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Abstract

In this paper we describe a model-based object identification system. Given a set of 3D objects and a scene containing
one or more of these objects, the system identifies which objects appear in the scene by matching surface signatures.
Surface signatures are feature vectors that reflect the probability of occurrence of the features for a given surface. Two
types of surface signatures are employed; curvature signatures and spectral (i.e. color) signatures. Furthermore, the
system employs an inexpensive acquisition setup consisting of a single CCD camera and two light sources. The system
has been tested on 95 observed surfaces and 77 objects with varying degrees of curvature and color with good results.
( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

At the core of any complete vision system is the recog-
nition subsystem that generates hypotheses about objects
appearing in a given scene. A hypotheses is usually pro-
duced by comparing object data extracted from the scene
with a database of model data stored on-line. Any re-
liable system should produce reliable identification re-
sults even if complicated scenes — scenes with object
occlusion and shadowing effects — are present. Such scen-
es should not affect the outcome of the system and
satisfactory interpretations should still prevail. Most vi-
sion identification systems today are laser-based systems.
While such systems have a higher degree of accuracy
than other similar systems, they can be quite expensive.

In this paper we describe an inexpensive system that
employs a single CCD camera and two light sources for

identifying 3D objects appearing in cluttered scenes.
A block diagram of the object identification system ap-
pears in Fig. 1. The system input consists of two color
images of the scene illuminated by two different white
light sources. Color photometric stereo is employed to
produce a surface normal map of the scene which is then
integrated with the spectral data (i.e. color data) to pro-
duce a description of the scene. Finally, the system com-
pares the extracted object data (both curvature and spec-
tral data) to model data accessed from the model
database (constructed through training) to produce hy-
potheses about objects appearing in the scene.

Object to model matching is accomplished by finding
the best correspondence between an object’s surfaces and
a model’s surfaces. The main features employed for
matching are surface characteristics that are invariant to
change in pose, are unaffected by shadows from adjacent
or occluding objects, and are not sensitive to changes in
lighting. In this work, we define one such class of invari-
ant features called surface signatures. A surface signature
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Fig. 1. Diagram illustrating the object identification system.

is a feature vectors that reflects the probability of occur-
rence of a feature for a given surface. Currently, two types
of surface signatures are employed; curvature signatures
and spectral (i.e. color) signatures.

2. Related literature

While only recently has the use of color in computer
vision started to play an important role in image under-
standing. The use of color and other spectral bands has
been used in the image processing arena for some time,
where it is more commonly known as multi-spectral
image analysis [1—3]. As the field of computer vision
matured and the price of color cameras decreased, the use
of color in image analysis has seen a rapid growth during
the last decade. As a result, the literature on the use of
color in image analysis has expanded, though it is scat-
tered under different subjects [4].

Surface curvature is an intrinsic feature that can play
an important role in surface identification. Many strat-
egies for classifying surfaces have been proposed. Besl
and Jain [5] employed the mean and Gaussian curvature
to classify surfaces extracted from range images to char-
acterize surfaces into eight types. This classification is
different from the topographic primal sketch (TPS) pro-
posed by Haralick et al. [6], which labels each pixel of an
intensity image surface with one of ten possible topo-
graphic labels based on gradients, Hessians and direc-
tional derivatives. Newman et al. [7] identified quadric
surfaces in segmented range images by employing surface
position and surface normal estimates with the known
parameters of surfaces in the database.

Photometric stereo is a method that uses two (or more)
grayscale images taken under different illumination to
provide additional constraints to recover surface orienta-
tion. Woodham originally introduced the technique of
Photometric stereo [8, 9] by building on the shape from
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1Surface specularity does affect object color in the specular
region. However, if a specular region is large compared to the
rest of the surface then surface spectral signatures are affected
significantly.

2Crease angles are calculated only at locations where a nor-
mal exists.

3Note that values are dependent on the resolution (magnifica-
tion) in which the object appears.

shading theory developed earlier by Horn [10]. A great
deal of research has been done to extend the use of
photometric stereo [11—13]. Christensen and Shapiro [14]
extended photometric stereo to color images. In color
photometric stereo, color is employed to provide addi-
tional surface constraints and increase accuracy [15].

Little research has been done that combine both color
and curvature for object recognition. Higuchi et al. [16]
modified the extended Gaussian image (EGI) to repres-
ent not only object curvature but also object color. They
called their new structure the spherical attribute image
(SAI). The SAI maps the values of curvature and color at
every node of a mesh (approximating the object surface)
onto a spherical image. A matching algorithm matches
an observed surface to an object model by finding the
rotation that maximizes the sum of two similarity
measures (curvature and color).

Grewe and Kak [17] developed a system for the inter-
active learning of multiple hash tables for fast 3D object
recognition. The system uses qualitative attributes of
objects such as the shape of the object and quantitative
attributes such as color. The system has a training phase
where the system is trained on the model identities.
A local feature set (LFS) approach to hypothesis genera-
tion is employed; a LFS is defined as a vertex of an object
and three rotationally adjacent surfaces.

3. Surface signatures

Surface signatures are employed to characterize object
surfaces. A surface signature is a feature vector that
reflects the probability of occurrence of a feature for
a given surface. In general, if S denotes a surface signature
of size N, and S

i
denotes the ith component of S, then by

definition,

f 0)S
i
)1 where 0)i(N!1,

f
N~1
+
i/0

S
i
"1.

From this definition it can be seen that surface signa-
tures are normalized histogram distributions of a feature
on the surface. The motivation for using signatures is that
they are invariant to change in pose and are not affected
by partial occlusion or shadows. This is true because
signatures are statistical features that are uniform for
a uniform surface. This stems from the fact that surface
curvature and hue1 do not change under different envi-
ronments (see Section 5).

Three curvature signatures are employed to character-
ize the curvature characteristics of the surface. The angle
curvature signature (S

AC
) of a surface is defined as the

normalized histogram distribution of the average crease
angle (defined below) for the surface. Similarly, the Gaus-
sian curvature signature (S

GC
) and the mean curvature

signature (S
MC

) are defined as the normalized histogram
distributions of the average Gaussian curvature and the
average mean curvature on the surface, respectively. Three
spectral signatures are employed to characterize the spec-
tral characteristics of the surface. The red spectral signa-
ture (S

RS
) of a surface is defined as the normalized histo-

gram distribution of the red color band. Similarly, the
green spectral signature (S

GS
) and the blue spectral signa-

ture (S
BS

) are defined as the normalized histogram distri-
butions of the green and blue color bands, respectively.
Although only three spectral bands are employed here,
the number of spectral signatures can be expanded to
include other parts of the electromagnetic spectrum (e.g.
infra-red).

3.1. Surface curvature signatures

Three curvature attributes are employed in our work
to characterize surfaces; the crease angle, the Gaussian
curvature and the mean curvature. The crease angle (c)
between two surface normals, n

1
and n

2
, is defined as the

angle between the normals and is calculated through the
dot product of the normals,2

c"cos~1(n
1
) n

2
). (1)

The crease angle represents the amount of directional
discrepancy between two neighboring normals.3 Two nor-
mals that are parallel, such as those on a flat plate, will
have a crease angle equal to zero. Two normals on
surfaces that are perpendicular to one another will have
a crease angle equal to 90°.

To reduce the effect of noise and abrupt changes in
normals as a result of inaccuracies, the crease angle is
averaged in its 8-neighborhood (i.e. values are averaged
in 3]3 window). The average crease angle, cN , at location
(r,c) is calculated by

cN
r,c
"

1

Nc

1
+

i/~1

1
+

j/~1
jO0 *& i/0

c
r`1, c`1

, (2)

where Nc is the number of normals defined in the neigh-
borhood. Once the values of cN have been calculated for
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a given surface, a histogram count of quantized cN values
is performed to construct the crease angle signature.

The Gaussian curvature (K) is calculated by comput-
ing the determinant of the curvature matrix (C) defined
by

K"DCD, (3)

where

C"(p2#q2#1)~3@2C
q2#1 !pq

!pq p2#1DH, (4)

H"C
p
x

p
y

q
x

q
y
D . (5)

For our work we have

p"
n
x

n
z

and q"
n
y

n
z

(6)

and p
x
, p

y
, q

x
and q

y
are by definition,

p
x
"

Lp
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, p

y
"

Lp

Ly
, q

x
"

Lq

Lx
and q

x
"

Lq

Lx
(7)

and n"(n
x
n
y
n
z
)@ is the surface normal at a given point.

The mean curvature (H) is the average value of the
principal curvatures and is calculated by

H"1
2
trace(C). (8)

In our work, we use a 3]3 neighborhood around the
normal to calculate the average value of Gaussian curva-
ture in the neighborhood; we call this the average Gaus-
sian curvature (KM ) about the normal. Similarly, we use
a 3]3 neighborhood around the normal to calculate the
average value of mean curvature in the neighborhood.
We call it the average mean curvature (HM ) about the
normal. KM and HM are calculated using neighborhood
means of p, q, p

x
, p

y
, q

x
and q

y
in the neighborhood,
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where p, q, p
x
, p

y
, q

x
and q

y
are the mean values of p, q, p

x
,

p
y
, q

x
and q

y
in the 3]3 neighborhood, respectively. N

p
is

the number of normals existing in the neighborhood.
N

x
and N

y
are the number of defined normal pairs in the

x and y direction, respectively. The above equations are
employed to obtain KM and HM ,

KM "DXM D, (15)

where

CM "(p2#q2#1)~3@2C
q2#1 !pq

!pq p2#1DHM , (16)

HM "C
p
x

p
y

q
x

q
y
D (17)

and

HM "1
2
trace (C1 ). (18)

We calculate the values of KM and HM for all surface
normals appearing in the normal map. For a given sur-
face, a histogram count of quantized values of KM and HM is
performed to construct the Gaussian curvature signature
and the mean curvature signature, respectively.

3.2. Surface spectral signatures

A spectral signature for a given surface reflects the
surface’s spectral characteristics for a particular region of
the electromagnetic spectrum. Hence, a red spectral sig-
nature represents the surface’s characteristics with re-
spect to the red region of the electro-magnetic spectrum.
Similarly, an infra-red spectral signature reflects the sur-
face’s characteristics with respect to the infra-red region
of a spectrum, and so on.

4. Object models and image scenes

All scenes employed (training and test) consist of two
images, a left image and a right image. The left and a right
images are taken from the same viewpoint but with the
light source to the left and to the right of the scene,
respectively. The left and right images of a scene are
necessary so that photometric stereo can be employed to
generate surface normal maps.

4.1. Object models

A model is represented by a data structure containing
a description of the model’s surface (see Table 1). The
structure is constructed during the training process and
consists of information, such as the number of surfaces
that constitutes the model, surface adjacency data and
surface signatures.
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Table 1
Object model structure

Model name
Number of
Surfaces

Surface d1 Surface name
Number of adjacent
surfaces
List of adjacent surfaces
Curvature signatures MS

AC
, S

GC
, S

MC
N

Spectral signatures MS
RS

, S
GS

, S
BS

N

Surface dn Surface name
Number of adjacent
surfaces
List of adjacent surfaces
Curvature signatures MS

AC
, S

GC
, S

MC
N

Spectral signatures MS
RS

, S
GS

, S
BS

N

4.2. Description of the training phase

The objective of the training phase is to train the
system on the set of objects appearing in the scenes. Each
model surface is analyzed to construct its six signatures.
This data is stored in a database which is accessed during
the matching stage. We will refer to object data stored in
the database as models to distinguish them from the
unknown scene objects that are to be identified, which we
will simply refer to as objects.

Surface signatures are generated by analyzing the im-
age scenes and their surface normal map from which the
signatures are extracted. Initially the training images are
converted into two new images; one containing an ap-
proximation to diffuse colors, called the diffuse image
and the other containing an approximation to specular
colors, called the specular image. The diffuse image is
obtained by taking the minimum intensity values of the
left and right images. By taking the minimum of the two
images, object specularity is removed. The specular im-
age is obtained by taking the maximum intensity values
of the left and right images. Taking the maximum inten-
sity values of the two images produces an image equiva-
lent to having both light sources on at the same time, but
with shadows removed. The resulting image also con-
tains all specular regions appearing in the original im-
ages.

Clustering is performed on a quantized image color
space to extract color values appearing in the scene.
A variant of the iterative ISODATA clustering method
[18] is employed to cluster the data in color space.
Clusters are restricted to small variation in color; colors
with large variation are split among two or more clusters.
The final cluster values produced through clustering are
filtered and the remaining clusters represent the RGB

values of colors appearing in the image. Since training
scenes consist of single objects, clusters obtained through
clustering reflect the colors of the object appearing in the
scene. Hence, clustering the colors of the diffuse image
produces RGB cluster values which approximate the
diffuse reflection constants of the object appearing in the
image, while clustering the colors of the specular image
produces RGB cluster values which approximate the
diffuse reflection constants of the object.

Surface normal maps are generated using a color
photometric stereo program [14] developed at the Com-
puter Science and Engineering Department at the Uni-
versity of Washington. The program input is the right
and left image of a scene and accepts diffuse and specular
reflection constants to generate a surface normal map of
the scene. These parameters are employed to determine if
a surface normal at an image point can be conceived
using the shading information of the left and right im-
ages. If the shading information agrees with the para-
meters specified, then a surface normal is constructed at
the point. Normals are filtered to remove inaccuracies
and a median filter is applied to smooth the normal map.
Surface edges are assumed where the crease angles exceed
a threshold value (e.g. 90°). These edges are then em-
ployed to segment the normal map into surfaces from
which the surface signatures are constructed [19].

4.3. Analyzing scenes

Test scenes differ from training scenes in that any
number of objects may appear in a given scene. Objects
can be partially occluded or in shadow. Since the objects
appearing in the scene are unknown and may be of
several different colors, a surface normal map for each
color appearing in the scene is constructed. The cluster
colors extracted from the specular image are taken as the
reflection parameters needed for color photometric
stereo. The objects are segmented into surfaces by exam-
ining the complete surface map of the scene and identify-
ing surface boundaries where the crease angle exceeds
a pre-defined threshold value. Surface signatures are gen-
erated for each surface in the same way as that of the
training phase producing three curvature signatures and
three spectral signatures. In some instances surfaces may
become over-segmented. This is generally not a problem
as long as the oversegmented surfaces are large enough
that sufficient surface characteristics are available to con-
struct adequate representative signatures. Small surfaces
are simply discarded by the system. Results of scenes
tested are discussed in Section 6.

5. Surface matching

Objects appearing in scenes are matched to models by
matching their surface signatures. Several matching
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metrics and matching errors are employed to arrive at
the best match.

5.1. Matching metrics

Surface matching consists of two parts; surface curva-
ture matching and surface spectral matching. Surface
curvature matching consists of matching its three curva-
ture signatures, while surface spectral matching consists
of matching its three spectral signatures.

5.1.1. Signature matching
Four signature error metrics are employed to measure

the discrepancy between two signatures. These metrics
are the signature distance error, the signature shape error,
the signature spread error, and the shape correlation error.

5.1.1.1. The signature distance error. The signature dis-
tance error (ek) measures the distance between two signa-
ture distributions in space. Given two signature distribu-
tions, S

1
and S

2
, ek is calculated by

ek(S1
, S

2
)"

1

c
n

Dk
1
!k

2
D, (19)

where c
n
is a normalization constant and k

i
is the mean

value of distribution i. Values of ek lie between zero and
unity. Small error values close to zero indicate that the
distributions have the same mean value and are distrib-
uted around the same frequency points. Error values of
unity indicate that the two distributions are accumulated
around different frequency points that are far apart in
space.

5.1.1.2. The signature shape error. The signature shape
error (ep) measures the variance difference between two
signatures,

ep(S1
, S

2
)"G

0 if p
1
"p

2
"0,

Dp
1
!p

2
D

p
1
#p

2

else,
(20)

where p
i

is the standard deviation of distribution i.
Values of ep lie between zero and unity. Error values close
to zero indicate that the general shape of the two signa-
ture distributions is similar, whereas values close to unity
indicate that the general shape of the two distributions
are different.

5.1.1.3. The signature spread error. The signature
spread error (ej) measures the distribution spread differ-
ence between two signatures around their mean value,

ej(S1
, S

2
)"

Dj(S
1
, pN )!j(S

2
, pN ) D

j(S
1
, pN )#j(S

2
, pN )

, (21)

where

j(S, pN )"
k`p6
+

k/k~p6
S
k

and pN "1
2
(p

1
#p

2
). (22)

Values of ej lie between zero and unity. Values close to
zero indicate that the distribution spread of two signa-
tures around their mean value are similar, whereas error
values in the neighborhood of unity indicate large differ-
ences.

5.1.1.4. The signature correlation error. The signature
correlation error (e

c
) measures the amount of non-correla-

tion between two signatures,

e
c
(S

1
, S

2
)"1!K

+(S
1
!k

1
) (S

2
!k

2
)

J+(S
1
!k

1
)2J+(S

2
!k

2
)2 K .

(23)

Values of e
c
lie between zero and unity. Values close to

zero indicate strong correlation between two signatures
and hence great similarity, whereas error values close to
unity indicate poor correlation.

5.1.2. Signature match error
The signature match error (E) is a measure of the

discrepancy between two signatures based on the metrics
defined above. It is calculated by summing the signature
error metrics with appropriate weight factors,

E(S
1
, S

2
)"eWT (24)

where e"(ek ep ej e
c

) and W"(wk wp wj w
c
). wk, wp,

wj and w
c
are the signature distance, shape, spread and

correlation weight factors, respectively, which add up to
unity. In Section 7 we will present a method to find the
optimum values of these weights.

Error values of E lie between zero and unity. Values
close to zero indicate a strong match between two signa-
tures, whereas values close to unity indicate a poor match
between two signatures. Note that there are six different
signature match errors corresponding to the three curva-
ture signatures and the three spectral signatures.

5.1.3. Surface match error
Matching surfaces using curvature signatures gives an

indication of how well surfaces match with respect to
their geometric attributes. Matching surfaces using spec-
tral signatures gives an indication of similarity based on
their spectral attributes. Combining matching results of
both curvature signatures and spectral signatures pro-
duces a more complete measure of similarity.

5.1.4. Surface curvature match error.
The surface curvature match error (E

C
) between two

surfaces, s
1

and s
2
, is the sum of the three curvature

signature errors between the two surfaces: the angle
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4 In theory the Gaussian curvature should be exactly zero, but
in practice Gaussian curvature values are not exactly zero at all
points on the surface due to noise.

5 If E
rS
'1, then E

rS
"1.

curvature signature match error, the Gaussian curvature
signature match error, and the mean curvature signature
match error.

E
C
is calculated by summing the three curvature match

errors with appropriate weight factors,

E
C
(s
1
, s

2
)"E

C
WT

C
, (25)

where E
C
"(E

AC
E
GC

E
MC

, and W
C
"(w

AC
w
GC

w
MC

).
E
AC

, E
GC

and E
MC

are the angle, the Gaussian and the
mean signature match errors, respectively. w

AC
, w

GC
and

w
MC

are the angle, Gaussian and mean curvature signa-
ture weight factors, respectively. Error values of E

C
lie

between zero and unity. Values close to zero indicate
strong similarity between surfaces based on curvature
features. Large error values close to unity indicate that
little similarity based on these features exist between the
surfaces.

Specifying values for the weights w
AC

, w
GC

and
w
MC

depend on the object set being analyzed. For
example, if the object set consists of flat surfaces and
objects with cylindrical surfaces of different sizes, then the
Gaussian curvature signature weight factor w

GC
should

be assigned a value much smaller than the other weight
factors since all objects will have Gaussian curvature
signature distributions close to zero.4 In our work, we
have found that w

AC
is more accurate than w

GC
and

w
MC

because of the errors introduced in the calculations
of second order derivatives employed to calculate
w
GC

and w
MC

. In general, for object sets with varying
degrees of curvature (flat surfaces, spheres, cones, cylin-
ders) equal weights should be employed. In Section 7 we
will present a method to find the optimum values of these
weights.

5.1.5. Surface spectral match error
The surface spectral match error (E

S
) between two

surfaces, s
1

and s
2
, is the sum of the spectral ratio error

and its three spectral signature errors between the two
surfaces: the red spectral signature match error, the green
spectral signature match error, and the blue spectral signa-
ture match error. The spectral ratio error (E

rS
) is

a measure of the RGB color ratios between two surfaces.
E
rS

is defined as,

E
rS

(S
1
, S

2
)"K

kGS
1

kRS
1

!

kGS
2

kRS
2
K#K

kBS
1

kRS
1

!

kBS
2

kRS
2
K , (26)

where k
RS

, k
GS

and k
BS

are the mean value of the red,
green and blue signatures.5 Error values of E

rS
lie be-

tween zero and unity. Values close to zero indicate strong

similarity between surfaces based on color. Large error
values close to unity indicate little similarity based on
color. This measure is an important indicator of error,
because it measures the hue of the object. When surfaces
are slightly darker or lighter due to illumination, the
ratio of color bands remain — to a certain degree — con-
stant.

The surface spectral match error (E
S
) between two

surfaces, s
1

and s
2
, is the sum of the three spectral signa-

ture errors plus the spectral ratio error between the two
surfaces appropriately weighted,

E
S
(s
1
, s

2
)"E

s
¼T

s
, (27)

where E
S
"(E

RS
E
GS

E
BS

E
rS

) and W
S
"(¼

RS
¼

GS
¼

BS
¼

rS
). E

RS
, E

GS
and E

BS
are the red, green and blue

spectral signature match errors, respectively. w
RS

,
w
GS

and w
BS

are the red, green and blue spectral signature
weight factors, respectively. w

rS
is the spectral ratio

weight factor.
E
S
error values lie between zero and unity. Values close

to zero indicate strong similarity between surfaces based
on surface spectral attributes. Large error values close to
unity indicate that little similarity exists between surfaces
based on surface spectral attributes.

As was the case for weight assignment of the curvature
weights for the surface curvature match error, specifying
values for the specular weights w

RS
, w

GS
, w

BS
and w

rS
also

depends on the object set being analyzed. For example, if
the object set consists of objects that have surface colors
that are red and green and no surfaces with a blue color,
then the blue spectral signature weight factor w

BS
can be

assigned a value of zero without any loss of matching
accuracy. Generally, weight factors of equal values
should be employed. We have found that E

rS
has consis-

tently given good results in our work, and thus w
rS

is
usually given a higher value than the other spectral
weights.

5.1.6. Surface match error
The surface match error (EM ) between two surfaces,

s
1

and s
2
, is the sum of the curvature signature match

error and the spectral signature match error,

EM (s
1
,s
2
)"EWT

C
, (28)

where E"(E
C

E
S
) and W"(w

C
w
S
). w

C
and w

S
are the

surface curvature and surface spectral weight factors,
respectively, which sum up to unity. EM error values lie
between zero and unity. Values close to zero indicate
strong similarity between surfaces based on their surface
curvature and spectral attributes. Large error values
close to unity indicate poor similarity between the surfa-
ces based on their surface curvature and spectral at-
tributes.

Specifying values for the surface weight factors w
C

and
w
S
depends, once again, on the object set being analyzed.
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If the object set consists of objects that are more easily
distinguishable based on object color than object curva-
ture and shape, then the surface curvature weight factor
(w

C
) is more important than the surface spectral weight

factor (w
S
), and hence w

C
should have a smaller value

than w
S
. On the other hand, if the objects are similar in

color and are more easily distinguishable based on curva-
ture attributes, then w

C
should have a larger value than w

S
.

If no clear evidence supports dominance of either curva-
ture or spectral attributes, then the weights should be
assigned equal values, w

C
"w

S
. In Section 7 we investi-

gate the effect of varying these weights, as well as the
previous weights, on surface matching performance.

5.2. Matching and identification strategy

Matching observed-surfaces (surfaces extracted from
image scenes) to model-surfaces (surfaces defined in the
model database) is a two-stage process. Initially, the
surface match error is calculated for eachobserved-sur-
face/model-surface pair. The model-surface with the least
match error for each observed-surface is marked as the
best match for the observed-surface. In the second stage,
the surface adjacency graph of the scene is exploited to
further facilitate object hypothesis. At this stage it is as-
sumed that all surfaces determined to be adjacent by the
surface adjacency procedure(20) do indeed belong to the
same object. We assume this to be true, as we have found
that occluding surfaces usually cast shadows that prevent
observed-surfaces of different objects to be determined as
adjacent. This results from the light sources being placed
to the right and to the left of the objects appearing in the
scene. Based on the surface adjacency graph of an ob-
served-surface, object hypothesis is determined as follows:

f If an observed-surface has no adjacent surfaces, then
the object which constitutes the observed-surface as its
only surface is identified as the model-surface-match. If
the observed-surface has more than one model-match,
than the object has more than one model-surface
match.

f If the observed-surface has adjacent surfaces to it, then
a search is made to find the model which best matches
to these surfaces. For any two adjacent observed-
surfaces two possibilities exist:

1. Both observed-surfaces are part of the same object,
or

2. Each observed-surface belongs to a different object
(the objects happen to be in close proximity to each
other or one is occluding the other).

The first case is easily identified; if adjacent observed-
surfaces have the same model-match and the surface
adjacency graph is in agreement with the surface adjac-
ency of the observed-surfaces, then they are part of the
same object. However, if adjacent observed-surfaces do

not have the same model-match, then the model database
is examined to see if the adjacency graph can be rejected.
For instance, if one of the observed-surfaces has a green
color and the other adjacent observed-surface has a red
color and there is no model with such a surface structure,
then the adjacent graph is determined to be invalid and
each observed-surface is assumed to belong to a different
object. If the adjacent graph cannot be invalidated, then
in order for the two adjacent surfaces to belong to the
same model, each observed-surface must produce a sur-
face error match less than a pre-defined error threshold,
e
m
. If each pair of adjacent observed-surfaces do not

produce a surface match error less than e
m
, then each

observed-surface is assumed to belong to a different ob-
ject, and the model-match of each observed-surface is the
model hypotheses of the object of the observed-surfaces.

5.3. Performance evaluation

To evaluate the matching performance, the observed-
surfaces are matched against their corresponding (cor-
rect) model-surfaces and several relative matching
measures are evaluated. In this section we define several
metrics that are employed to evaluate the surface match-
ing and object identification performances of the ana-
lyzed scenes.

5.3.1. Relative performance index
The relative performance index (RPI) of a model-sur-

face to an observed-surface is the relative surface match
error of the model-surface to the observed-surface with
respect to all model-surface errors in the model set.
Hence, the RPI of a model-surface indicates how well
a model-surface matched to the observed-surface with
respect to other model-surfaces in the set. The RPI of an
observed-surface, s

1
, and a model-surface, s

2
, is cal-

culated by

RPI(s
1
, s

2
)"

EM (s
1
,s
2
)!EM

.*/
(s
1
)

EM
.!9

(s
1
)!EM

.*/
(s
1
)

(29)

where, EM (s
1
, s

2
) is the surface match error between s

1
and

s
2
, EM

.*/
(s
1
) is the minimum surface error for s

1
in the

model set, and EM
.!9

(s
1
) is the maximum surface error for

s
1

in the model set.
Values of RPI lie in the range between zero and unity.

A RPI value close to zero indicates that the model-
surface matched very well to the observed-surface in
comparison with the other model surfaces. A RPI value
close to unity indicates that the model-surface matched
poorly to the observed-surface in comparison with the
other model surfaces, even though EM (s

1
, s

2
) might be

small.
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5.3.2. Model hypothesis error
To evaluate incorrect object hypotheses, we define the

model hypothesis error (#) as a measure of how well the
correct model matches to an object appearing in a scene.
# for a model, m, is defined as the average relative
matching error for all its model-surfaces that are visible
in the scene,

H(m)"
1

n

n
+
i/1

RPI((~1(s
i
), s

i
), (30)

where s
i
is the surface i of model m in the scene, (~1(s) is

the the correct observed-surface match to the model-
surface s, and n is the number of visible model-surfaces of
model m in the scene.

Values of # lie in the range between zero and unity.
A # value of zero implies an object is correctly hy-
pothesized. A # value of unity indicates that the correct
model is the worst hypothesis among all models in the
set.

5.3.3. Surface error performance index of a scene
The surface error performance index (SEPI) of a scene is

a measure of how well all observed-surfaces match to
their correct model-surfaces for a given scene. SEPI for
a scene is calculated as the average surface match error of
all the correct model-surfaces,

SEPI"
1

n

n
+
i/1

EM (s
i
, ((s

j
)), (31)

where ((s) is the correct surface match to observed-
surface s and n is the number of observed-surfaces in the
scene.

Values of SEPI lie in the range between zero and unity.
A SEPI value close to zero indicates that most of the
observed-surfaces matched very well to their correct
model surfaces, whereas a SEPI value close to unity
indicates that the observed-surfaces matched poorly to
their correct surfaces.

5.3.4. Surface matching performance index of a scene
The surface matching performance index (SMPI) of

a scene is a measure of how well all observed-surfaces
match to their correct model-surfaces, with respect to all
model-surfaces in the set

SMPI"(1!ARPI)]100%, (32)

where

ARPI"
1

n

n
+
i/1

RPI(s
i
, ((s

j
)) (33)

with ((s) being the correct model-surface match to ob-
served-surface s, and n being the number of observed-
surfaces in the scene.

ARPI is the average relative performance index of the
scene. Values of SMPI lie in the range between [0%,
100%]. A value close to 100% indicates that most of the
observed-surfaces match very well to their correct
model-surfaces, with respect to all model surfaces in the
set. A SMPI value of 100% indicates that all surfaces
match correctly. A low SMPI value indicates that the
observed-surfaces match poorly to their correct surfaces,
and that most observed-surfaces matched to incorrect
surfaces. A value of 0% indicates that the correct model-
surfaces have the largest surface errors in the model set
— the worst possible case.

5.3.5. Model hypothesis performance index of a scene
The model hypothesis performance index (MHPI) of

a scene is a measure of how well correct models are
identified for a given scene. MHPI is calculated as the
average model hypotheses error of a scene for all correct
models in the scene,

MHPI"A1!
1

N

N
+
i/1

# ()(m))B]100%, (34)

where, )(m) is the correct model-match to object m, and
N is the number of objects in the scene.

Values of MHPI lie in the range between [0%, 100%].
A MHPI value of 100% indicates that all objects are
correctly identified for the scene. On the other hand,
a value of 0% indicates that all correct models produce
the largest hypothesis error in the model set — the worst
possible case.

6. Experimental results

Testing of the system was conducted on three different
model sets with objects of varying degrees of curvature
and color. Synthetic images as well as real images were
employed. The synthetic images were generated using
a raytracing program to produce scenes with realistic
shadowing effects. The real image scenes consisted of real
3D objects that were obtained with a grayscale CCD
camera and three spectral filters (red, green and blue).
Testing was conducted on three different model sets with
varying degrees of curvature and color. The sets in in-
creasing complexity are:

f A Geometry set consisting of seven simulated geome-
tric objects (cylinders, spheres, cone and block). See
Fig. 2.

f A ¹oy set consisting of seven real 3D geometric objects
(cylinder, elliptical cylinders, triangular prism and hex-
agonal prism). See Fig. 3.

f A Fruit set consisting of seven plastic fruit models (an
apple, a banana, corn, grape, a lemon, pepper, straw-
berry, and a tomato). See Fig. 4.

A.A.Y. Mustafa et al. / Pattern Recognition 32 (1999) 339—355 347



Fig. 2. Scene d1 and Scene d2 of the Geometry set.

Fig. 3. Scene d1 and Scene d2 of the ¹oy set.

Fig. 4. Scene d1 and Scene d2 of the Fruit set.

Each set consists of several objects with identical
colors but different types of surfaces as well as objects
with similar surfaces but different colors (e.g. a yellow
cone, a yellow cylinder, a blue cylinder). This ensures that

both types of signatures (curvature and spectral) will be
essential employed to arrive at a correct hypothesis of the
object. Fig. 5 shows the surface adjacency graph for two
objects of the ¹oy set.
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Fig. 5. Surface labeling and surface adjacency graphs for two
primitives of the ¹oy set.

Fig. 6. (a) Normal map for Fruit Scene d1 (b) segmented normal map with labeling.

6.1. A sample test: Fruit Scene d1

A sample test scene from the Fruit set, Fruit Scene d1,
was shown in Fig. 4. The scene consists of five objects;
a banana, corn, pepper, strawberry, and a tomato. Fig. 6
shows the normals found using color photometric stereo
and the resulting segmented image with surfaces labeled.
From the surface segmented image we see that shadow-
ing effects are evident in the scene; a noticeable effect is
that much of the corn surface as well as that of the pepper
surface is in shadow. Figs. 7 and 8 show surface signa-
tures for the banana model and the corn model, respec-
tively. An apparent difference between the signatures of
the two models is the staggered distributions of the corn
model, as a result of the nature of the faceted surface of
the corn object.

Since all models of the Fruit set consist of models with
a single surface, the model producing the smallest surface
match error to the observed-surface is hypothesized as
the model match. Table 2 shows the results of matching

observed-surface
1

to the model-surfaces. We see that
matching the curvature signatures of observed-surface

1
to

model curvature signatures resulted in corn with the least
curvature signature match error (0.03). This is due to the
distinct curvature signatures of the corn model as com-
pared to other model signatures, as previously discussed.
With the use of spectral signatures, we see that the system
was more decisive in eliminating most of the incorrect
model-surfaces as these produced large spectral signature
match errors ('0.12), while the corn model-surface pro-
duced the smallest spectral error (0.04). Although there
were other yellow colored models (e.g. banana, lemon), the
system was able to correctly distinguish the spectral
signatures of the observed-surface as being that of the
corn model-surface. From the matching result, the system
correctly hypothesizes that the object of observed-sur-
face

1
is the corn model.

Table 3 shows the results of matching all observed-
surfaces appearing in the scene to their correct model-
surfaces. Both the surface match error and the relative
performance index for all observed-surfaces appearing in
the scene were relatively small (less than 0.1). For this
scene the surface error performance index (SEPI) was
a low 0.06 and the surface matching performance index
(SMPI) was an excellent 98%.

6.2. Summary of results for the geometry set

Seven synthetic scenes with several geometric primi-
tives were simulated using a raytracing program. The
attributes of these objects are shown in Table 4. The
synthesized objects consist of three cylinders, two
spheres, a block and a cone of different sizes and color.
Four different types of surfaces were present in these
scenes: flat surfaces, cylindrical surfaces, spherical surfa-
ces and conic surfaces. The colors of the objects were:
cyan, blue, green, yellow, red and violet. The scenes
consisted of 26 observed-surfaces and 21 scene objects.
Scenes d1 and d2 were shown in Fig. 2.
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Fig. 7. Banana signatures. (a) Curvature signatures: from top to bottom; S
AC

, S
MC

and S
GC

. (b) Spectral signatures: from top to bottom;
S
RS

, S
GS

, and S
BS

.

Fig. 8. Corn signatures: (a) Curvature signatures: from top to bottom; S
AC

, S
MC

and S
GC

. (b) Spectral signatures: from top to bottom; S
RS

,
S
GS

, and S
BS

.

Table 2
Surface match errors for observed-surface

1
of Fruit Scene d1

Error Apple Banana Corn Grape ¸emon Pepper Strawberry ¹omato

Curvature 0.07 0.13 0.03 0.03 0.08 0.06 0.07 0.09
Spectral 0.23 0.14 0.04 0.34 0.12 0.42 0.25 0.18
Surface 0.15 0.14 0.03 0.19 0.10 0.24 0.16 0.14
RPI/# 0.44 0.38 0.00 0.57 0.25 0.74 0.47 0.39
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Table 3
Surface matching performance for Fruit Scene d1

Observed-
surface Model—Match Surface-Error RPI

1 Banana 0.08 0.05
2 Corn 0.03 0.00
3 Pepper 0.05 0.00
4 Strawberry 0.07 0.04
5 ¹omato 0.05 0.00

Table 4
Geometry set object attributes

Object name Type Radius Length Diffuse color! Specular color

Cyan cylinder Cylinder 2 5 0.22:0.45:0.64 0.35:0.35:0.35
Blue Cylinder Cylinder 1 6 0.1:0.2:0.89 0.35:0.35:0.35
½ellow cylinder Cylinder 1.5 4 0.89:0.84:0.34 0.35:0.35:0.35
Red sphere Sphere 2 — 0.95:0:0 0.4:0.4:0.4
Green sphere Sphere 1.25 — 0.6:0.98:0.6 0.4:0.4:0.4
»iolet block Block — 2:3:4 0.6:0.13:0.94 0.4:0.4:0.4
½ellow cone Cone 2 4 0.89:0.6:0.2 0.35:0.35:0.35

!Color values listed are normalized RGB values

A summary of the matching and identification results
for the Geometry set are shown in Table 5. Matching and
identification results for this set were as follows:

f All scenes — except scene d2 — had a small average
scene surface matching error, where values of SEPI
fluctuated between 0.08 and 0.11, producing an overall
average SEPI value of 0.11. Scene d2 is the same as
scene d5 but with white noise added (k "0, p"7.8).
As a result of noise, SEPI increased 13%.

f All observed-surfaces appearing in all the scenes — ex-
cept scene d2 — matched to their correct model-surfa-
ces with the lowest surface errors, producing an overall
SMPI value of 100%. For Scene d2: 3 of 5 observed-
surfaces matched to their correct model-surfaces with
the lowest surface errors, as a result SMPI decreased
from 100% to 86%. However, the system was able to
correctly match the models by exploiting the surface
adjacency graph of the scene and comparing it to the
models.

f All objects appearing in all the scenes were correctly
hypothesized to be the correct model. The overall
MHPI value of all the scenes was 100%.

These results indicate that the matching and iden-
tification system worked flawlessly for these scenes
as all observed-surfaces and objects were correctly
identified.

6.3. Summary of results for the toy scenes

The second test set, the ¹oy set, consisted of a set of
seven real scenes obtained through a CCD camera.
Scenes d1 and d2 were shown in Fig. 3. The objects
employed in this set consisted of seven toy objects: two
cylinders, two elliptic cylinders, an elliptic cylinder half
sectioned, a right hexagonal prism and a right triangular
prism. Three different types of surfaces were present in
these scenes: flat surfaces, cylindrical surfaces and elliptic
surfaces. Surface colors of the objects are blue, cyan,
white and red. The test images contained 26 scene objects
which once analyzed produced 39 surfaces. The identi-
fication and matching results are shown in Table 6. An
examination of the table results in the following observa-
tions:

f Values of SEPI were in the range 0.09—0.25. This
produced an overall SEPI value of 0.16 for the whole
set. Scenes that had large SEPI values (scenes d5 and
d7), had these errors due to the fact that the ob-
served-surfaces in these scenes were mostly occluded
or in shadow.

f Values of SMPI were in the range 83—100%. These
values produced an overall SMPI value for the whole
set of 93.4%.

f Even with large scene errors as measured by SEPI, the
overall model identification performance for the whole
set, as measured by MHPI, was an impressive 99.8%.
In fact, all scenes — except one scene (Real Scene d6)
— had a MHPI value of 100%. In other words, out of
the 26 objects appearing in the scenes, objects were
correctly hypothesized 25 out of 26 times. For the
single case when the correct model was not correctly
hypothesized, the correct model produced the second
best model-match with a small hypothesis error of
0.06. Such excellent identification was possible, even
though matching performance was not as excellent,
due to the integration of surface adjacency information
into the identification process.
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Table 5
Summary of results for the Geometric Set

Scene Observed
surfaces

SEPI SMPI Scene
objects

MHPI

1 3 0.09 100% 3 100%
2 3 0.21 86% 3 100%
3 3 0.09 100% 2 100%
4 5 0.11 100% 3 100%
5 4 0.11 100% 3 100%
6 5 0.08 100% 5 100%
7 3 0.09 100% 2 100%
Overall 26 0.11 98% 21 100%

Table 6
Summary of results for the ¹oy Set

Scene Observed
surfaces

SEPI SMPI Scene
objects

MHPI

1 7 0.14 100% 5 100%
2 5 0.13 97% 4 100%
3 8 0.09 100% 3 100%
4 4 0.13 97% 4 100%
5 7 0.23 83% 4 100%
6 4 0.15 95% 3 98.5%
7 4 0.25 84% 3 100%
Overall 39 0.16 93.4% 26 99.8%

Table 7
Summary of results for Fruit Scenes

Scene Observed
Surfaces

SEPI SMPI Scene
objects

MHPI

1 4 0.05 99.5% 4 99.5%
2 5 0.10 100% 5 100%
3 5 0.06 98% 5 98%
4 4 0.05 98% 4 98%
5 3 0.05 99% 3 99%
6 4 0.09 96% 4 96%
7 5 0.06 98% 5 98%
Overall 30 0.07 98.4% 30 98.4%

Table 8
Error weights employed for surface matching for the Fruit Scenes

wk wp wj w
#

w
AC

w
GC

w
MC

w
RS

w
GS

w
BS

w
rS

w
C

w
S

0.45 0.22 0.22 0.11 0.5 0.15 0.35 0.22 0.22 0.22 0.34 0.5 0.5

6.4. Summary of results for the Fruit Scenes

The third test set consisted of a set of seven real scenes,
consisting of 30 observed-surfaces and 30 scene objects,
obtained as before through a CCD camera. Scenes d1
and d2 were shown in Fig. 4. The objects of this set
consisted of eight plastic fruit models: apple, banana, corn,
grape, lemon, pepper, strawberry and tomato. These ob-
jects differed from the objects of the other sets by having
complex shapes and surfaces. i.e. surfaces could not be
simply described as spherical, cylindrical or any other
type of uniform surface. It was assumed that each object
consisted of one surface. The object colors of this set are
red, yellow, purple, green. A summary of the matching
and identification results for the Fruit scene set are
shown in Table 7. From the results we observe that:

f Although objects of this set had complex shapes, the
surface matching errors were lower than those

obtained for the ¹oy model set (overall SEPI for the
whole set was 0.07), this is because surfaces in the set
are of the same general type — curved surfaces, whereas
the other set had two types of surfaces — curved and
flat surfaces. Thus, the contribution of curvature errors
to the overall surface error for this set was less than
those for other sets.

f Values of SMPI for this set were in the range 96—100%
which were higher than SMPI values for the ¹oy model
set. The overall SMPI value for this set was 98.4%.

f Since the objects of this set consisted of single surfaces,
values of MHPI for this set are equivalent to SMPI
values. Hence, the MHPI values for this scene were
slightly lower than the those obtained for the other set.
The overall MHPI for the whole set was nevertheless
an excellent 98.4%. The reason that this set had
a slightly lower MHPI value than the other set, even
though the SMPI value for this set was higher than the
other set, was because model identification was based
only on the results of surface matching, and surface
adjacency information was not applicable.

7. Effect of weight factor variation on matching
performance

In this section we study the effect of weight variation
on matching and identification performance. We will
study the effect of variation on performance by examin-
ing the following performance indices:

1. the surface match error (EM ),
2. the scene error performance index (SEPI),
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Fig. 9. Effect of varying wk on Fruit Scene d1. (a) EM , (b) RPI.

3. the relative performance index (RPI),
4. the average relative performance index (ARPI).

We employ Fruit Scene d1 for our analysis. As earlier
presented, Fruit Scene d1 consisted of the following
objects: banana, corn, pepper, strawberry, and tomato. We
will analyze the effect of weight variation on each of these
objects and the overall effect of the variation on scene
performance.

In order to adequately study the effect of weight vari-
ation for each of the 12 error weights employed to calcu-
late EM (i.e., wk, wp, wj, wc

, w
AC

, w
GC

, w
MC

, w
RS

, w
GS

, w
BS

, w
rS
,

w
C

and w
S
), a 12-dimensional system would be required

to analyze the performance in detail. Since such an analy-
sis is impractical and difficult to visualize, we will simplify
our analysis by varying the value of each weight factor in
their respective error groups, while keeping the weights
in the other groups constant. The weight variation
groups are:

f Variation of the signature match weights: wk, wp,
wj and w

c
.

f Variation of the curvature signature weights: w
AC

,
w
GC

and w
MC

.
f Variation of the spectral signature weights: w

RS
, w

GS
,

w
BS

and w
rS
.

f Variation of the surface error weights: w
C

and w
S
.

Since each group of weights are constrained to sum to
unity, we will vary each weight factor from zero to unity
while keeping the remaining weights in the group equal.
Let w* represent the varied weight and let w@ represent
any of the remaining group weights, then we have

n
+
i

w
i
"1, (35)

w@"
1

n!1
(1!w*), (36)

where n is the number of weight factors in the group. As
an example, in studying the effect of varying the signature
match weights which consist of the four weight factors:
wk, wp, wj and w

c
, if wk is to be studied, then wk is varied

from zero to unity and

wp"wj"w
c
"1

3
(1!wk), (37)

wk#wp#wj#w
c
"1. (38)

The default values taken for the weights are shown in
Table 8 (these are the same weight values employed in the
analysis of the Fruit scenes discussed in the previous
section).

As an example, Fig. 9 shows the effect of varying wk on
the matching and identification performance for Fruit
Scene d1. We see that all values of EM for all objects in the
scene decrease as wk increases. As a result, the SEPI value
for the scene decreases as wk increases. The RPI value for
corn and pepper are constant at zero for all values of wk,
which implies that these two objects are correctly identi-
fied regardless of the values of wk. This is explained by the
fact that the corn curvature signatures have unique pro-
files that easily distinguish it from the curvature signa-
tures of other objects. The RPI value for pepper remains
constant because its spectral signatures easily distinguish
it from others (it is the only object with a green color).
The optimum RPI value is at wk:0.8, where ARPI
attains a minimum and RPI curves of all objects — except
strawberry — also attains a minimum.

Table 9 shows the optimum weight values found for
Fruit Scene d1. With the application of these weights,
the results now show that all observed-surfaces match cor-
rectly to their model surfaces (SMPI"MHPI"100%),
whereas before only three of the five observed-surfaces
matched correctly to their model-surfaces. The overall
scene match error decreased 16% from a SEPI value of
0.06 to a SEPI value of 0.05. It should be emphasized that
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Table 9
Optimum error weights for surface matching for Fruit Scene d1

wk wp wj w
c

w
AC

w
GC

w
MC

w
RS

w
GS

w
BS

w
rS

w
C

w
S

0.42 0.42 0.11 0.05 0.3 0.2 0.5 0.25 0.12 0.25 0.38 0.3 0.7

the optimum weight values obtained are valid only for
these objects. To arrive at optimum weight values applic-
able to all objects in the set, an image containing all
objects, or more than one image containing all objects,
should be analyzed. As the knowledge base becomes
large and new objects are added to the knowledge base,
the weight factors would not have to be recalculated as
their values would only change slightly.

8. Conclusion and future work

We have described a system for 3D object identifica-
tion that integrates object curvature with object color.
The system takes two color images of a scene taken under
different lighting conditions and produces a hypothesis
about objects appearing in the scene. The system is based
on analyzing object surfaces from which surface signa-
tures are constructed. Surface signatures are surface at-
tributes that characterize a surface. We employ two types
of signatures; curvature signatures and spectral signa-
tures. Surface signatures extracted from objects appear-
ing in the scene are matched to model surface signatures
— obtained through training — to arrive at a hypothesis
about the objects.

Tests were conducted on three different sets of 3D
objects — one simulated and two real — consisting of 77
objects appearing in 21 scenes. Once analyzed these scen-
es produced 95 surfaces of different curvatures: flat, cylin-
drical, spherical, conic, elliptical and other complex types
(e.g. banana surface). Different surface colors also ap-
peared in the scenes: cyan, blue, green, yellow, red, violet,
white, and purple.

Tests conducted on simulated images produced perfect
surface matching and correct object hypothesis. In the
presence of noise, simulated images did not produce
perfect surface matching, but nevertheless produced cor-
rect object hypothesis. Using real images proved to be
a much more difficult task than using simulated images.
Noise inherent in images sometimes led to inaccurate
construction of surface normals. With such inaccuracies,
surface curvature signatures constructed though still rep-
resenting the surface curvature to an acceptable degree in
most cases had more inaccuracies and errors associated
with them. The surface spectral signatures represented
the object colors more accurately, though not as accurate
as those constructed for the simulated images. The use of
both surface curvature signatures and surface spectral

signatures, with more weight given to the spectral signa-
tures, provided sufficient matching constraint to produce
better matching and identification performance. Current
work is directed at refining the system by:

1. Integrating the use of the extended Gaussian image
(EGI) in the system. This can resolve some of the
ambiguities found when matching objects to models.

2. Integrating procedures to analyze 2D shapes of ob-
jects into the system can increase the performance of
the system. The shape of an observed-surface can be
another item by which surfaces are compared. Our
previous work in this area [21] has shown that such
measures are robust and can be easily implemented.
Furthermore, these measures are usually efficient and
do not slowdown the system’s performance.

3. Integration of texture analysis into the system.
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