)
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5.5. Pose from Ellipse-to-Circle Correspondence

In order to find the 3D position and orientation of a circle from its projection onto the
image plane (an ellipse in the general case) the solution described in [20] and [21] is utilized.
The solution consists of a series of 3D transformations to the circle and it is carried out in
two stages: first the orientation of the 3D plane on which the circle lies is determined; and
then the center of the circle is computed.

An ellipse in the image plane is of the following form

a1x2+ a2xy+ a3y2+ a4x + a5y+ a6 = 0. (24)

Since one of the assumptions about the geometry is that the origin is at the principal point,
this ellipse defines a cone in 3D,

a1x2+ a2xy+ a3y2+ a4

f
xz+ a5

f
yz+ a6

f
z2 = 0, (25)

where f is the focal length of the camera. Equation (25) above can be written in the form
XTC X = 0, where

C =


a1

a2
2

a4
2 f

a2
2 a3

a5
2 f

a4
2 f

a5
2 f

a6
f 2

 (26)

and

X = (x y z)T . (27)

In order to find the orientation of the plane on which the circle lies, it is necessary to first
reduce the cone equation to

x2

b1
+ y2

b2
+ z2

f 2
= 0.

This is accomplished by a 3D rotation to the eigenvector frame such thatC becomes a
diagonal matrix of the form

C′ =

λ1 0 0

0 λ2 0

0 0 λ3

 , (28)

whereλ1, λ2, andλ3 are the eigenvalues ofC in ascending order. The rotation matrix that
accomplishes the above is given by

Rλ = (V1 V2 V3), (29)

whereV1, V2, andV3 are the eigenvectors ofC. Then, another rotation about the newy-axis
is performed such that the intersection of the cone with the planez= k is a circle. Thus,
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the coefficients ofx2 and y2 are identical. In this case, the normal to the circle becomes
(0, 0, 1). This second rotation is of the form

Rθ =

 cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 , (30)

where

θ = ±tan−1

√
λ2− λ1

λ3− λ1
. (31)

However, because the circle corresponds to a boundary of the physical object it comes
from, there must be a direction associated with it and not only an orientation. Hence, there
is more than the two-fold ambiguity seen above. One must consider the other two cases for
which the circle is “flipped” 180 degrees about its diameter. Thus, there are four possible
solutions for the angle theta,

θ1 = |θ |
θ2 = −|θ |
θ3 = π + |θ |
θ4 = π − |θ |,

but only one of them is physically correct. At this point, it is not possible to determine
which of the four solutions above is correct, but later in this section this problem will be
addressed and a solution given.

In the camera coordinate system, the normal to the plane on which the 3D circle lies is
given by applying, in reverse, the transformations computed

Nc =

 cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

(V1 V2 V3)(0 0 −1), (32)

where the negativez component of the normal is due to enforcing a right-handed camera
coordinate system. To compute the coordinates of the 3D circle in camera coordinates, it is
necessary to first determine the position of the center after rotationsRλ andRθ have been
applied. After the second rotation,Rθ , the equation of the cone is given by

(x y z)RT
θ C′Rθ

 x
y
z

 = 0

or

(x y z)

cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ


λ1 0 0

0 λ2 0

0 0 λ3


 cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ


 x

y
z

 = 0. (33)
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If the desired circle has radiusρ, its center must be located aty = 0,

z= k = λ2ρ√
λ1λ3

, (34)

and

x = w = −2λ1

(
1− λ3

λ2

)
. (35)

Applying the transformations in reverse order yields the desired coordinates of the center
of the circle in the camera frame

Oc =
 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (V1 V2 V3)(w 0 k). (36)

Therefore, by obtainingNc and Oc, the 3D circle normal, and center with respect to
the camera coordinate system, the pose-from-ellipse problem is solved. However, use of
the above solution was previously reported only for the determination of pose of solids of
revolution. Most of the objects used in the work herein do not fall in that category. Therefore,
the above solution had to be augmented to include an extra transformation step, namely a
rotation about the perpendicular axis of the 3D circle. This additional rotation ensures that
the nonsymmetrical characteristics of the object have been taken into account.

5.6. Pose from Ellipses for Objects Other Than Solids of Revolution

There is an infinite number of ways a circle can be rotated about its center, on its plane, and
still look the same in its 2D projection. Thus, the correspondence between a 2D ellipse on the
image and a 3D circle on the model is not enough to determine the pose of a generic object.
An additional constraint is needed, and the above method must be augmented. Figure 12
illustrates the effect of the original solution on a nonrotationally symmetric object. There
are four possible solutions and none of them is correct because the additional orientation
constraint was not used. The correct solution, when the additional constraint was used, is
shown in Fig. 13.

The augmented pose-from-ellipse method uses an ellipse-to-circle correspondence plus
an additional point-to-point correspondence to determine an initial pose estimate. The ad-
ditional point used may lie anywhere in the 3D space of the circle, except along the per-
pendicular axis that passes through its center. Due to the nature of the objects used, and the
fact that for nonrotationally symmetric objects most detected ellipses are the boundaries of
holes, a point lying on the plane of the circle is used.

In order to describe the approach to computing the necessary rotation it is assumed
that the original solution of [20] and [21] is given in terms of a rotation matrixRe and
a translation vectorte. It is also assumed that the model has already been transformed in
such a way that the center of the circle in question lies on the origin and the circle is on
the yz-plane; that is, thex-axis is perpendicular to and passes through the center of the
circle. Let the additional point correspondence between 3D model point and 2D image
point be (Pm = (x, y, z), Pi = (r, c)). In order forPm to project ontoPi , the following set
of transformations must be applied to it:
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FIG. 12. The four incorrect solutions from the original pose-from-ellipse algorithm. (a) Solution 1;
(b) solution 2; (c) solution 3; (d) solution 4.

1. Rotate the model about thex-axis by the unknown angleφ:

(x′, y′, z′) = (x′, y′ cosφ − z′ sinφ, y′ sinφ + z′ cosφ).

2. Apply rotationRe to the model:

(x′′, y′′, z′′) = (x′, y′, z′)Re.

3. Translate the model byte:

(x′′′, y′′′, z′′′) = (x′′, y′′, z′′)+ te.

FIG. 13. The correct initial pose using the additional point correspondence constraint.
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4. Project the translated model onto the image plane:

(r, c) =
(

f
x′′′

z′′′
, f

y′′′

z′′′

)
, where f is the focal length of the camera.

In order to determine the unknown rotation angleφ, notice that:

r

x′′′
= c

y′′′
.

The above leads to a trigonometric equation onφ of the formA sinφ + B cosφ + C = 0,
which yields the following two solutions,

φ = 2 arctan
(−A+

√
(A2+ B2− c2))

−B+ C
(37)

and

φ = 2 arctan
(−A−

√
(A2+ B2− c2))

−B+ C
, (38)

where

A = y
(
re31 − kre32

)+ z
(
kre22 − re21

)
,

B = y
(
re21 − kre22

)+ z
(
re31 − kre32

)
, (39)

C = x
(
re11 − kre12

)+ tex − ktey,

andk = r/c.
Therefore, there is a total of eight possible solutions for the pose, but only one of them

is physically correct. Figure 14 illustrates the eight pose estimates, computed as described
above, for an image pair of the hexnut object. The verification procedure described in the
next section can rapidly rule out the incorrect solutions by means of a directed distance
computation between the projected model edges and the detected image edges.

5.7. Verification of the Eight Pose Candidates

In order to have a quantitative measure of how good the estimated model pose is, it is nec-
essary to evaluate how well the projected model edges align with the detected scene edges.
This is done by computing a unidirectional version of a modified Hausdorff distance [18]
between the image of the projected model and the image of the detected edges.

The most common way of defining the distance between a pointa and a point setB =
{b1, . . . ,bNB} is

d(a, B) = min
b∈B
‖a− b‖. (40)

The directed distanced6 [18] is used to quantitatively evaluate how well the projected model
point set (A) overlays the edge image point set (B), and it is defined as

d6(A, B) = 1

NA

∑
a∈A

d(a, B), (41)

whereNA is the number of points in setA.
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FIG. 14. The eight solutions from the constrained pose-from-ellipse algorithm. (a) Solution 1; (b) solution 2;
(c) solution 3; (d) solution 4; (e) solution 5; (f ) solution 6; (g) solution 7; (h) solution 8.

For the specific verification task required in this work, the directed distance measure is
utilized because it is necessary to account for occlusion as well as extra points in setB,
since, in the general case, there are multiple objects in the image. The above measure has
been shown to rule out the pose hypotheses that are obviously incorrect. Results to this
effect are given in Section 6.

5.8. Generalized Pose Computation from Ellipses and Points

In the two previous sections two different methods for computing pose from different
features were described. However, it is desirable to be able to compute pose from more
than one type of featuresimultaneously. The reason is quite obvious: it will provide a more
accurate solution. This section is devoted to formulating a method of computing pose from
2D–3D point correspondences and ellipse–circle correspondences, simultaneously.

To exemplify the issue of accuracy addressed in the paragraph above, the results of the
pose estimation from points alone and from one ellipse are shown in Figs. 15a and 15b,
respectively. Notice that due to the localized concentration of detectable feature points and
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FIG. 15. The poses computed using algorithms described in Sections 4.3 and 4.4. (a) Pose from a single
ellipse–circle; (b) pose from six point correspondences.

the physical distance between the circle and these points, the poses computed align well
only in the areas where the features used are located. Specifically, the result in Fig. 15a
shows good alignment in the upper portion of the object where the circle is located. On the
other hand, the result in Fig. 15b shows good alignment only at the lower part of the object
where the concentration of detectable feature points is located.

It can be seen that both results are close to what is expected, but neither can be considered
a good result. This is the main motivation behind formulating the pose problem in a way
that the information from both point correspondences and ellipse–circle correspondences
can be used simultaneously.

In the pose-from-points problem, the system of equations to be solved, as given by Eq. (3),
is homogeneous so no algebraic solution can be found. Furthermore, constraints must be
imposed in order to ensure the correctness of the solution found in terms of the physical
and spatial conditions. However, if the system of equations obtained was not homogeneous,
it could be directly solved by a simple direct method. The results obtained from the pose-
from-ellipses algorithm can be used in order to augment the system of equations that arises
from point correspondences and the resulting system of equations can be solved by direct
methods. This is done in the following way.

Let Nc andOc be the 3D circle normal and center (in camera coordinates), respectively.
Also, let No and Oo be the normal and center of the same circle, but in the object co-
ordinate system. The two normals and the two centers are related by the transformation
Te = {Re, te}, where the subscripte indicates that it has been found from an ellipse-to-
circle correspondence. However, ageneralizedsolution from points and ellipses combined
is sought. Therefore, theNc andOc computed are taken asobservationsand it is assumed
that the true transformation,T = {R, t}, is unknown. Thus,

Nc =

 Ncx

Ncy

Ncx

 =
r11 r12 r13

r21 r22 r23

r31 r32 r33


 Nox

Noy

Nos

 = RNo, (42)

and

Oc =

Ocx

Ocy

Ocx

 =
r11 r12 r13

r21 r22 r23

r31 r32 r33


Oox

Ooy

Oox

+
 tx

ty

tz

 = ROo + t. (43)
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Furthermore, sinceR−1 = RT , No can be written as

No =

 Nox

Noy

Noz

 =
r11 r21 r31

r12 r22 r32

r13 r23 r33


 Ncx

Ncy

Ncz

 = RT Nc. (44)

Notice that Eqs. (42) and (44), if used simultaneously, enforce the condition that the unknown
rotation matrix be orthonormal. Equations (42)–(44) involve the same 12 unknowns as in
the system of equations (3). Hence, that system is augmented by those three equations
giving rise to the following new system

B′w = k, (45)

where

B′ =



f x1 f y1 f z1 0 0 0 −u1x1 −u1y1 −u1z1 f 0 −u1

0 0 0 f x1 f y1 f z1 −v1x1 −v1y1 −v1z1 0 f −v1

f x2 f y2 f z2 0 0 0 −u2x2 −u2y2 −u2z2 f 0 −u2

0 0 0 f x2 f y2 f z2 −v2x2 −v2y2 −v2z2 0 f −v2
...

...
...

...
...

...
...

...
...

...
...

...
f x6 f y6 f z6 0 0 0 −u6x6 −u6y6 −u6z6 f 0 −u6

0 0 0 f x6 f y6 f z6 −v6x6 −v6y6 −v6z6 0 f −v6

Nox Noy Nox 0 0 0 0 0 0 0 0 0

0 0 0 Nox Noy Noz 0 0 0 0 0 0

0 0 0 0 0 0 Nox Noy Noz 0 0 0

Oox Ooy Ooz 0 0 0 0 0 0 1 0 0

0 0 0 Oox Ooy Ooz 0 0 0 0 1 0

0 0 0 0 0 0 Oox Ooy Ooz 0 0 1

Ncx 0 0 Ncy 0 0 Ncz 0 0 0 0 0

0 Ncx 0 0 Ncy 0 0 Ncz 0 0 0 0

0 0 Ncx 0 0 Ncy 0 0 Ncz 0 0 0



,

(46)

w = (r11 r12 r13 r21 r22 r23 r31 r32 r33 tx ty tz)
T , (47)

and

k = (0 0 . . . 0 0 Ncx Ncy Ncz Ocx Ocy Ocz Nox Noy Noz

)T
. (48)

The system above can be solved by a direct least-squares solution of the form

w = (B′T B′)−1B′Tk. (49)

It can be seen that since nine new equations have been added to the system, there is no need
for all six point correspondences in order to solve for the 12 transformation unknowns.
However, matrixB′ must be full rank and, therefore, at least three points must be used.
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FIG. 16. The pose computed from six point correspondences and one ellipse–circle correspondence using the
generalized methodology. Note the gap between the object and the projected model at the very top of the object.

Figure 16 illustrates the pose computed for the same image of Figs. 15a and 15b using the
generalized pose estimation technique and making use of the same six point correspondences
and the same ellipse correspondence previously used.

Visual inspection of the results in Figs. 15a, 15b, and 16 shows the superiority of the
new technique over the other single-feature methods. The projection of the CAD model
onto the image using the transformation matrix obtained using the new technique yields
a better alignment than those projections obtained using only point correspondences or a
single ellipse–circle correspondence. In order to compare the results quantitatively, Table 2
shows the pose transformations obtained for each linear method used. Also shown in the
last row of Table 2 is the final transformation obtained after convergence of the iterative,
nonlinear Gauss–Newton method [33]. The nonlinear method requires an initial guess; the
results of the linear methods (points only, circle–ellipse only, and points and circle–ellipse
together) have been used as such. The final results after convergence of the iterative method
are the same regardless of which initial guess was used; the difference lies in the number of
iterations it took for the method to converge to the final solution. These results are reported
in [39]. The model projection for the solution obtained using the nonlinear method is shown
in Fig. 17.

TABLE 2

Pose Results from Different Methods

Method R t

Points only (−43.125−25.511 1232.036)
(

0.410 −0.129 −0.902
0.606 −0.700 0.376
−0.681 −0.701 −0.208

)
Circle only (−35.161−15.358 1195.293)

(
0.302 0.302 −0.932
0.692 −0.628 0.355
−0.655 −0.753 −0.054

)
Points and circle (−43.077−26.400 1217.855)

(
0.398 −0.142 −0.902
0.554 −0.667 0.336
−0.700 −0.684 −0.201

)
Nonlinear (−43.23−28.254 1273.07)

(
0.341 −0.156 −0.927
0.631 −0.693 0.349
−0.697 −0.704 −0.137

)
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FIG. 17. The final pose obtained using the solution in Fig. 16 as the initial solution to a nonlinear least-squares
pose estimation procedure. Note that the gap between the object and its features is now gone.

Additional sample results showing the superiority of a method that combines information
from different features for pose estimation are given in Figs. 18–20. As it can be seen, the
result obtained when simultaneously using point correspondences and an ellipse–circle
correspondence is far more accurate than those results using points alone or an ellipse–
circle correspondence alone.

It is very important to emphasize that, in the general case, the pose results obtained from
the generalized technique using several feature types can only be taken as initial guesses
or strong hypotheses. It may still be necessary to improve and/or optimize the solution
found. One option, as discussed above, is to use the solution as an initial guess to a generic
iterative nonlinear pose estimation procedure. Another option, which can be employed after
the use of the nonlinear estimation or in place of it, is to submit the solution to a constrained
optimization procedure, as described in the next section.

5.9. Verification and Pose Optimization

The pose solution found either by the generalized linear pose finding algorithm or by
a subsequent nonlinear least-squares procedure must still be verified and/or optimized. In
this work, verification and optimization of the solution is performed by minimizing the
one-directional distanced6 between the image of the projected model and the edges found
in the scene. In order to make the constrained optimization more efficient, the rotation
matrix R associated with the pose transformation found,T = {R, t}, is represented by its

FIG. 18. The pose computed from six point correspondence using the algorithm described in Section 5.2.
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FIG. 19. The pose computed from an ellipse–circle correspondence using the algorithm described in
Section 5.6.

corresponding quaternion vectorQ, where

Q = (s l m n)T , (50)

s2+ l 2+m2+ n2 = 1, (51)

and

R=

s2+ l 2−m2− n2 2(lm− sn) 2(ln + sm)

2(lm+ sn) s2− l 2+m2− n2 2(mn− sl)

2(ln − sm) 2(mn+ sl) s2− l 2−m2+ n2

 . (52)

Powell’s method [19] in the seven-dimensional space of the pose solution (four quaternion
parameters and the translationt) is used, along with the constraint that the sum of the squares
of the quaternion parameters must equal 1, as seen in Eq. (51). Figure 21 shows an initial
pose estimate for a single-object image as well as the final result after the constrained
optimization has been applied to that initial solution.

In order to be accepted by the verification step, the result obtained from the optimization
algorithm has to produce a distance such thatd6 ≤ τ , whereτ is an empirically determined
threshold equal to 5. Typically, the distance for correct pose solutions in the application
herein lies in the interval 1≤ d6 ≤ 5. Section 6 discusses this in more detail.

FIG. 20. The pose computed from six point correspondence and one ellipse–circle correspondence using the
generalized methodology.
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FIG. 21. Example pose hypothesis and final pose after constrained optimization: (a) initial pose and (b) final
pose.

6. EXPERIMENTS AND RESULTS

The methods described in this paper were implemented in the RIO recognition system.
The physical setup for the system is composed of a single CCD camera and two light
sources, one placed at the right of the camera and the other at the left. Polarizers are used in
order to reduce highlight effects [57], since the objects used in this work are shiny, metallic,
industrial parts.

With each light source turned on at a time, two images, namely the left and the right
image, are taken of the scene to be recognized. These images undergo a special processing
sequence in order to generate a single, suitable edge image from which the features can be
extracted. A high-level description of the sequence is given below, and details can be found
in [17]. First, edges are detected in both input images. A combined edge image is generated
by ORing the two edge images. Since this image contains shadows cast on the background,
a mask image is used to remove them. The mask image is obtained by thresholding the
original input images and by ANDing them together. The final edge image is produced by
ANDing the mask image and the combined edge image.

An evaluation of the system developed is presented in this section. First, a step-by-step
example of the results obtained at the different stages of the system is given. Next, the results
of a set of experiments with real images are shown, and example cases of misdetection by
the system are studied. Issues such as verification of occluded object hypotheses, ruling out
of incorrect pose hypotheses, and recognition of multiple instances of the same object in a
scene are addressed.

6.1. Sample Run of the System

In this section, an example of the steps performed at different stages of the system for a
multiobject scene is given. Figures 22a and 22b show the original graytone images used as
input to the system. The combined edge image extracted using the procedure described
above is shown in Fig. 22c. The linear features, circular arc features, and ellipses extracted
are depicted in Figs. 22d–22f, respectively.

For this case study, a total of eight hypotheses were generated. Five of them were incorrect
and they are shown in Fig. 23, along with their respective average distancesd and the
percentage of projected model edge points that were within five or less pixels from a scene
edge pixel. All five incorrect hypotheses were ruled out by the verification criteria.
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FIG. 22. Sample run of the system. (a) Original left image; (b) original right image; (c) combined edge image;
(d) linear features detected; (e) circular arc features detected; (f ) ellipses detected.

The correct hypotheses generated by the system are shown in Fig. 24. All three correct
hypotheses were accepted as valid by the verification criteria, since they all satisfiedd ≤ 5
and p ≥ 65%.

6.2. Experiments on a Set of Real Images

Forty-two pairs of real images were used to evaluate the performance of the overall
recognition system. These images were obtained from scenes containing up to three objects,
since the camera configuration we used was not able to accurately detect features in larger
scenes; 9 of them contain 3 objects, 13 contain 2 objects, and 20 contain a single object.
Of the total number of 73 objects in the test scenes, 23 are partially occluded by one or
two objects. These statistics about the test images are shown in Table 3. The images were
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TABLE 3

Test Scene Statistics

Number of test images 42
Images with 3 objects 9
Images with 2 objects 13
Images with 1 objects 20
Total number of objects 73
Number of occluded objects 23

FIG. 23. Incorrect hypotheses generated for the sample case study. (a) Incorrect hypothesis 1 (d = 6.61, p =
59.2%); (b) incorrect hypothesis 2 (d = 17.74, p = 37.1%); (c) incorrect hypothesis 3 (d = 6.95, p = 63.2%);
incorrect hypothesis 4 (d = 9.81, p = 48.9%); (e) incorrect hypothesis 5 (d = 8.31, p = 53.2%).
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FIG. 24. Correct hypotheses generated for the sample case study (a) Correct hypothesis 1 (d = 3.30, p =
83.1%); (b) correct hypothesis 2 (d = 3.84, p = 79.5%); (c) correct hypothesis 3 (d = 3.92, p = 83.5%).

matched to a database of 20 view-class models representing five 3D objects. The size of the
lookup table for these experiments was 100× 100.

The hypothesis-generation process, as performed by the relational indexing technique,
yielded the results shown in Table 4. Hypotheses were taken as valid if the votes received
reflected at least 50% of the 2-graphs of the hypothesized model or if they were among the
top five ranked hypotheses, regardless of the votes received. (These “rules” were derived
empirically from experimentation and common sense.) Out of the ten unoccluded cases for
which the vote threshold was not met, eight were taken as valid hypotheses because they
were among the top five ranked hypotheses generated for the test images they were in. Out
of the 40 correct hypotheses that did meet the voting threshold criterion, nine were ranked
first, and 27 were among the top five ranked, for their respective test images. From the data
in Table 4 it can also be seen that out of the total of 73 instances of the objects in the test
images, seven were not among the hypotheses generated by the relational indexing (some
of these cases are discussed in more detail in the next section). Five of these seven were

TABLE 4

Hypotheses Generation Statistics

Objects ≥50% <50% ≥50%, top 5 <50%, top 5 1st ranked

Unoccluded objects 40 10 27 8 9
Occluded objects 18 5 0 0 0
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TABLE 5

Varification Statistics (66 Hypotheses Tested)

Hypotheses

Correct Incorrect

Successful verification 62 0
Unsuccessful verification 4 254
Average distanced 4.28 pix 20.13 pix
Avg. % points:d ≤ 5 79.04% 39.68%

instances of occluded objects and two of unoccluded objects. The remaining 66 instances
were correctly taken as valid hypotheses and passed along to the verification step.

The verification was successful in 62 out of the 66 correct hypotheses tested, and it failed
in four cases. In those four instances, the features detected were not enough to compute pose,
and, therefore, did not allow verification of otherwise correct hypotheses. Some of these
unsuccessful verification cases are detailed in the next section. As discussed in Section 4,
a given hypothesis was taken as successfully verified if the average distance between the
projected model edges and the edges detected in the image was less than five pixels.2 If
the average distance was more than five, but if at least 65% of the projected model edge
points were within at least five pixels of an image edge point, the verification was also taken
as successful. The overall average distance among all 62 correct hypotheses successfully
verified was 4.28. The average percent of projected model points that were at least five pixels
from an edge point was 79.04%. These numbers indicate the accuracy of the linear pose
estimation procedure. Statistics associated with the verification step are shown in Table 5.

6.3. Study of Some Misdetection Cases

As discussed in the previous section, there were scenes for which some objects were
not recognized. In those cases either the hypothesis-generation process failed to generate
suitable hypotheses or the verification procedure failed due to a lack of suitable features
detected that could be used to compute pose.

An example of the first case, where the relational indexing failed to produce a correct
hypothesis is illustrated in Fig. 25. The original right image and edges detected are shown
in Figs. 25a and 25b, respectively. The primitive lines and circular arcs detected are shown
in Fig. 25c. The features extracted are shown in Fig. 25d. It can be seen that the features
detected for the misdetected object (the small stacked cylinder) were not sufficient to produce
a suitable hypothesis.

The second type of misdetection, where the features extracted were enough to generate
a hypothesis from the relational indexing procedure, but were not suitable features to allow
pose computation, is illustrated in Fig. 26. It is important to notice that due to the rotationally
symmetric nature of the small stacked cylinder object, the detection of ellipses is essential
for successful verification of hypotheses for that particular object. Although the feature
detection found several elliptical arcs, it did not find enough evidence to generate a full
ellipse, which is currently required by the pose estimator.

2 To transform this concept to the real world, note that in our tests, the average pixel/mm conversion factor was
2.43 pixels/mm.



FIG. 25. Example of insufficient features to generate a hypothesis. (a) Original right image; (b) edges detected;
(c) primitives lines and arcs detected; (d) features detected.

FIG. 26. Example of features not suitable for pose computation/verification. (a) Original right image;
(b) edges detected; (c) primitive lines and arcs detected; (d) Features detected.

401
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FIG. 27. Examples of pose overlays for Case 1 (see text).

6.4. Ruling Out Incorrect Pose-from-Ellipse Hypotheses

The distance measure used was efficient in ruling out incorrect pose hypotheses arising
from the pose-from-ellipse algorithm. In all test cases, the correct pose yielded the smallest
distance between the projected model edges and the scene edges. However, in some cases,
some of the incorrect poses generated distances comparable to the the correct ones. There
are two main reasons why this happened:

• Case 1: in some cases, the projected model, for the pose being tested, was almost
completely outside the image bounds, but the portion that was within the image bounds
aligned quite well with the scene edges. Two such examples can be seen in Fig. 27. Even
though the computed distances are small in these cases, such hypotheses can be easily ruled
out at the model projection time by computing what percentage of model edges lie outside
image boundaries.
• Case 2: one of the incorrect pose-from-ellipse solutions aligns the outline of the pro-

jected model quite well with the outline of the object in the edge image, though the inside
edges do not align well. This also produces an average distance that is comparable to, though
always larger than, the distance for the correct pose. An example of this situation in shown
in Fig. 28.

FIG. 28. Example of pose overlay for Case 2 (see text).
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TABLE 6

Average Distancesd from Pose-from-Ellipse Algorithm

Test image Correct pose Pose 2 Pose 3 Pose 4

1 4.232169 5.905406 38.015209 38.064182
2 3.492276 3.836853 5.438044 6.229556
3 2.565156 10.072806 75.727005 77.769081
4 6.048713 6.095455 7.518664 9.984772
5 6.500802 10.659150 12.863460 14.970914
6 4.760042 5.682881 37.694584 38.204376
7 3.650602 4.853358 22.808851 23.714478
8 5.016474 7.895664 45.042072 51.129051
9 3.737756 9.964845 15.774166 21.634424

10 5.117007 10.208114 82.480644 84.060287
11 6.213883 10.301037 90.775963 92.624016
12 2.749343 4.488708 6.710792 11.896962
13 6.487325 15.678705 45.408619 49.991577
14 1.485621 11.119739 14.899862 18.397236
15 5.114830 11.136388 12.420178 14.751463

Table 6 shows the distance measure computed for each four possible pose cases for 15
different test images. In all cases, the correct pose yielded the smallest distance.

6.5. Improving the Verification of Occluded Object Hypotheses

It can be seen from the data shown in Fig. 24b that a large part of the projected model
edges do not align well with the scene edges due to the fact that the corresponding portion of
the model is occluded by another object. Therefore, it is apparent that occlusion adversely
affects the verification procedure devised. In order to make the verification more effective
for occluded objects, the following steps may be added to it. First, all unoccluded objects
are identified. This can be done not only by means of the distance measure (d) and the
percentage of points that align well (p), but also from the pose parameters themselves
which include the exact 3D location of each object. Thus, it is possible to determine which
objects in the scene are occluded by one or more object. Once the unoccluded objects have
been identified, their corresponding projected edges are used to generate masks. The masks
generated for the case study introduced in Section 5.2 can be seen in Figs. 29a and 29b.
These masks are used to mask out the predicted occluded regions in the projected model of
the occluded object as shown in Fig. 29d. Then the masked project model is used to compute
d and p, which will determine whether the verification succeeds or not. It is shown in the
captions of Figs. 29e and 29f that bothd andp are greatly improved by this masking process,
making the verification more reliable.

7. DISCUSSION AND FUTURE WORK

This paper described the RIO object recognition system. RIO utilizes a number of new
techniques to recognize 3D objects in 2D intensity images. Real images are used in the
stage of learning the feature-based relational models of the objects to be recognized. A
new technique called relational indexing is used as an effective database retrieval tool,
generating suitable model hypotheses. A new linear pose estimation technique is used to
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FIG. 29. Masking out occluded hypothesis for verification. (a) Mask 1; (b) mask 2; (c) original pro-
jected model; (d) masked projected model; (e) original model overlaid on image edges (d = 3.84, p = 79.5%);
(f ) masked model overlaid on image edges (d = 2.42, p = 91.3%).

verify or disprove the hypotheses and makes simultaneous use of multiple types of 2D–3D
feature correspondences.

As the experiments have shown, the performance of the RIO system was very good
with the exception of a few misdetection cases. These cases were mainly due to poor
feature detection, a well-known problem in most feature-based recognition systems. Issues
on improvement of occluded hypothesis verification were addressed and a method for
effectively handling the verification of occluded objects was proposed. It was shown that
the distance measure utilized was appropriate for disambiguating among incorrect pose
hypotheses generated by the pose-from-ellipse algorithm.
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Even though the verification procedure was proven to be reliable given the criterion used,
namely the average distance between projected CAD model edges and scene edges and
the percentage of projected edge pixels that aligned well with scene edge pixels, it is felt
that a more robust verification criterion needs to be developed. Making the assumption that
the distances between projected model edge points and scene edge points have a Gaussian
distribution, it seems logical to use a chi-squared test (with as many degrees of freedom as
the points in the projected model edges) to decide whether or not the alignment produced
by the computed pose is acceptable.

All the experiments run were limited to subgraphs of size 2. As mentioned in Section 4,
the smallest size index was used in order to effectively handle occlusion. However, a hier-
archical, multilevel indexing approach is also viable and should be investigated. The larger
the subgraphs used, the more reliable the generated hypotheses will be, and the faster they
can be generated. However, in multiobject scenes only single features or small subgraphs
may be detected. Therefore, it is necessary to start at the largest subgraph level and go down
as needed. Objects that are unoccluded may be recognized at the highest level of indexing.

Work on investigating the effects of occlusion on the single-object feature-based models
is in order. The special case of multiple-object scenes that contain a considerable amount
of occlusion needs to be studied carefully. It is intuitive that the set of features that can be
reliably detected from a real image of a particular model alone is a superset of the features that
can be detected in a scene where that model is partially occluded. The technique developed
was designed to handle occlusions. However, when the object is partially occluded, it is
possible that some of the original features detected in its training images can change and
give rise to new features that often appear when occlusion is present. It is also possible that
new relationships between features arise due to occlusion. It seems logical to augment the
current single-object feature-based models to include the knowledge obtained by studying
a set of training images where multiple objects and occlusion are present.

A discrete voting technique was associated with the relational indexing method devel-
oped in this work. Relational indexing can be performed in the context of a probabilistic
framework, as described in [14]. This should considerably improve the hypotheses gen-
erated, since the probabilities associated with the features (computed at model generation
time) can be used as weights when computing the votes to be cast.
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