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This paper addresses the problem of recognizing 3D objects from 2D intensity
images. It describes the object recognition system named RIO (relational indexing of
objects), which contains a number of new techniques. RIO begins with an edge image
obtained from a pair of intensity images taken with a single camera and two different
lightings. From the edge image, a set of new high-level features and relationships are
extracted, and a technique called relational indexing is used to efficiently recall 2D
view-class object models that have similar relational descriptions from a potentially
large database of models. Once a model has been hypothesized, pairs of 2D-3D
corresponding features, including point pairs, line—segment pairs, and ellipse—circle
pairs, are used in a new linear pose estimation framework to produce a hypothesized
transformation from a 3D mesh model of the object to the image. The transformation
is either accepted or rejected by a verification procedure that projects the 3D model
wireframe to the image and computes a Hausdorff-like distance measure between
the projected model and the edge image. The resultant object recognition system
is able to recognize 3D objects having planar, cylindrical, and threaded surfaces in
complex, multiobject scenes ) 2000 Academic Press
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1. INTRODUCTION

Three-dimensional object recognition has seen a great deal of activity in the past dec
as has been pointed out in recent surveys [3, 6, 13, 46, 53]. Most systems fall into tt
main categories: (1) systems that use intensity data alone [1, 7, 9, 11, 35, 42, 43, 48,
(2) systems that use range data alone [5, 10, 24, 26, 27, 38, 30, 37, 40, 50], and (3) sys
that use both range and intensity (sometimes including color) data [31, 34, 52].

In intensity-image-based systems, points and straight line segments are still the n
commonly-used features. In fact, the recent popularity of the alignment method [36] |
led to a significant number of systems that blindly match triples of points or line segme
from the image to similar triples from the model, using little or no contextual informatiol
These algorithms all make the assumptions that (a) the points or line segments are reaso
reliable features of the class of objects to be recognized or located and (b) the pose o
object can be uniquely determined from a small set of these features. These assumptior
only true for polyhedral objects or those with a number of sharp, straight edges. They
apart for most curved-surface objects. Figure 1a shows a polyhedral object where pc
and line segments make good features, and Fig. 1b shows another simple object with
curved and planar surfaces where they are not very useful. Our system can recognize ot
that have planar, cylindrical, and threaded surfaces, and it is designed to handle occlu:

Inrange-image-based systems, primitive surfaces (usually planar or quadric) are the |
common features, but 3D line segments and points are also used. Because surfaces
range data are more reliable than surface regions from grayscale, a number of sys
use the properties of and relationships among surfaces in matching algorithms. This
of approach has worked well for simple objects with a small number of simple surfac
Systems that work with more complex, free-form surfaces generally look for interest poi
and perform point matching. Again, the reliable detection of feature points is crucial
success. The recent work of Johnson and Hebert [40] provides a new and powerful we
hypothesize point correspondences.

This work addresses the problem of recognizing 3D objects from 2D intensity images
describes the object recognition system named RIO (relational indexing of objects), wt

(a) (b)

FIG.1. (a)lmage ofapolyhedral objectwhose junctions and line segments make useful features forrecogn
and pose estimation. (b) Image of a nonpolyhedral object for which line segments and junctions alone are virtt
useless as recognition features.
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performs feature-based alignment and contains a number of new techniques. RIO be
with an edge image obtained from a pair of intensity images taken with a single camera
two different lightings. From the edge image, a set of new high-level features and relati
ships are extracted, and a technique catddtional indexingis used to efficiently recall
2D view-class object models that have similar relational descriptions from a potentia
large database of models. Once a model has been hypothesized, pairs of 2D-3D ¢
sponding features, including point pairs, line—segment pairs, and ellipse—circle pairs,
simultaneously used in a new linear pose estimation framework to produce a hypothes
transformation from a 3D mesh model of the object to the image. The transformatior
optimized (and subsequently accepted or rejected) by a verification procedure that proj
the 3D model wireframe onto the image and minimizes a Hausdorff-like distance meas
between the projected model and the image edges. The resultant object recognition sy
is able to recognize 3D objects having planar, cylindrical, and threaded surfaces in comg
multiobject scenes.

This paper describes the major research contributions of the RIO system. Section 2
cusses the related literature. Section 3 defines the features and relations used for recogr
Section 4 gives the relational indexing algorithm and some initial experiments. Sectiol
describes the new pose-estimation algorithm, and Section 6 discusses the full experin
and results.

2. RELATED WORK

This section briefly describes a few existing systems which are closely related to
system developed in this work. Whenever possible, an attempt has been made to con
or relate characteristics of the system being described to the philosophical aspects o
work described in this paper.

Features can be predicted analytically or by applying graphics software to CAD mod
[9, 29, 30, 56]. In [30], Gremban and Ikeuchi use the term appearance-based vision to r
to methods in which the recognition system analyzes and predicts the appearances c
object models based on CAD data and on physical sensor models. The prediction ca
either analytical or based on synthesized images of the objects in the model database
predicted appearance is the set of features that are visible under a specific set of vie
conditions. The analysis of the predicted appearance allows for the generation of an ot
recognition program to be used in the online phase of the recognition process. This pro
is also called VAC (vision algorithm compiler), because it takes a set of object and sen
models and outputs an executable object recognition program. The framework is gener
the sense that it does not require any specific type of sensor. Their system has succes
recognized simple objects from range data in a bin-picking environment. However, there
two drawbacks to this approach: (1) analytical prediction is impractical in some domai
and (2) synthetic images are not yet realistic enough for general use. More recently, D
and Jain [22] have developed a method of view grouping for free from objects, using rat
images.

The use of synthetic images also affected the performance of the PREMIO systen
Campset al.[9]. This system utilizes artificially rendered images to predict object appes
ances under various environmental conditions (sensor, lighting, and viewpoint locatic
The predictions generated by the system did not agree well with the real images acqu
under the same set of conditions. In order to improve PREMIO’s predictions, Pulli [4
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developed the TRIBORS system. He initially attempted to improve the predictions by |
ing a better ray tracer, but that was also insufficient. The solution he found was to boots
the prediction process with synthetic images and to train on real images. These new
dictions led to better and faster object recognition. The use of real training images seen
be a step in the right direction. In this paper, the “predictions” are derived exclusively frc
real images of the objects. These predictions are described in detail in Section 2.

Despite the fact that it only deals with two-dimensional objects, Bolles and Cain’s loc
feature-focus method [4] is very relevant to the work herein. Their method automatice
analyzes the object models and selects the best features for recognition. Typical fea
include holes and corners. The basic principle is to locate one relatively reliable feature
use it to partially define a coordinate system within which a group of other key feature:
located. If enough of these secondary features are located and if they can uniquely ide|
the focus feature, then the hypothesized position and orientation of the object (of which
feature is a part) is determined. A verification step that utilizes template matching is tt
performed to prove or disprove the hypothesis. The system has been proven to efficie
recognize and locate a large class of partially visible two-dimensional objects.

The work of Murase and Nayar [43] also involves appearance of objects and the trair
is performed on real images. They argue that since the appearance of an object is depe
on its shape, its reflectance properties, its pose in the scene, and the illumination condit
the problem of recognizing objects from brightness images is more a problem of appear:
matching than of shape matching. They define acompactrepresentation of object appeal
that is parameterized by pose and illumination only, since shape and reflectance are intr
(constant) properties. This representation is obtained by acquiring a large set of real im:
of the objects under different lighting and pose configurations and then compressing
set into an eigenspace. A hypersurface in this space represents a particular objec
recognition time, the image of an object is projected onto a point in the eigenspace
the object is recognized based on the hypersurface on which it lies. The exact locatio
the point determines the pose of the object. The major drawback of this method is th:
cannot handle multiple-object scenes. Occlusion also adversely affects the performan
the system.

Though the work of Bergevin and Levine [2] on generic object recognition does not ma
use of the specific model-based paradigm, it is philosophically related to the work her:
They utilize coarse, qualitative models that represent classes of objects. Their work is b:
on the recognition by component (RBC) theory of Biederman. The system is divided i
three main subsystems: part segmentation, part labeling, and object model matching.
part segmentation algorithm is boundary-based, and itis independent of the specific sha
the parts making up an object. The part (geon) labeling algorithm makes use of the con
of faces to further categorize the geons into generalized solids. At the matching stage
labeled geons are used to index into the database of models. A measure of similari
defined in order to discriminate among the models. An important observation made
the authors themselves is that it is not clear that suitable line drawings may eventuall
obtained from realimages. All their examples and tests have made use of ideal line drawi

The evidence-based recognition technique proposed by Jain and Hoffman [38] define
object representation and a recognition scheme based on salient features in range im
The objects are represented in terms of their surfaces, boundaries, and edges. The rec
tion scheme makes use of an evidence rulebase, which is a set of evidence condition:
their corresponding weights for various models in the database. The similarity between
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of observed image features and the set of evidence conditions for a given object deternr
whether there is enough evidence that the particular model is in the image. The mc
features must be carefully chosen in order to make possible the distinction between ok
classes.

Geometric hashing [15, 41] is a matching scheme that achieves rapid online matct
performance via a large offline preprocessing step. In the offline database creation
of geometric hashing, salient feature points in the object models are converted into
affine-invariant model representation by using three points as a basis and transforming
coordinates of the remaining points. These new coordinates are encoded and used
entry to a hash table where the basis triplet and the model from which the coordine
came are recorded. This is done for all possible basis triplets in the models. In the matcl
step, salient points in the image are detected, a basis triplet is chosen, and the rema
points are transformed with respect to this basis and are used to access the table. For
bin accessed, votes are cast for the model-basis pairs associated with the bin. After al
points are used in this fashion, if a particular model-view has high enough votes, an ob
match hypothesis is declared found. The recognition part of the system described in
paper is accomplished by utilizing the high-level features and relationships of an obj
in a paradigm called relational indexing. This indexing technique is related to the origir
geometric hashing technique, except that the database of models is indexed by encc
(without quantization) small relational graphs of features, as opposed to affine-invari
point coordinates. Because we use symbolic information and because the informatior
store is much smaller than the information required for geometric hashing, our curr
implementation uses only an array for table lookups, instead of a hash table.

The work of Stein and Medioni [50] is particularly related to our indexing scheme. |
their structural indexing technique boundaries of objects are approximated by polyg
and groups of consecutive segments are encoded and used to index the database :
retrieve possible hypotheses. In their MULTIHASH system, Grewe and Kak [31] propo
an interactive framework for learning the structure of a multiple-attribute hash table for
in the recognition and localization of 3D objects. The system makes use of both qualita
and quantitative attributes, such as shape of a surface and color, respectively. Decision
and uncertainty modeling are used in the construction of the hash tables, after a hul
trainer shows objects to the vision system and tells the system the identities of the mo
corresponding to the several attributes considered.

The work of Chen and Stockman [12] uses a hypothesize-and-test approach to ger
object recognition. Their recognition system uses an alignment paradigm consisting of tt
stages: modeling, indexing, and matching. In the first stage, model aspects are constrt
for predicting the object contours visible from an arbitrary viewpoint. Model aspects a
pose hypotheses are generated by the indexing module, which makes use of the cor
of “parts.” In the matching stage, verification of model hypotheses is carried out by
alignmenttechnique that makes use of Newton’s method along with a Levenberg—Marqu
minimization, to estimate or refine the object pose iteratively. The hypotheses are reft
or supported by the matching results.

3. FEATURES AND RELATIONS

The features used in this work are derived from edge images. These edge images act
come from a pair of intensity images taken from the same viewpoint, but with the light soul
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on the left in one and on the right in the other. This aspect of the work will be discuss
briefly when we describe the experimental system used to evaluate the algorithms.

3.1. Features

Once the edge image is obtained, it is used for feature extraction. The feature extrac
module of the system makes use of the ORT (object recognition toolkit) public dome
software package developed by A. Etemadi which extracts line segments and circulal
segments from edge images [23]. These primitive features are used to generate hi
level features such as pairs of parallel lines, junctions, triplets, clusters of coaxial al
and ellipses. All higher-level features are generated by the ORT package with the
ception of ellipses and clusters of arcs. The procedures for detecting those features
developed in cooperation with Yu-Yu Chou and are reported in [14]. The complete list
features used in this work is given below, and their pictorial representation can be see
Fig. 2.

Ellipses

Coaxials-3: cluster of three coaxial arcs

Coaxials-multi: cluster of four or more coaxial arcs
Parallel-far: pair of parallel lines 40 pixels or more apart
Parallel-close: pair of parallel lines 40 pixels or less apart
U-triples: set of three line segmentsa U shape

Z-triples: set of three line segmentsa Z shape

L-junctions

Y-junctions

V-junctions

3.2. Relationships Among Features

The relationships used for matching must be translation, scale, and rotation invariant. I
that they are relationships among two-dimensional features in a two-dimensional view ¢
of the 3D object. Different features appear and different relationships among features |
in different view classes of the same object. The list of relations among features used in
work is given below.

e Share one arc

e Share one line

e Share two line

e Coaxial

e Close at extremal points

e Bounding box encloses

e Enclosed by bounding box

Each of the above relations is defined between a pair of features. All of the relatic
are symmetric relations, except foounding box enclosemdenclosed by bounding bpx
which are both one-way relations. Figure 3 shows examples of the above relations.

3.3. View-Class Models

A feature-based model of an object is a description of the object in terms of features:
are detectable in real images of the object. A featudeigctabldf there is a computer
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FIG. 2. Features used in this work. (a) Ellipses; (b) coaxials-3; (c) coaxials-multi; (d) parallel-fa
(e) parallel-close; (f) U-triple; (g) Z-triple; (h) L-junction; (i) Y-junction; (j) V-junction.

program that can extract the feature from an image of the object, through some well-defi
procedure. Feature-based models cafulieobject modelsncluding all the features that
appear in any view of an object or they canwew-classmodels in which an object is
represented by a small set of characteristic views, each having its own distinct feature
In this work, view-class models of industrial parts made of metal with planar, cylindrice
and threaded surfaces are utilized. The view classes used were generated manual
a human designer, but the same can be done automatically as proposed by Thorntc
[54].

Let C be the class of objects to be recognized, and Ibe the set of feature types to be
used in the recognition task. Features may be 2D or 3D, depending on the sensors us
detect them. Each type of feature has a 3D source, an explanation for the appearance ¢
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FIG. 3. Relations between sample pairs of features. (a) Share one arc; (b) share one line; (c) share two |
(d) coaxial; (e) close at extremal points; (f) bounding box encloses/enclosed by bounding box.

feature in an image. In general, 3D image features correspond to 3D object features.
example, 3D surfaces detected in range images correspond to object surfaces, and 3D
correspond to object edges or boundaries between objects. Some 2D features corre:
directly to 3D features of the object. Straight and curved 2D segments, for instance,

correspond directly to straight and curved 3D edges. 2D ellipses can correspond direct
3D circles or ellipses. Other 2D features come about due to a mixture of factors includ
the geometry of the object, the viewpoint, and the lighting. Limb edges are viewpo
dependent and have no corresponding 3D edge at all on the object. Highlight edges
caused by the shape and reflectance properties of the object and the lighting; they are
highly viewpoint-dependent.

Let Sy, m be a set of training images for view clagof object modeM. The images are
all taken from a connected volume of the viewing sphere, which is assumed to be cent
at the origin of the object and to be of a fixed radius equal to the maximum viewing distan
If the object has symmetries, then the connected volume can be replaced by the unic
several connected volumes. Each imdgeS, v is processed to yield a set of features
F,. Afeaturef, from imagel is equivalentto another feature,] from imageJ if they
have the same type and are judged to have come from the same 3D source. The ¢
features that represent the view class is thé=gg}; of equivalence classes of the union of
the feature sets. The feature types used in this work are coaxial circular arcs (two-clu:
three-cluster, and multicluster), ellipses, triples of line segments (U-shaped and Z-shay
junctions (V-junction, T-junction, Y-junction, and Arrow), and parallel line segments (clos
and far apart).
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FIG. 4. A setoffeatures extracted from the training image of Fig. 1b. (a) Edges; (b) straight lines; (c) circu
arcs; (d) line features; (e) arc clusters; (f) ellipses.

Figure 4 illustrates some of the features that were extracted from the edge image of
nonpolyhedral object of Fig. 1b. Figure 4a shows the raw edge image. Figures 4b an
show the straight line segments and circular arcs extracted. Figure 4d shows the line fea
identified by the system. Line segments 5 and 7 form a far-apart, parallel pair, while li
segments 8 and 9 form a V-junction as do line segments 5 and 6. Figure 4e shows the s
cluster of three coaxial arcs detected by the system, and Fig. 4f shows the single ell
detected.

The features shown in Fig. 4 are from one training sample of View Class 1 of Model
of the model database. Of the five samples of that view class that were analyzed, the t
coaxial arcs and the ellipse were detected in all five; the V-junctions were detected in th
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(a) (b)

(©) (d)

FIG.5. Sample model views in the database. (a) Model 1 view class 1; (b) model 1 view class 2; (c) mod
view class 3; (d) model 1 view class 4.

the far-apart, parallel lines were detected in three; another pair of parallel lines was dete
in two; and a U-shaped triple of line segments was detected in two. Figure 5 illustra
samples of the edge images obtained from training images of the four view classe
Model 1.

3.4. 3D Mesh Models

In addition to the feature-based models described in the previous section, full geome
CAD models are utilized by the system. The CAD models are used in the verification ¢
pose estimation steps as described in Sections 5.7 through 5.9.

4. RELATIONAL INDEXING FOR HYPOTHESIS GENERATION

In a model-based object recognition system [49], the task of matching image feature
model features, in the general case, implies searching the space of all possible corres
dences. Indexing is one of the techniques that has been utilized to reduce this search s
In recent years, several systems have made use of different approaches to indexing [¢
44, 50]. In this section a novel approach to indexing into a database of models that me
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use of features and the relationships among them is described. This new technique is ¢
relational indexing

In relational indexing each view-class model in the database is described by a relatic
graph of all its features, but small relational subgraphs of the image features are utilize
index into the database and retrieve appropriate model hypotheses. In this section the
of this new technique for hypothesis generation is demonstrated.

4.1. Relational Indexing Notation

An attributed relational description s a labeled grapid = (N, E) whereN is a set
of attributed nodes anH is a set of labeled edges. For each attributed mogl®, let A(n)
denote the attribute vector associated with nodeach labeled edgee E will be denoted
ase = (n;, nj, L; j), wheren; andn; are nodes oN, andL; j is the label associated with
the edge between therh; ; is usually a scalar, but it can also be a vector.

A relational descriptiorD = (N, E) can be broken down into subgraphs, each havin
a small number of nodes. Subgraphs of two nodes, calghphs are considered. In the
worst case, a complete graph lofhodes has('g) 2-graphs, each consisting of a pair of
attributed nodes and the labeled relationship between them. The relationship betweer
two nodes may be a meaningful spatial relationship or the null relationsinie The set of
2-graphs with nonnull relationships of a relational descripfipiis denoted a3;. Figure 6
illustrates a partial graph representing an object and all the 2-graphs for the given relatic
graph.

4.2. Relational Indexing Algorithm

Let DB = {M1, My, ..., My} be the database of view-class models, where déck
(N;, Ej) is an attributed relational description. LBt= (N, E) be a relational description
that has been extracted from an image ande the set of all 2-graphs @. In order to

MODEL-VIEW
RELATIONS:
a: encloses
b: coaxial
FEATURES:
1: coaxials-multi
3 2: ellipse
3: paralle! lines
PARTIAL GRAPH

11

FIG. 6. Sample graph and corresponding 2-graphs for the hexnut object.

arcs: relations
nodes: features
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find the closest models 0 two steps are performed: an offline preprocessing step that s
up the indexing mechanism and an online hypotheses generation step. The offline st
as follows. LetTM be the set of 2-graphs &f;,. Each elementB,Mi in this set is encoded
to produce an indeiq'\’Ii , which is used to access a lookup table. The bin corresponding
an encoded 2-grapB, stores information about which models gave rise to that particul:
index. Whenever a particular 2—graﬂﬁ"" of modelM; produces an index that accesses ¢
bin B, modelM; is added to the list of models B. This encoding and storing of information
in the lookup table is done offline and for all models in the datalisBe

In the online step the relational indexing procedure keeps an accuméafor each
model M; in the database; all the accumulators are initialized to zero. Each 2-@aph
in T is encoded to produce an indéx The procedure then uses that index to retrieve
from the precomputed lookup table all modéfs that contain a 2-graph that is identical
to G;. ldentical means that the two nodes have the same attributes and the edge ha
same label. For each 2-grafh of T, the accumulato®; of every retrieved modeV; is
incremented by one. After the entire voting process, the models whose accumulators |
the highest votes are candidates for further consideration. Since the procedure poten
goes through aIIZ) 2-graphs ofT and for each one can retrieve a maximunmofodels,
the worst-case complexity @(m(';)). However, the work performed on each model is very
small, merely incrementing its accumulator by one. This is very different from metho
that perform full relational matching on each model of the database. Furthermore, in |
imaging applications, many of the 2-graphs have the null relationship and are not inclui
in the voting process. The relational indexing algorithm is given below.

RELATIONAL INDEXING ALGORITHM.

Preprocessing (offline) Phase

1. For each modd\/; in the databas® B do:
e Encode each 2—grapB,M' to produce an index.
e StoreM; and associated information in the selected bin of the lookup table.

Matching (online) Phase

1. Construct a relational descriptid@hfor the scene.

2. For each 2-grap, of D do:
e Encode it, produce an index, and access the lookup table.
e Cast a vote for eacM; associated with the selected bin.

3. SelectM;’s with enough votes as possible hypotheses.

Since some models share features and relations, it is expected that some of the hypotl
produced will be incorrect. This indicates that a subsequent verification phase is esse
for the method to be successful. It is important to mention that the information stor
in the lookup table is actually more than just the identity of the model that gave rise t
particular 2-graph index. It also contains information about which specific features (and tf
attributes) are part of the 2-graph. This information is essential for hypothesis verificat
and eventual pose estimation.

4.3. Encoding, Indexing, and Voting Schemes

In the scope of this work, only subgraphs of size two nodes were used. This me
that each index, in the general case, is made up of a combination of two features and
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FIG. 7. Lookup table and indexing scheme.

relations, indicating the two-way relationship between the features. In the implementati
each feature type and each relation are represented by distinct labels (integers). There
each subgraph index is uniquely represented by a 4-tuple of intefjers(r,, r»), which
is used to access a lookup table, as shown in Figure 7. Each entry of the lookup table h
a linked list of all model-views that gave rise to the particular 2-graph corresponding to 1
table indices.

The overall voting scheme associated with the relational indexing technique is illustra
in Fig. 8. In the 2-graph shown, the ellipse and the coaxial cluster of arcs are related by

2-graph  List of Models

s
unction
- (12,9.9) = (1,29.9) M1, Ms MM u

coaxial
arc

cluster

retrieved list of models

vote for

each model
accumulators
il [ [ oeer Quf oo Ju]--|
M M;s Mz Mg

FIG. 8. Overall voting scheme.
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two-way relationshare an arcThe ellipse is represented by the label “1” while the coaxia
arc cluster is represented by label “2”. The relat@drare an ards represented by label
“9”. Therefore, the particular 2-graph illustrated is uniquely represented by the 4-tuple
2,9, 9). This gives rise to the indices used to access the lookup tablel@ y = 99).
The indexed bin contains a list of all models in the database which contain the subgr
used to generate the indices. In the example shown, madgldMs, M3, and Mg; are
retrieved. The accumulators of these models are incremented by one, meaning that
model receives one vote from the specific 2-graph used.

4.4. Matching with Relational Indexing: An Example

This sectionillustrates an example of the experiments conducted to demonstrate the u
the relational indexing technique for 3D object recognition with feature-based models [1
In order to illustrate the relational indexing technique, nine test images of both single ¢
multiple object scenes were matched to the database of model-views. The nine test im
used are shown in Fig. 9. The database of models was created by encoding all 2-gr
for each of the model-views. For each test scene, features and relations were detecte
relational description was built, and all 2-graphs were encoded. Relational indexing \
then performed and the generated hypotheses were normalized by the number of 2-gr
in the original models and ranked in order of strength. Hypotheses that exceeded a pi
strength threshold of 50% were dubbed “strong hypotheses.” These hypotheses are
passed to the verification procedure for further consideration. The results obtained for
nine test images are summarized in Table 1.

In each of the nine tests, the strong hypotheses were classified as type A, type B, or
C. Type A hypotheses are those where the correct model and the correct (closest) view
were identified. Type B hypotheses are those where the correct model was identified,
the chosen view class was not closest to the view in the image. Type B hypotheses car
be verified and used to determine pose if enough corresponding features are found. Ty
hypotheses are those where an incorrect model was selected. These incorrect hypot

TABLE 1
Results of the Hypotheses Generation Process
for Nine Test Scenes

Strong hypotheses
Number of

Scene objects Type A Type B Type C

o

© O ~NO A WN R
AWWNNRRRR
BAWWNNRPRRPRE
PR R RPWOROLR
OO R KL OORLER

Note.Hypotheses types are as follows: A, correct model, correct
view; B, correct model, incorrect view; C, incorrect model.
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FIG.9. Theninetestscenes used. The labels left and right indicate the direction of the light source. (a) Ima
(left); (b) image 2 (right); (c) image 3 (left); (d) image 4 (left); (e) image 5 (left); (f)image 6 (right); () image 7 (left)
(h) image 8 (right); (i) image 9 (right).

should be ruled out in the verification step. The results of the nine tests are as follows:
the objects in the scenes have been correctly recognized (18 type A hypotheses); there
nine type B hypotheses and four type C hypotheses.

Figure 10a shows the results for test scene 9, which contains four objects: the stac
cylinder, the hexnut, the wrench, and the cylinder-block. The system produced five strt
hypotheses; four were correct and are overlaid on the image. These hypothesized mc
were taken through pose computation (affine correspondence of model features and s
features) without verification. The fifth strong hypothesis (not shown) matched the obj
hexnut to an incorrect view of the correct object model. The subgraph indices showr
Fig. 6 were among those that were used in the matching process.

Figure 10b illustrates the correct (type A) hypotheses generated for test scene 5. O
three type B hypotheses generated, one was for the cylinder-block object and two were
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FIG. 10. (a) Right image of test scene 9 overlaid with the features of the hypothesized model matches.
objects in this scene are the stacked cylinder, the hexnut, the wrench, and the cylinder-block. (b) Left in
of test scene 5 overlaid with the features of the hypothesized model matches. The objects in this scene a
cylinder-block and the hexnut.

the hexnut object, both of which are present in the scene. These are preliminary results
full evaluation of the RIO system is described in Section 5.

5. POSE ESTIMATION USING MULTIPLE FEATURE TYPES

This section addresses the problem of estimating the position and orientation (pose) ¢
object given a set of some of its 3D features and the set of corresponding 2D image feat
and its use in the context of hypotheses verification. In the most common case addre
in the literature, the feature sets are merely point sets. In a few cases line corresponde
have been used as features to determine pose and so have ellipse—circle correspond
But apart from the work of Phong [45] on computing pose from points and linksear
solution to computing pose from different types of feature correspondsimataneously
has never been addressed in the literature. Stockman’s work on pose clustering [5:
one example of a method that can use the computed poses from different types of fee
correspondences, but the pose computations are separate. Wong, Rong, and Liang [5
points, line segments, and ellipse—circles for matching, but only points are used to com
pose; the other features are only used in the verification step.

In this section, a linear method is proposed to directly compute pose from point cor
spondences and ellipse—circle correspondences simultaneously. A new technique for ||
pose computation from point correspondences is also presented, as well as a generali:
of an existing algorithm for computing pose from an ellipse—circle correspondence, in or
to handle nonrotationally symmetric objects.

5.1. The Camera Model

The model used is that of a pinhole camera, as illustrated in Fig. 11. It is assumed"
the camera has been calibrated, that is, all the interior parameters are known. The ca
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N

camera

frame image plane

FIG. 11. The camera model used.

coordinate system is at the center of projectivity andzitsis coincides with the optical
axis. The optical axis is perpendicular to the image plane and it intersects that plan
the origin of the ¢, v) image coordinate system. Thug, = vg = 0. The focal length is

f =25 mm.

5.2. Pose from 2D-3D Point Correspondences

The problem of determining 3D pose from sets of matched 2D image points and 3D ob]
points has been vastly addressed in the literature [28, 55, 32]. This problem is inhere
a nonlinear one, and nonlinear methods for estimating the pose parameters are nece:
However, under some conditions, an approximate, linear solution can be found.

Let (x, y, 2) be the coordinates of model poiRtin its object coordinate system. Also,
let the object coordinate system and the camera coordinate system be related by a trar
mationT = {R, t}, described in the form of a rotation matrikand a translation vectar
where

ria riz ris t
R=17ry rop ro3 and t = ty
f31 32 I33 t;

Then, the perspective projection Bfonto the image plane yields image plane coordinate
(u, v), where
rgaX +r rizz+t
U=f11+12y+ 13Z + 1k (1)

F31X +ra2y +rasz+1;

and

[o1X 4T ro3z+t
v:f21+22Y+ 232+ ty @)

r3aX +raoy 4+ rasz+t;’

and f is the focal length of the camera.

The transformation between object frame and camera frame corresponds to the pos
the object with respect to the camera frame. Thus, there are 12 unknowns: nine rots
matrix entries and three translation parameters. Since for each point there are two equa
in the form of Egs. (1) and (2), six 2D-3D point correspondences are needed to detern
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all the pose parameters. The resulting system of equations is of the form

Bw =0, ®)
where
le fyl fZl 0 0 0 —UiXy —u1yr —Uizg f O —Uj
0 0 0 f X1 fyl f Z1 —UiX1 —viYr1 —uviZp o f —V1
fX2 fy2 f22 0 0 0 —UxX2 —U2y2 —U2Zp f O —U2
B = 0 0 0 f X2 fY2 f Zy —UX2 —U2Y2 —U2Zp o f —V2
fx¢ fys fzg O 0 0 —ugXe —UsYs —-Ugzg f 0O —ug

0 0 0 f X6 fy6 f Zg —VUsXg —VUsYs —Usls o f — Vs

(4)

and

.
w= (1 riz2 riz ra1 raz T2z ra1 ra2 raz tx ty t). )

However, if one is interested in finding the true pose parameters, and not simpl
transformation that aligns the projected model points well to the image points, conditic
need to be imposed on the elementsRo$uch that it satisfies all the criteria a true 3D
rotation matrix must satisfy. In particular, a rotation matrix needs to be orthonormal: its r
vectors must have magnitude equal to one, and they must be orthogonal to each other.
can be written as:

IRl =r8 +r5+r5=1
IR =15, +15+15=1 (6)

2, .2 , .2
IRsll =rg +r5+r=1

and
R]_O R2=O
RiocR3=0 (7
Ry,o Ry =0.

Infact, theoretically, there is an infinite number of transformations of the Toem{R, t}
that will produce coordinatesi(v) for a givenP that yield an acceptable “alignment,” but
there is only onel = {R, t}, for which R andt correspond to the true 3D position and
orientation of the object relative to the camera frame.

It can be seen that the conditions imposedRoturn the problem into a nonlinear one.
If the conditions on the magnitudes of the row vectorsRoére imposed one at a time,
and computed independently, a linear constrained optimization technique similar to the
used by Faugeras [25] can be used to compute the constrained row veRtor of
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5.3. Linear Constrained Optimization

Given the system of equations (3), the problem at hand is to find the solution uetttar
minimizes||Bw|| subject to the constraifitw’||? = 1, wherew’ is a subset of the elements
of w. If the constraint is to be imposed on the first row vectoRpthen

To solve the above problem, it is necessary to rewrite the original system of equati
Bw = 0 in the following form

Cw’ 4+ Dw” =0,

wherew” is a vector with the remaining elementswof Using the example above, i.e., if
the constraint is imposed on the first rowRf

.
w' =21 a2 Toz Tfa1 faz Taz t ty t)'.

The original problem can be stated as: minimize the objective fun@ienCw’ + Dw”,
that is

min|Cw’ + Dw"|, ®)

subject to the constrainitw’||?> = 1. Using a Lagrange multiplier technique, the above is
equivalent to

min [[Cw’ + Dw” 1> + A(1 — [w'[|?)]. (9)
w,w

The minimization problem above can be solved by taking partial derivatives of the object
function with respect ta’ andw” and equating them to zero:

00

o = 2CT(Cw' + Dw") — 22w =0 (10)
30

G = 2D"(Cw' + Dw”) = 0. (11)
w

Equation (11) is equivalent to
w’ =—(D'D)'D'Cw'. (12)
Substituting Eqg. (12) into Eq. (10) yields
aw' =[CTC-C'D(D'D)ID'Clw'. (13)
It can be seen thatis an eigenvector of the matrix

M=Cc'Cc-Cc'D(D'"D)'D'C. (14)
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Therefore, the solution sought far corresponds to the smallest eigenvector associate
with matrix M. The corresponding” can be directly computed from Eqg. (12). Itisimportant
to notice that since the magnitude constraint was imposed only on one of the rehef
results obtained fow” are not reliable and therefore should not be used. However, soluti
vectorw” provides an important piece of information regarding the sign of the row vect
on which the constraint was imposed. The constraint imposed w4g = 1, but the sign
of w’ is not restricted by this constraint. Therefore, it is necessary to check whether or
the resultingw’ yields a solution that is physically possible. In particular, the translation
must be positive in order for the object to be located in front of the camera as oppose
behind it. If the element of vectar” that corresponds tf is negative, it means that the
magnitude of the computed’ is correct, but its sign is not, and it must be changed. Thu:
the final expression for the computedis

w’ = sign(g)w’.

5.4. Computing the Transformation= {R, t}

Row vectorR; is computed first by computing’ as described above, since in this case
R: = w’. MatricesC andD are

X1 Y1 24
0O 0 O
X2 Y2 2o
c=/10 0 O (15)
Xe Yo Zs
0O 0 O
and
0 0 0 —UiXy —Ui1yr —Uizg f 0 —Uy
le fyl fZl —V1X1 —uviY1 —viZp 0O f —V1
0 0 0 —UxXy —UpY2 —U2Zp 0 f —U2
D=| fx2 fy2 fzz —wvX2 —wv2y2 —wz 0 f —wv|. (16)
0 0 0 —UgXg —UgYs —Uszg f 0O —ug

er fye fZe —VgXe —UsYs —VsZs 0o f —Vg

Then row vectorR; is computed using the same technique, except that now the constre
is imposed on its magnitude; thuk; = w’'. In this case, matriceS andD are

0O 0 0
f X1 fyj_ f Z;
0O 0 O
C=| fx fy fz (17)
0 0 0

fX6 fy6 fZG
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and
fX]_ fy]_ fZ]_ —UiX;y —Uiyr —Uizg f 0 —Uz
0 0 0 —v1X1 —Vv1Y1 —viZg 0O f —V1
fX2 fy2 sz —UxXy —UzY2 —U22Z» f O —U2
D= 0 0 0 —UX2 —UV2Y2 —U22p 0 f —wu . (18)

fxe fyse fzs —UsXe —UsYs —UsZs f O —Ug
0 0 0 —VUsXe —VUsYs —VUsZs 0o f —Vs

Rs could also be computed the same wayRasnd R, above, but that would not guarantee
it to be normal toR; andR;. Instead,R; is computed as follows:

R]_X R2

= < 19
IR x Rl (19)

3

All the constraints on the row vectors & have been satisfied, except one: there is nc
guarantee thaR; is orthogonal toR,. In order to solve this undesired situatid®,, R,
and R; need to go through an orthogonalization process such that the rotation mRatri
is assured to be orthonormal. This can be accomplished by fRjrand R; as computed
above and recomputing; as:

R2 = R'g X Rl. (20)

Thisway, all the rotation parameters have been calculated and they all satisfy the neces
constraints. The translation vectois computed using a least squares technique on a ne
nonhomogeneous, overconstrained system of 12 equations:

At = b, (22)
where

f O —Uq

0 f —V1

f 0 —Us

A=|0 f —u (22)

f —Usg

0 f —UVg
and

— f(roaXe + rioys + risza) + ua(raaxa + ragys + rasza)
— f(raixe + ra2y1 + raszs) + va(rsiXy + razys + raszi)
— f(riaxe + ri2yz + ri1szo) + u1(rsiXz + ra2y2 + raszz)
b= | —f(raiXe + r22yz + r2azz) + valrsaXe + rs2Yz + rsszz) | . (23)

— f(ri1Xe + ri2ye + r1azs) + U1(rsixes + raz¥e + rasze)
— T (ra1Xe + r22Ys + r23zs) + v1(raiXe + rs2Ye + r33ze)
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5.5. Pose from Ellipse-to-Circle Correspondence

In order to find the 3D position and orientation of a circle from its projection onto th
image plane (an ellipse in the general case) the solution described in [20] and [21] is utiliz
The solution consists of a series of 3D transformations to the circle and it is carried ou
two stages: first the orientation of the 3D plane on which the circle lies is determined; ¢
then the center of the circle is computed.

An ellipse in the image plane is of the following form

a1X? + apXy + agy? + asX + asy + ag = 0. (24)

Since one of the assumptions about the geometry is that the origin is at the principal pc
this ellipse defines a cone in 3D,
a
ayx? + apxy + agy? + %szr TSyZ-‘r %zzzo, (25)
where f is the focal length of the camera. Equation (25) above can be written in the fol
XTCX = 0, where

a F %
a4 & B
2t 2f 12
and
X=(x 'y 2. (27)

In order to find the orientation of the plane on which the circle lies, it is necessary to fi
reduce the cone equation to

X2 y2 22

—+ 4

by bz'ﬁza

This is accomplished by a 3D rotation to the eigenvector frame suclCthmsgtcomes a
diagonal matrix of the form

M 00
cC'=|0 » 0], (28)
0 0 As

whereis, A,, andag are the eigenvalues € in ascending order. The rotation matrix that
accomplishes the above is given by

Ri=(M V2 Vi), (29)

whereVy, V,, andVs are the eigenvectors @f. Then, another rotation about the ngvaxis
is performed such that the intersection of the cone with the ptaad is a circle. Thus,
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the coefficients ok? andy? are identical. In this case, the normal to the circle become
(0, 0, 1). This second rotation is of the form

cos# 0O sing
R=| 0o 1 o0 |, (30)
—sind 0 cos
where
Axy— A
9 = +tant, | 2221 (31)
A3 — A1

However, because the circle corresponds to a boundary of the physical object it col
from, there must be a direction associated with it and not only an orientation. Hence, tt
is more than the two-fold ambiguity seen above. One must consider the other two case:
which the circle is “flipped” 180 degrees about its diameter. Thus, there are four possi
solutions for the angle theta,

01 = 16|

02 = —10|
O3 =m + 16|
Os =1 — 10|,

but only one of them is physically correct. At this point, it is not possible to determir
which of the four solutions above is correct, but later in this section this problem will
addressed and a solution given.

In the camera coordinate system, the normal to the plane on which the 3D circle lie
given by applying, in reverse, the transformations computed

cos® O sind
Ne = 0 1 0 |[(Vi Vo V3)(0 0 1), (32)
—sind 0 cosd

where the negative component of the normal is due to enforcing a right-handed came
coordinate system. To compute the coordinates of the 3D circle in camera coordinates,
necessary to first determine the position of the center after rotalpasid R, have been
applied. After the second rotatioRy, the equation of the cone is given by

X
(x y 2RJC'R |y | =0

z
or

cos# 0 —sind\ (A2 O O cos® O sind X
xvy 2 o 1 o 0 » O 0o 1 o0 y| =0 (33
sind 0 co¥ 0 0 a3/ \-sind 0 cow z
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If the desired circle has radiys its center must be located at= 0,

A2p
z=k= , 34
o (34)
and
A
X=w=—2kl<1——3). (35)
A2

Applying the transformations in reverse order yields the desired coordinates of the ce
of the circle in the camera frame

cos® 0 sind
Oc= 0 1 0 (V1 V2 V3)(w 0 k) (36)
—sing 0 cos

Therefore, by obtainindN. and O, the 3D circle normal, and center with respect to
the camera coordinate system, the pose-from-ellipse problem is solved. However, us
the above solution was previously reported only for the determination of pose of solids
revolution. Most of the objects used in the work herein do not fall in that category. Therefo
the above solution had to be augmented to include an extra transformation step, nam
rotation about the perpendicular axis of the 3D circle. This additional rotation ensures t
the nonsymmetrical characteristics of the object have been taken into account.

5.6. Pose from Ellipses for Objects Other Than Solids of Revolution

There is aninfinite number of ways a circle can be rotated about its center, oniits plane,
stilllook the same inits 2D projection. Thus, the correspondence between a 2D ellipse or
image and a 3D circle on the model is not enough to determine the pose of a generic ob
An additional constraint is needed, and the above method must be augmented. Figur
illustrates the effect of the original solution on a nonrotationally symmetric object. The
are four possible solutions and none of them is correct because the additional oriente
constraint was not used. The correct solution, when the additional constraint was use
shown in Fig. 13.

The augmented pose-from-ellipse method uses an ellipse-to-circle correspondence
an additional point-to-point correspondence to determine an initial pose estimate. The
ditional point used may lie anywhere in the 3D space of the circle, except along the |
pendicular axis that passes through its center. Due to the nature of the objects used, ar
fact that for nonrotationally symmetric objects most detected ellipses are the boundarie
holes, a point lying on the plane of the circle is used.

In order to describe the approach to computing the necessary rotation it is assu
that the original solution of [20] and [21] is given in terms of a rotation maRjixand
a translation vector. It is also assumed that the model has already been transformec
such a way that the center of the circle in question lies on the origin and the circle is
the yz-plane; that is, thex-axis is perpendicular to and passes through the center of tl
circle. Let the additional point correspondence between 3D model point and 2D im:
point be P = (X, Y, 2), B = (r, ¢)). In order for Py, to project ontoR,, the following set
of transformations must be applied to it:
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FIG. 12. The four incorrect solutions from the original pose-from-ellipse algorithm. (a) Solution 1
(b) solution 2; (c) solution 3; (d) solution 4.

1. Rotate the model about tleaxis by the unknown angle:
x,y,Z)=(X,y cosp — Z sing, y sing + Z cosp).
2. Apply rotationRe to the model:
"y Z)=(X.Y,Z)Re.
3. Translate the model hy:

"

(X , y///’ Z///) — (XH’ y//’ Z//) + te.

FIG. 13. The correct initial pose using the additional point correspondence constraint.
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4. Project the translated model onto the image plane:

(r,c)= fX—, fy— , wheref is the focal length of the camera.
ZH/ Z///

In order to determine the unknown rotation anglenotice that:
r c

N y/// .

The above leads to a trigonometric equatiorpoof the formA sing + B cosg + C = 0,
which yields the following two solutions,

(—A+ /(A2 + B2 - ?)

= 2 arctan— 7
1) arctan “BiC (37)
and
(—A—/(A2+ B2 —c?))
=2 }
¢ = 2 arctan BaC , (38)
where
A= y(r€31 - kr%z) + Z(krezz - r€21)’
B= Y(re21 - krezz) + Z(re31 - kl'e32), (39)
C = X(re11 —_ krelz) +t€y - ktey,
andk =r/c.

Therefore, there is a total of eight possible solutions for the pose, but only one of th
is physically correct. Figure 14 illustrates the eight pose estimates, computed as desci
above, for an image pair of the hexnut object. The verification procedure described in
next section can rapidly rule out the incorrect solutions by means of a directed dista
computation between the projected model edges and the detected image edges.

5.7. Verification of the Eight Pose Candidates

In order to have a quantitative measure of how good the estimated model pose is, itis
essary to evaluate how well the projected model edges align with the detected scene e
This is done by computing a unidirectional version of a modified Hausdorff distance [1
between the image of the projected model and the image of the detected edges.

The most common way of defining the distance between a paoamid a point seB =
{bl, ceey bNB} is

d(a, B) = minjla — b||. (40)
beB

The directed distanad; [18] is used to quantitatively evaluate how well the projected mode
point set @A) overlays the edge image point s&)( and it is defined as

ds(A, B) = NiA > d(a. B), (41)

acA

whereN, is the number of points in s&.
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FIG. 14. The eight solutions from the constrained pose-from-ellipse algorithm. (a) Solution 1; (b) solution
(c) solution 3; (d) solution 4; (e) solution 5; (f) solution 6; (g) solution 7; (h) solution 8.

For the specific verification task required in this work, the directed distance measur
utilized because it is necessary to account for occlusion as well as extra pointsBn se
since, in the general case, there are multiple objects in the image. The above measur
been shown to rule out the pose hypotheses that are obviously incorrect. Results to
effect are given in Section 6.

5.8. Generalized Pose Computation from Ellipses and Points

In the two previous sections two different methods for computing pose from differe
features were described. However, it is desirable to be able to compute pose from n
than one type of featuig@multaneouslyThe reason is quite obvious: it will provide a more
accurate solution. This section is devoted to formulating a method of computing pose fr
2D-3D point correspondences and ellipse—circle correspondences, simultaneously.

To exemplify the issue of accuracy addressed in the paragraph above, the results o
pose estimation from points alone and from one ellipse are shown in Figs. 15a and 1
respectively. Notice that due to the localized concentration of detectable feature points
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(2) (b)

FIG. 15. The poses computed using algorithms described in Sections 4.3 and 4.4. (a) Pose from a si
ellipse—circle; (b) pose from six point correspondences.

the physical distance between the circle and these points, the poses computed align
only in the areas where the features used are located. Specifically, the result in Fig.
shows good alignment in the upper portion of the object where the circle is located. On
other hand, the result in Fig. 15b shows good alignment only at the lower part of the ob,
where the concentration of detectable feature points is located.

It can be seen that both results are close to what is expected, but neither can be consi
a good result. This is the main motivation behind formulating the pose problem in a w
that the information from both point correspondences and ellipse—circle corresponder
can be used simultaneously.

Inthe pose-from-points problem, the system of equations to be solved, as given by Eq.
is homogeneous so no algebraic solution can be found. Furthermore, constraints mu:
imposed in order to ensure the correctness of the solution found in terms of the phys
and spatial conditions. However, if the system of equations obtained was not homogene
it could be directly solved by a simple direct method. The results obtained from the po
from-ellipses algorithm can be used in order to augment the system of equations that a
from point correspondences and the resulting system of equations can be solved by ©
methods. This is done in the following way.

Let N. andO; be the 3D circle normal and center (in camera coordinates), respective
Also, let N, and O, be the normal and center of the same circle, but in the object c
ordinate system. The two normals and the two centers are related by the transformse
Te = {Re, te}, where the subscrip indicates that it has been found from an ellipse-to-
circle correspondence. Howevegeneralizedsolution from points and ellipses combined
is sought. Therefore, thid. and O, computed are taken abservationsand it is assumed
that the true transformatiol, = {R, t}, is unknown. Thus,

Ne, i1 ri2 ris No,
Ne=| Ng, [ =[rar raa raz|| No, | = RN, (42)
Ne, rs1 raz2 raz/ \ No
and
O, ria riz riz\ [ Oo, ty
Oc=| O [ =|ra1 r22 raza||[ O, [+ |ty | =RG+L (43)

Oc, ra1 raz rsz/ \ O, t;
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Furthermore, sinc® 1 = R", N, can be written as

No, ria rar rar) [ Ne,
.
No= | No, | = |r12 a2 ra2|| Ng, | = R Ne. (44)
No, riz raz ras/ \ N

Notice that Egs. (42) and (44), if used simultaneously, enforce the condition that the unknc
rotation matrix be orthonormal. Equations (42)—(44) involve the same 12 unknowns a:
the system of equations (3). Hence, that system is augmented by those three equa
giving rise to the following new system

B'w = k, (45)
where
fx; fy1 fz 0 0 0 —uxs —wyr —-uzg f 0 —ug
0 0 0 f X1 fy1 f Z1 —viX3 —Uuviy1r —VviZp 0 f —vV1
fx, fy, fz 0 0 0 —uxXz —Uy, —Uz, f 0O —uy
0 0 0 f X2 fy2 f Zy —U2Xp2 —U2Y2 —U2Zp 0 f —V2
er fye fZG 0 0 0 —UeXg —UgYs —UpZs f O —Ug
0 0 0 f X6 fys f Zs —VeXe —UsYs —UsZs 0 f —Vs
No, Nop No, O 0 O 0 0 0 00 O
B=10 0 0 Ny Ny No, O 0 o 00 o]
0 0 0 0 0 0 Ny, No, N, O O O
Oy Oy O, 0O O O O 0 0 10 O
0O 0 0 O, Oy O, O 0 0 01 0
o 0 0 0 O 0 O, O, O, 00 1
Ny O O N, O 0 Ng 0 0O 00 O
0O N, 0O O N, O 0 N O 00 O
O 0 N, O O N, O 0O N, 0 0 O
(46)
w=(11 12 13 21 2 23 fa1 fa raz &ty )7, 47)
and
k=(0 0 ... 0 0 N N, Ng, Oz O Oy No No No)'. (48)

The system above can be solved by a direct least-squares solution of the form
w = (BTB) 1Bk (49)

It can be seen that since nine new equations have been added to the system, there is nc
for all six point correspondences in order to solve for the 12 transformation unknowi
However, matrixB’ must be full rank and, therefore, at least three points must be used.
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FIG.16. The pose computed from six point correspondences and one ellipse—circle correspondence usin
generalized methodology. Note the gap between the object and the projected model at the very top of the ot

Figure 16 illustrates the pose computed for the same image of Figs. 15a and 15b usin
generalized pose estimation technique and making use of the same six point correspond
and the same ellipse correspondence previously used.

Visual inspection of the results in Figs. 15a, 15b, and 16 shows the superiority of
new technique over the other single-feature methods. The projection of the CAD mo
onto the image using the transformation matrix obtained using the new technique vyie
a better alignment than those projections obtained using only point correspondences
single ellipse—circle correspondence. In order to compare the results quantitatively, Tat
shows the pose transformations obtained for each linear method used. Also shown ir
last row of Table 2 is the final transformation obtained after convergence of the iterati
nonlinear Gauss—Newton method [33]. The nonlinear method requires an initial guess;
results of the linear methods (points only, circle—ellipse only, and points and circle—ellif
together) have been used as such. The final results after convergence of the iterative m
are the same regardless of which initial guess was used,; the difference lies in the numb
iterations it took for the method to converge to the final solution. These results are repol
in [39]. The model projection for the solution obtained using the nonlinear method is sho
in Fig. 17.

TABLE 2
Pose Results from Different Methods
Method R t
Points only 0.410 —0.129 —0.902 (4312525511 1232036)
0.606 —0.700 Q376
—0.681 -0.701 -0.208

0302 0302 -0.932
0.692 -0.628 Q355
—0.655 —0.753 —0.054

Points and circle ( 0.398 -0.142 —0.902) £43.077—-26.400 1217855)

Circle only (-35.161—15.358 1195293)

0.554 -0.667 Q336
—0.700 -0.684 —0.201

0.341 -0.156 —-0.927
0.631 —-0.693 Q349
—-0.697 —-0.704 -0.137

Nonlinear (4323 -28.254 127307)
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FIG.17. The final pose obtained using the solution in Fig. 16 as the initial solution to a nonlinear least-squa
pose estimation procedure. Note that the gap between the object and its features is now gone.

Additional sample results showing the superiority of a method that combines informati
from different features for pose estimation are given in Figs. 18-20. As it can be seen,
result obtained when simultaneously using point correspondences and an ellipse—c
correspondence is far more accurate than those results using points alone or an elli
circle correspondence alone.

Itis very important to emphasize that, in the general case, the pose results obtained 1
the generalized technique using several feature types can only be taken as initial gue
or strong hypotheses. It may still be necessary to improve and/or optimize the solut
found. One option, as discussed above, is to use the solution as an initial guess to a ge
iterative nonlinear pose estimation procedure. Another option, which can be employed &
the use of the nonlinear estimation or in place of it, is to submit the solution to a constrair
optimization procedure, as described in the next section.

5.9. Verification and Pose Optimization

The pose solution found either by the generalized linear pose finding algorithm or
a subsequent nonlinear least-squares procedure must still be verified and/or optimize
this work, verification and optimization of the solution is performed by minimizing th
one-directional distana#; between the image of the projected model and the edges foul
in the scene. In order to make the constrained optimization more efficient, the rotat
matrix R associated with the pose transformation fouhds {R, t}, is represented by its

FIG. 18. The pose computed from six point correspondence using the algorithm described in Section 5.-
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FIG. 19. The pose computed from an ellipse—circle correspondence using the algorithm describec
Section 5.6.

corresponding quaternion vectQy, where

Q=(s | m nT, (50)
S+124+m?+n2=1, (51)
and
+12—m? —n? 2(Im —sn) 2(In +sm)
R= 2(Im + sn) ?—124+m? —n? 2(mn—sl) . (52)
2(In —sm) 2(mn+sl) 2 —12—m? +n?

Powell's method [19] in the seven-dimensional space of the pose solution (four quaterr
parameters and the translatt)iis used, along with the constraint that the sum of the squar:
of the quaternion parameters must equal 1, as seen in Eq. (51). Figure 21 shows an i
pose estimate for a single-object image as well as the final result after the constra
optimization has been applied to that initial solution.

In order to be accepted by the verification step, the result obtained from the optimizat
algorithm has to produce a distance such that ¢, wherer is an empirically determined
threshold equal to 5. Typically, the distance for correct pose solutions in the applicat
herein lies in the interval ¥ dg < 5. Section 6 discusses this in more detail.

FIG.20. The pose computed from six point correspondence and one ellipse—circle correspondence usin
generalized methodology.
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FIG. 21. Example pose hypothesis and final pose after constrained optimization: (a) initial pose and (b) fi
pose.

6. EXPERIMENTS AND RESULTS

The methods described in this paper were implemented in the RIO recognition syst
The physical setup for the system is composed of a single CCD camera and two |i
sources, one placed at the right of the camera and the other at the left. Polarizers are us
order to reduce highlight effects [57], since the objects used in this work are shiny, metal
industrial parts.

With each light source turned on at a time, two images, namely the left and the ri
image, are taken of the scene to be recognized. These images undergo a special proce
sequence in order to generate a single, suitable edge image from which the features c:
extracted. A high-level description of the sequence is given below, and details can be fo
in[17]. First, edges are detected in both input images. A combined edge image is gener
by ORing the two edge images. Since this image contains shadows cast on the backgrc
a mask image is used to remove them. The mask image is obtained by thresholding
original input images and by ANDing them together. The final edge image is produced
ANDing the mask image and the combined edge image.

An evaluation of the system developed is presented in this section. First, a step-by-:
example of the results obtained at the different stages of the system is given. Next, the re
of a set of experiments with real images are shown, and example cases of misdetectio
the system are studied. Issues such as verification of occluded object hypotheses, rulin
of incorrect pose hypotheses, and recognition of multiple instances of the same object
scene are addressed.

6.1. Sample Run of the System

In this section, an example of the steps performed at different stages of the system f
multiobject scene is given. Figures 22a and 22b show the original graytone images use
input to the system. The combined edge image extracted using the procedure desci
above is shown in Fig. 22c. The linear features, circular arc features, and ellipses extra
are depicted in Figs. 22d—22f, respectively.

For this case study, a total of eight hypotheses were generated. Five of them were inco
and they are shown in Fig. 23, along with their respective average distdnaed the
percentage of projected model edge points that were within five or less pixels from a sc
edge pixel. All five incorrect hypotheses were ruled out by the verification criteria.



3D OBJECT RECOGNITION AND RELATIONAL INDEXING 397

\%:M\
r ,
\kfj\é\l_\ ‘ () =N
= .

() ()

FIG.22. Sample run of the system. (a) Original leftimage; (b) original rightimage; (c) combined edge imac
(d) linear features detected; (e) circular arc features detected; (f) ellipses detected.

The correct hypotheses generated by the system are shown in Fig. 24. All three col
hypotheses were accepted as valid by the verification criteria, since they all satisfigd
andp > 65%.

6.2. Experiments on a Set of Real Images

Forty-two pairs of real images were used to evaluate the performance of the ove
recognition system. These images were obtained from scenes containing up to three ob
since the camera configuration we used was not able to accurately detect features in |
scenes; 9 of them contain 3 objects, 13 contain 2 objects, and 20 contain a single ok
Of the total number of 73 objects in the test scenes, 23 are partially occluded by one
two objects. These statistics about the test images are shown in Table 3. The images
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TABLE 3
Test Scene Statistics
Number of test images 42
Images with 3 objects 9
Images with 2 objects 13
Images with 1 objects 20
Total number of objects 73
Number of occluded objects 23

FIG. 23. Incorrect hypotheses generated for the sample case study. (a) Incorrect hypottiesi6.61, p =
59.2%); (b) incorrect hypothesis 2l (= 17.74, p = 37.1%); (c) incorrect hypothesis 8 (= 6.95, p = 63.2%);
incorrect hypothesis 4l(= 9.81, p = 48.9%); (e) incorrect hypothesis 8 & 8.31, p = 53.2%).
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(2) (b)

(©)

FIG. 24. Correct hypotheses generated for the sample case study (a) Correct hypotlesiSBQ, p =
83.1%); (b) correct hypothesis 2 (= 3.84, p = 79.5%); (c) correct hypothesis 8 (= 3.92, p = 83.5%).

matched to a database of 20 view-class models representing five 3D objects. The size ¢
lookup table for these experiments was 20Q00.

The hypothesis-generation process, as performed by the relational indexing techni
yielded the results shown in Table 4. Hypotheses were taken as valid if the votes rece
reflected at least 50% of the 2-graphs of the hypothesized model or if they were among
top five ranked hypotheses, regardless of the votes received. (These “rules” were del
empirically from experimentation and common sense.) Out of the ten unoccluded case:
which the vote threshold was not met, eight were taken as valid hypotheses because
were among the top five ranked hypotheses generated for the testimages they were in
of the 40 correct hypotheses that did meet the voting threshold criterion, nine were ran
first, and 27 were among the top five ranked, for their respective test images. From the
in Table 4 it can also be seen that out of the total of 73 instances of the objects in the
images, seven were not among the hypotheses generated by the relational indexing (
of these cases are discussed in more detail in the next section). Five of these seven

TABLE 4
Hypotheses Generation Statistics

Objects >50% <50% >50%,top5 <50%,top5 1stranked

Unoccluded objects 40 10 27 8 9
Occluded objects 18 5 0 0 0
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TABLE 5
Varification Statistics (66 Hypotheses Tested)

Hypotheses
Correct Incorrect
Successful verification 62 0
Unsuccessful verification 4 254
Average distancd 4.28 pix 20.13 pix
Avg. % points:d < 5 79.04% 39.68%

instances of occluded objects and two of unoccluded objects. The remaining 66 instal
were correctly taken as valid hypotheses and passed along to the verification step.
The verification was successful in 62 out of the 66 correct hypotheses tested, and it fa
in four cases. In those four instances, the features detected were not enough to compute
and, therefore, did not allow verification of otherwise correct hypotheses. Some of th
unsuccessful verification cases are detailed in the next section. As discussed in Secti
a given hypothesis was taken as successfully verified if the average distance betweel
projected model edges and the edges detected in the image was less than fivelpixel
the average distance was more than five, but if at least 65% of the projected model €
points were within at least five pixels of an image edge point, the verification was also tal
as successful. The overall average distance among all 62 correct hypotheses succes
verified was 4.28. The average percent of projected model points that were at least five pi
from an edge point was 79.04%. These numbers indicate the accuracy of the linear |
estimation procedure. Statistics associated with the verification step are shown in Tabl

6.3. Study of Some Misdetection Cases

As discussed in the previous section, there were scenes for which some objects \
not recognized. In those cases either the hypothesis-generation process failed to gen
suitable hypotheses or the verification procedure failed due to a lack of suitable featt
detected that could be used to compute pose.

An example of the first case, where the relational indexing failed to produce a corr
hypothesis is illustrated in Fig. 25. The original right image and edges detected are sh
in Figs. 25a and 25b, respectively. The primitive lines and circular arcs detected are shi
in Fig. 25c. The features extracted are shown in Fig. 25d. It can be seen that the feat
detected for the misdetected object (the small stacked cylinder) were not sufficientto proc
a suitable hypothesis.

The second type of misdetection, where the features extracted were enough to gen
a hypothesis from the relational indexing procedure, but were not suitable features to al
pose computation, isillustrated in Fig. 26. Itis important to notice that due to the rotationa
symmetric nature of the small stacked cylinder object, the detection of ellipses is essel
for successful verification of hypotheses for that particular object. Although the featt
detection found several elliptical arcs, it did not find enough evidence to generate a
ellipse, which is currently required by the pose estimator.

2 To transform this concept to the real world, note that in our tests, the average pixel/mm conversion factor
2.43 pixels/mm.



FIG.25. Example of insufficient features to generate a hypothesis. (a) Original rightimage; (b) edges detec
(c) primitives lines and arcs detected; (d) features detected.
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FIG. 26. Example of features not suitable for pose computation/verification. (a) Original right imag
(b) edges detected; (c) primitive lines and arcs detected; (d) Features detected.

401



402 COSTA AND SHAPIRO

(a) (b)

FIG. 27. Examples of pose overlays for Case 1 (see text).

6.4. Ruling Out Incorrect Pose-from-Ellipse Hypotheses

The distance measure used was efficient in ruling out incorrect pose hypotheses ari
from the pose-from-ellipse algorithm. In all test cases, the correct pose yielded the sma
distance between the projected model edges and the scene edges. However, in some
some of the incorrect poses generated distances comparable to the the correct ones.
are two main reasons why this happened:

e Case 1: in some cases, the projected model, for the pose being tested, was al
completely outside the image bounds, but the portion that was within the image bou
aligned quite well with the scene edges. Two such examples can be seen in Fig. 27. E
though the computed distances are small in these cases, such hypotheses can be easil
out at the model projection time by computing what percentage of model edges lie outs
image boundaries.

e Case 2: one of the incorrect pose-from-ellipse solutions aligns the outline of the p
jected model quite well with the outline of the object in the edge image, though the insi
edges do notalign well. This also produces an average distance thatis comparable to, th
always larger than, the distance for the correct pose. An example of this situation in shc
in Fig. 28.

FIG. 28. Example of pose overlay for Case 2 (see text).



3D OBJECT RECOGNITION AND RELATIONAL INDEXING 403

TABLE 6
Average Distancesd from Pose-from-Ellipse Algorithm

Testimage  Correct pose Pose 2 Pose 3 Pose 4
1 4.232169 5.905406 38.015209 38.064182
2 3.492276 3.836853 5.438044 6.229556
3 2.565156 10.072806  75.727005 77.769081
4 6.048713 6.095455 7.518664 9.984772
5 6.500802 10.659150 12.863460 14.970914
6 4.760042 5.682881 37.694584  38.204376
7 3.650602 4853358 22.808851 23.714478
8 5.016474 7.895664 45.042072 51.129051
9 3.737756 9.964845 15.774166  21.634424

10 5.117007 10.208114 82.480644 84.060287
11 6.213883 10.301037 90.775963  92.624016
12 2.749343 4.488708 6.710792  11.896962
13 6.487325 15.678705 45.408619  49.991577
14 1.485621 11.119739 14.899862 18.397236
15 5.114830 11.136388 12.420178 14.751463

Table 6 shows the distance measure computed for each four possible pose cases f
different test images. In all cases, the correct pose yielded the smallest distance.

6.5. Improving the Verification of Occluded Object Hypotheses

It can be seen from the data shown in Fig. 24b that a large part of the projected mc
edges do not align well with the scene edges due to the fact that the corresponding portic
the model is occluded by another object. Therefore, it is apparent that occlusion adver
affects the verification procedure devised. In order to make the verification more effect
for occluded objects, the following steps may be added to it. First, all unoccluded obje
are identified. This can be done not only by means of the distance med$waed(the
percentage of points that align welp), but also from the pose parameters themselve
which include the exact 3D location of each object. Thus, itis possible to determine wh
objects in the scene are occluded by one or more object. Once the unoccluded objects
been identified, their corresponding projected edges are used to generate masks. The I
generated for the case study introduced in Section 5.2 can be seen in Figs. 29a and
These masks are used to mask out the predicted occluded regions in the projected mo
the occluded object as shown in Fig. 29d. Then the masked project model is used to com
d and p, which will determine whether the verification succeeds or not. It is shown in t
captions of Figs. 29e and 29f that batandp are greatly improved by this masking process.
making the verification more reliable.

7. DISCUSSION AND FUTURE WORK

This paper described the RIO object recognition system. RIO utilizes a number of n
techniques to recognize 3D objects in 2D intensity images. Real images are used in
stage of learning the feature-based relational models of the objects to be recognize
new technique called relational indexing is used as an effective database retrieval t
generating suitable model hypotheses. A new linear pose estimation technique is use
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(a) (b)

FIG. 29. Masking out occluded hypothesis for verification. (a) Mask 1; (b) mask 2; (c) original pro
jected model; (d) masked projected model; (e) original model overlaid on image ellge3.84, p = 79.5%);
(f) masked model overlaid on image edgés< 2.42, p = 91.3%).

verify or disprove the hypotheses and makes simultaneous use of multiple types of 2D-
feature correspondences.

As the experiments have shown, the performance of the RIO system was very g
with the exception of a few misdetection cases. These cases were mainly due to |
feature detection, a well-known problem in most feature-based recognition systems. Is:
on improvement of occluded hypothesis verification were addressed and a method
effectively handling the verification of occluded objects was proposed. It was shown tl
the distance measure utilized was appropriate for disambiguating among incorrect |
hypotheses generated by the pose-from-ellipse algorithm.
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Even though the verification procedure was proven to be reliable given the criterion us
namely the average distance between projected CAD model edges and scene edge
the percentage of projected edge pixels that aligned well with scene edge pixels, it is
that a more robust verification criterion needs to be developed. Making the assumption
the distances between projected model edge points and scene edge points have a Ga
distribution, it seems logical to use a chi-squared test (with as many degrees of freedol
the points in the projected model edges) to decide whether or not the alignment prodt
by the computed pose is acceptable.

All the experiments run were limited to subgraphs of size 2. As mentioned in Section
the smallest size index was used in order to effectively handle occlusion. However, a h
archical, multilevel indexing approach is also viable and should be investigated. The la
the subgraphs used, the more reliable the generated hypotheses will be, and the faste
can be generated. However, in multiobject scenes only single features or small subgr
may be detected. Therefore, itis necessary to start at the largest subgraph level and go
as needed. Objects that are unoccluded may be recognized at the highest level of inde

Work on investigating the effects of occlusion on the single-object feature-based moc
is in order. The special case of multiple-object scenes that contain a considerable am
of occlusion needs to be studied carefully. It is intuitive that the set of features that car
reliably detected from arealimage of a particular model alone is a superset of the features
can be detected in a scene where that model is partially occluded. The technique devel
was designed to handle occlusions. However, when the object is partially occluded,
possible that some of the original features detected in its training images can change
give rise to new features that often appear when occlusion is present. Itis also possible
new relationships between features arise due to occlusion. It seems logical to augmer
current single-object feature-based models to include the knowledge obtained by stud
a set of training images where multiple objects and occlusion are present.

A discrete voting technique was associated with the relational indexing method de
oped in this work. Relational indexing can be performed in the context of a probabilis
framework, as described in [14]. This should considerably improve the hypotheses ¢
erated, since the probabilities associated with the features (computed at model gener
time) can be used as weights when computing the votes to be cast.
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