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Abstract

We describe a family of global optimization procedures that automatically decom-
pose optimization problems into smaller loosely coupled problems. The solutions
of these are subsequently combined with message passing algorithms. We show
empirically that these methods produce better solutions with fewer function eval-
uations than existing global optimization methods. To develop these methods, we
introduce a notion of coupling between variables of optimization. This notion
of coupling generalizes the notion of independence between random variables in
statistics, sparseness of the Hessian in nonlinear optimization, and the general-
ized distributive law. Despite its generality, this notion of coupling is easier to
verify empirically, making structure estimation easy, while allowing us to migrate
well-established inference methods on graphical models to the setting of global
optimization.

1 Introduction
We consider optimization problems where the objective function is costly to evaluate and may be
accessed only by evaluating it at requested points. In this setting, the function is a black box, and
have no access to its derivative or its analytical structure. We propose solving such optimization
problems by first estimating the internal structure of the black box function, then optimizing the
function with message passing algorithms that take advantage of this structure. This lets us solve
global optimization problems as a sequence of small grid searches that are coordinated by dynamic
programming. We are motivated by the problem of tuning the parameters of computer programs to
improve their accuracy or speed. For the programs that we consider, it can take several minutes to
evaluate these performance measures under a particular parameter setting.

Many optimization problems exhibit only loose coupling between many of the variables of opti-
mization. For example, to tune the parameters of an audio-video streaming program, the parameters
of the audio codec could conceivably be tuned independently of the parameters of the video codec.
Similarly, to tune the networking component that glues these codecs together it suffices to consider
only a few parameters of the codecs, such as their output bit-rate. Such notions of conditional decou-
pling are conveniently depicted in a graphical form that represents the way the objective function
factors into a sum or product of terms each involving only a small subset of the variables. This
factorization structure can then be exploited by optimization procedures such as dynamic program-
ming on trees or junction trees. Unfortunately, the factorization structure of a function is difficult to
estimate from function evaluation queries only.

We introduce a notion of decoupling that can be more readily estimated from function evaluations.
At the same time, this notion of decoupling is more general than the factorization notion of decou-
pling in that functions that do not factorize may still exhibit this type of decoupling. We say that two
variables are decoupled if the optimal setting of one variable does not depend on the setting of the
other. This is formalized below in a way that parallels the notion of conditional decoupling between
random variables in statistics. This parallel allows us to migrate much of the machinery developed
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for inference on graphical models to global optimization . For example, decoupling can be visual-
ized with a graphical model whose semantics are similar to those of a Markov network. Analogs of
the max-product algorithm on trees, the junction tree algorithm, and loopy belief propagation can be
readily adapted to global optimization. We also introduce a simple procedure to estimate decoupling
structure.

The resulting recipe for global optimization is to first estimate the decoupling structure of the objec-
tive function, then to optimize it with a message passing algorithm that utilises this structure. The
message passing algorithm relies on a simple grid search to solve the sub-problems it generates. In
many cases, using the same number of function evaluations, this procedure produces solutions with
objective values that improve over those produced by existing global optimizers by as much as 10%.
This happens because knowledge of the independence structure allows this procedure to explore the
objective function only along directions that cause the function to vary, and because the grid search
that solves the sub-problems does not get stuck in local minima.

2 Related work
The idea of estimating and exploiting loose coupling between variables of optimization appears
implicitly in Quasi-Newton methods that numerically estimate the Hessian matrix, such as BFGS
(Nocedal & Wright, 2006, Chap. 6). Indeed, the sparsity pattern of the Hessian indicates the pairs
of terms that do not interact with each other in a second-order approximation of the function. This
is strictly a less powerful notion of coupling than the factorization model, which we argue below, is
in turn less powerful than our notion of decoupling.

Others have proposed approximating the objective function while simultaneously optimizing over
it Srinivas et al. (2010). The procedure we develop here seeks only to approximate decoupling
structure of the function, a much simpler task to carry out accurately.

A similar notion of decoupling has been explored in the decision theory literature Keeney & Raiffa
(1976); Bacchus & Grove (1996), where decoupling was used to reason about preferences and util-
ities during decision making. In contrast, we use decoupling to solve black-box optimization prob-
lems and present a practical algorithm to estimate the decoupling structure.

3 Decoupling between variables of optimization
A common way to minimize an objective function over many variables is to factorize it into terms,
each of which involves only a small subset of the variables Aji & McEliece (2000). Such a repre-
sentation, if it exists, can be optimized via a sequence of small optimization problems with dynamic
programming. This insight motivates message passing algorithms for inference on graphical mod-
els. For example, rather than minimizing the function f1(x, y, z) = g1(x, y)+g2(y, z) over its three
variables simultaneously, one can compute the function g3(y) = minz g2(y, z), then the function
g4(x) = miny g1(x, y) + g3(y), and finally minimizing g4 over x. A similar idea works for the
function f2(x, y, z) = g1(x, y)g2(y, z) and indeed, whenever the operator that combines the factors
is associative, commutative, and allows the “min” operator to distribute over it.

However, it is not necessary for a function to factorize for it to admit a simple dynamic programming
procedure. For example, a factorization for the function f3(x, y, z) = x2y2z2 + x2 + y2 + z2 is
elusive, yet the arguments of f3 are decoupled in the sense that the setting of any two variables does
not affect the optimal setting of the third. For example, argminx f3(x, y0, z0) is always x = 0, and
similarly for y and z. This decoupling allows us to optimize over the variables separately. This is
not a trivial property. For example, the function f4(x, y, z) = (x − y)2 + (y − z)2 exhibits no
such decoupling between x and y because the minimizer of argminx f4(x, y0, z0) is y0, which is
obviously a function of the second argument of f . The following definition formalizes this concept:
Definition 1 (Blocking and decoupling). Let f : Ω→ R be a function on a compact domain and let
X × Y × Z ⊆ Ω be a subset of the domain. We say that the coordinates Z block X from Y under
f if the set of minimizers of f over X does not change for any setting of the variables Y given a
setting of the variables Z:

∀
Y1∈Y,Y2∈Y

Z∈Z

argmin
X∈X

f(X,Y1, Z) = argmin
X∈X

f(X,Y2, Z).

We will say that X and Y are decoupled conditioned on Z under f , or X ⊥f Y
∣∣Z , if Z blocks X

from Y and Z blocks Y from X under f at the same time.
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We will simply say that X and Y are decoupled, or X ⊥f Y , when X ⊥f Y
∣∣Z , Ω = X × Y × Z ,

and f is understood from context.

For a given function f(x1, . . . , xn), decoupling between the variables can be represented graphically
with an undirected graph analogous to a Markov network:
Definition 2. A graph G = ({x1, . . . , xn}, E) is a coupling graph for a function f(x1, . . . , xn) if
(i, j) /∈ E implies xi and xj are decoupled under f .

The following result mirrors the notion of separation in Markov networks and makes it easy to reason
about decoupling between groups of variables with coupling graphs (see the appendix for a proof):
Proposition 1. Let X ,Y,Z be groups of nodes in a coupling graph for a function f . If every path
from a node in X to a node in Y passes through a node in Z , then X ⊥f Y

∣∣Z .

Functions that factorize as a product of terms exhibit this type of decoupling. For subsets of variables
X ,Y,Z , we sayX is conditionally separated from Y byZ by factorization, orX ⊥⊗ Y

∣∣Z , ifX and
Y are separated in that way in the Markov network induced by the factorization of f . The following
is a generalization of the familiar result that factorization implies the global Markov property (Koller
& Friedman, 2009, Thm. 4.3) and follows from Aji & McEliece (2000):
Theorem 1 (Factorization implies decoupling). Let f(x1, . . . , xn) be a function on a compact do-
main, and let X1, . . . ,XS ,X ,Y,Z be subsets of {x1, . . . , xn}. Let ⊗ be any commutative associa-
tive semi-ring operator over which the min operator distributes. If f factorizes as f(x1, . . . , xn) =
⊗S

s=1 gs(Xs), then X ⊥f Y
∣∣Z whenever X ⊥⊗ Y

∣∣Z .

However decoupling is strictly more powerful than factorization. While X ⊥⊗ Y implies X ⊥f Y ,
the reverse is not necessarily true: there exist functions that admit no factorization at all, yet whose
arguments are completely mutually decoupled. Appendix B gives an example.

4 Optimization procedures that utilize decoupling
When a cost function factorizes, dynamic programming algorithms can be used to optimize over the
variables Aji & McEliece (2000). When a cost function exhibits decoupling as defined above, the
same dynamic programming algorithms can be applied with a few minor modifications.

The algorithms below refer to a function f whose arguments are partitioned over the sets
X1, . . . ,Xn. Let X∗i denote the optimal value of Xi ∈ Xi. We will take simplifying liberties with
the order of the arguments of f when this causes no ambiguity. We will also replace the variables
that do not participate in the optimization (per decoupling) with an ellipsis.

4.1 Optimization over trees

Suppose the coupling graph between some partitioning X1, . . . ,Xm of the arguments of f is tree-
structured, in the sense that Xi ⊥f Xj unless the edge (i, j) is in the tree. To optimize over f with
dynamic programming, define X0 arbitrarily as the root of the tree, let pi denote the index of the
parent of Xi, and let C1

i , C
2
i , . . . denote the indices of its children. At each leaf node `, construct the

functions
X̂` (Xp`

) := argmin
X`∈X`

f(X`, Xp`
). (1)

By decoupling, the optimal value of X` depends only on the optimal value of its parent, so X∗` =

X̂`(X
∗
p`

).

For all other nodes i, define recursively starting from the parents of the leaf nodes the functions

X̂i(Xpi
) = argmin

Xi∈Xi

f(Xi, Xpi
, X̂C1

i
(Xi), X̂C2

i
(Xi), . . .) (2)

Again, the optimal value of Xi depends only on the optimal setting of its parent, X∗pi
, and it can be

verified that X∗i = X̂i(X
∗
pi

).

In our implementation of this algorithm, to represent a function X̂i(X), we discretize its argument
into a grid, and store the function as a table. To compute the entries of the table, a subordinate global
optimizer computes the minimization that appears in the definition of X̂i.
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4.2 Optimization over junction trees

Even when the coupling graph for a function is not tree-structured, a thin junction tree can often be
constructed for it. A variant of the above algorithm that mirrors the junction tree algorithm can be
used to efficiently search for the optima of the function.

Recall that a tree T of cliques is a junction tree for a graph G if it satisfies the following three
properties: there is one path between each pair of cliques; for each clique C of G there is some
clique A in T such that C ⊆ A; for each pair of cliques A and B in T that contain node i of G, each
clique on the unique path between A and B also contains i.

These properties guarantee that T is tree-structured, that it covers all nodes and edges in G, and that
two nodes v and u in two different cliques Xi and Xj are decoupled from each other conditioned on
the union of the cliques on the path between u and v in T . Many heuristics exist for constructing a
thin junction tree for a graph Jensen & Graven-Nielsen (2007); Huang & Darwiche (1996).

To search for the minimizers of f , using a junction tree for its coupling graph, denote by Xij :=
Xi∩Xj the intersection of the groups of variables Xi and Xj and by Xi\j = Xi \Xj the set of nodes
in Xi but not in Xj . At every leaf clique ` of the junction tree, construct the function

X̂` (X`,p`
) := argmin

X`\p`∈X`\p`

f(X`). (3)

For all other cliques i, compute recursively starting from the parents of the leaf cliques

X̂i(Xi,pi
) = argmin

Xi,pi
∈Xi\pi

f(Xi, X̂C1
i
(Xi,C1

i
), X̂C2

i
(Xi,C2

i
), . . .). (4)

As before, decoupling between the cliques, conditioned on the intersection of the cliques, guarantees
that X̂i(X

∗
i,pi

) = X∗i . And as before, our implementation of this algorithm stores the intermediate
functions as tables by discretizing their arguments.

4.3 Other strategies

When the cliques of the junction tree are large, the subordinate optimizations in the above algorithm
become costly. In such cases, the following adaptations of approximate inference algorithms are
useful:

• The algorithm of Section 4.1 can be applied to a maximal spanning tree of the coupling
graph.

• Analogously to Loopy Belief Propagation Pearl (1997), an arbitrary neighbor of each node
can be declared as its parent, and the steps of Section 4.1 can be applied to each node until
convergence.

• Loops in the coupling graph can be broken by conditioning on a node in each loop, resulting
in a tree-structured coupling graph conditioned on those nodes. The optimizer of Section
4.1 then searches for the minima conditioned on the value of those nodes in the inner loop
of a global optimizer that searches for good settings for the conditioned nodes.

5 Graph structure learning
It is possible to estimate decoupling structure between the arguments of a function f with the help
of a subordinate optimizer that only evaluates f .

A straightforward application of definition 1 to assess empirically whether groups of variables X
and Y are decoupled conditioned on a group of variables Z would require comparing the minimizer
of f overX for every possible value ofZ and Y . This is not practical because it is at least as difficult
as minimizing f . Instead, we rely on the following proposition, which follows directly from 1:
Proposition 2 (Invalidating decoupling). If for some Z ∈ Z and Y0, Y1 ∈ Y , we have
argminX∈X f(X,Y0, Z) 6= argminX∈X f(X,Y1, Z), then X 6⊥f Y|Z .

Following this result, an approximate coupling graph can be constructed by positing and invalidating
decoupling relations. Starting with a graph containing no edges, we consider all groupings X =
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{xi},Y = {xj},Z = Ω\{xi, xj}, of variables x1, . . . , xn. We posit various values of Z ∈ Z , Y0 ∈
Y and Y1 ∈ Y under this grouping, and compute the minimizers over X ∈ X of f(X,Y0, Z) and
f(X,Y1, Z) with a subordinate optimizer. If the minimizers differ, then by the above proposition,
X and Y are not decoupled conditioned on Z , and an edge is added between xi and xj in the graph.
Algorithm 1 summarizes this procedure.

Algorithm 1 Estimating the coupling graph of a function.

input A function f : X1 × · · · Xn → R, with Xi compact; A discretization X̂i of Xi; A similarity
threshold ε > 0; The number of times, NZ , to sample Z.

output A coupling graph G = ([x1, . . . , xn], E).
E ← ∅
for i, j ∈ [1, . . . , n]; y0, y1 ∈ X̂j ; 1 . . . NZ do
Z ∼ U(X̂1 × · · · × X̂n \ X̂i × X̂j)
x̂0 ← argminx∈X̂i

f(x, y0, Z); x̂1 ← argminx∈X̂i
f(x, y1, Z)

if ‖x̂0 − x̂1‖ ≥ ε then
E ← E ∪ {(i, j)}

end if
end for

In practice, we find that decoupling relationships are correctly recovered if values of Y0 and Y1 are
chosen by quantizing Y into a set Ŷ of 4 to 10 uniformly spaced discrete values and exhaustively
examining the settings of Y0 and Y1 in Ŷ . A few values of Z (fewer than five) sampled uniformly at
random from a similarly discretized set Ẑ suffice.

6 Experiments

We evaluate a two step process for global optimization: first estimating decoupling between vari-
ables using the algorithm of Section 5, then optimizing with this structure using an algorithm from
Section 4. Whenever Algorithm 1 detects tree-structured decoupling, we use the tree optimizer of
Section 4.1. Otherwise we either construct a junction tree and apply the junction tree optimizer of
Section 4.2 if the junction tree is thin, or we approximate the graph with a maximum spanning tree
and apply the tree solver of Section 4.1.

We compare this approach with three state-of-the-art black-box optimization procedures: Direct
Search Perttunen et al. (1993) (a deterministic space carving strategy), FIPS Mendes et al. (2004) (a
biologically inspired randomized algorithm), and MEGA Hazen & Gupta (2009) (a multiresolution
search strategy with numerically computed gradients). We use a publicly available implementation
of Direct Search 1, and an implementation of FIPS and MEGA available from the authors of MEGA.
We set the number of particles for FIPS and MEGA to the square of the dimension of the problem
plus one, following the recommendation of their authors.

As the subordinate optimizer for Algorithm 1, we use a simple grid search for all our experiments.
As the subordinate optimizer for the algorithms of Section 4, we experiment with grid search and
the aforementioned state-of-the-art global optimizers.

We report results on both synthetic and real optimization problems. For each experiment, we report
the quality of the solution each algorithm produces after a preset number of function calls. To vary
the number of function calls the baseline methods invoke, we vary the number of time they iterate.
Since our method does not iterate, we vary the number of function calls its subordinate optimizer
invokes (when the subordinate optimizer is grid search, we vary the grid resolution).

The experiments demonstrate that using grid search as a subordinate strategy is sufficient to produce
better solutions than all the other global optimizers we evaluated.

1Available from http://www4.ncsu.edu/˜ctk/Finkel_Direct/.
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Table 1: Value of the iterates of the functions of Table 2 after 10,000 function evaluations (for
our approach, this includes the function evaluations for structure learning). MIN is the ground
truth optimal value when available. GR is the number of discrete values along each dimension for
optimization. Direct Search (DIR), FIPS and MEGA are three state-of-the-art algorithms for global
optimization.

Function (n=50) min GR Ours DIR FIPS MEGA
Colville 0 100 0 3e-6 2e-14 3.75
Levy 0 400 0.013 2.80 4.20 3.22
Michalewics n/a 400 -48.9 -18.2 -18.4 -1.3e-3
Rastrigin 0 400 0 0 23.6 4.2e-3
Schwefel 0 400 8.6 1.9e4 1.6e4 1.4e4
Dixon&Price 0 20 1 0.667 16.8 0.914
Rosenbrock 0 20 0 2.9e4 5.7e4 48.4
Trid n/a 20 -2.2e4 -185 3.3e4 -41
Powell 0 6 19.4 324 121 0.014

6.1 Synthetic objective functions

We evaluated the above strategies on a standard benchmark of synthetic optimization problems 2

shown in Appendix A. These are functions of 50 variables and are used as black-box functions
in our experiments. In these experiments, the subordinate grid search of Algorithm 1 discretized
each dimension into four discrete values. The algorithms of Section 4 also used grid search as a

subordinate optimizer. For this grid search, each dimension was discretized intoGR =
(

Emax

Nmc

) 1
Smc

discrete values where Emax is a cap on the number of function evaluations to perform, Smc is the
size of the largest clique in the junction tree, and Nmc is the number of nodes in the junction tree.

Figure 1 shows that in all cases, Algorithm 1 recovered decoupling structure exactly even for very
coarse grids. Values of NZ greater than 1 did not improve the quality of the recovered graph,
justifying our heuristic of keeping NZ small. We used NZ = 1 in the remainder of this subsection.

Table 1 summarizes the quality of the solutions produced by the various algorithms after 10,000
function evaluations. Our approach outperformed the others on most of these problems. As ex-
pected, it performed particularly well on functions that exhibit sparse coupling, such as Levy, Rast-
rigin, and Schwefel.

In addition to achieving better solutions given the same number of function evaluations, our approach
also imposed lower computational overhead than the other methods: to process the entire benchmark
of this section takes our approach 2.2 seconds, while Direct Search, FIPS and MEGA take 5.7
minutes, 3.7 minutes and 53.3 minutes respectively.
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Figure 1: Very coarse gridding is sufficient in Algorithm 1 to correctly recover decoupling structure.
The plots show percentage of incorrectly recovered edges in the coupling graph on four synthetic
cost functions as a function of the grid resolution (bottom x-axis) and the number of function evalu-
ations (top x-axis). NZ = 1 in these experiments.

6.2 Experiments on real applications

We considered the real-world problem of automatically tuning the parameters of machine vision
and machine learning programs to improve their accuracy on new datasets. We sought to tune the

2Acquired from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/
Hedar_files/go.htm.
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parameters of a face detector, a document topic classifier, and a scene recognizer to improve their
accuracy on new application domains. Automatic parameter tuning allows a user to quickly tune
a program’s default parameters to their specific application domain without tedious trial and error.
To perform this tuning automatically, we treated the accuracy of a program as a black box function
of the parameter values passed to it. These were challenging optimization problems because the
derivative of the function is elusive and each function evaluation can take minutes. Because the
output of a program tends to depend in a structured way on its parameters, our method achieved
significant speedups over existing global optimizers.

6.2.1 Face detection

The first application was a face detector. The program has five parameters: the size, in pixels, of
the smallest face to consider, the minimum distance, in pixels, between detected faces; a floating
point subsampling rate for building a multiresolution pyramid of the input image; a boolean flag that
determines whether to apply non-maximal suppression; and the choice of one of four wavelets to
use. Our goal was to minimize the detection error rate of this program on the GENKI-SZSL dataset
of 3, 500 faces 3. Depending on the parameter settings, evaluating the accuracy of the program on
this dataset takes between 2 seconds and 2 minutes.

Algorithm 1 was run with a grid search as a subordinate optimizer with three discrete values along
the continuous dimensions. It invoked 90 function evaluations and produced a coupling graph
wherein the first three of the above parameters formed a clique and where the remaining two pa-
rameter were decoupled of the others. Given this coupling graph, our junction tree optimizer with
grid search (with the continuous dimensions quantized into 10 discrete values) invoked 1000 func-
tion evaluations, and found parameter settings for which the accuracy of the detector was 7% better
than the parameter settings found by FIPS and Direct Search after the same number of function eval-
uations. FIPS and Direct Search fail to improve their solution even after 1800 evaluations. MEGA
fails to improve over the initial detection error of 50.84% with any number of iterations. To evaluate
the accuracy of our method under different numbers of function invocations, we varied the grid res-
olution between 2 to 12. See Figure 2. These experiments demonstrate how a grid search can help
overcome local minima that cause FIPS and Direct Search to get stuck.
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Figure 2: Depending on the number of function evaluations allowed, our method produces parameter
settings for the face detector that are better than those recovered by FIPS or Direct Search by as much
as 7%.

6.2.2 Scene recognition

The second application was a visual scene recognizer. It extracts GIST features Oliva & Torralba
(2001) from an input image and classifies these features with a linear SVM. Our task was to tune
the six parameters of GIST to improve the recognition accuracy on a subset of the LabelMe dataset
4, which includes images of scenes such as coasts, mountains, streets, etc. The parameters of the
recognizer include a radial cut-off frequency (in cycles/pixel) of a circular filter that reduces illumi-
nation effects, the number of bins in a radial histogram of the response of a spatial spacial filter, and
the number of image regions in which to compute these histograms. Evaluating the classification
error under a set of parameters requires extracting GIST features with these parameters on a training
set, training a linear SVM, then applying the extractor and classifier to a test set. Each evaluation
takes between 10 and 20 minutes depending on the parameter settings.

3Available from http://mplab.ucsd.edu.
4Available from http://labelme.csail.mit.edu.
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Algorithm 1 was run with a grid search as the subordinate optimizer, discretizing the search space
into four discrete values along each dimension. This results in a graph that admits no thin junction
tree, so we approximate it with a maximal spanning tree. We then apply the tree optimizer of Section
4.1 using as subordinate optimizers Direct Search, FIPS, and grid search (with five discrete values
along each dimension). After a total of roughly 300 function evaluations, the tree optimizer with
FIPS produces parameters that result in a classification error of 29.17%. With the same number
of function evaluations, Direct Search and FIPS produce parameters that resulted in classification
errors of 33.33% and 31.13% respectively. The tree optimizer with Direct Search and grid search as
subordinate optimizers resulted in error rates of 31.72% and 33.33%.

In this application, the proposed method enjoys only modest gains of ∼ 2% because the variables
are tightly coupled, as indicated by the denseness of the graph and the thickness of the junction tree.

6.2.3 Multi-class classification

The third application was to tune the hyperparameters of a multi-class SVM classifier on the RCV1-
v2 text categorization dataset 5. This dataset consists of a training set of 23,149 documents and a
test set of 781,265 documents each labeled with one of 101 topics Lewis et al. (2004). Our task
was to tune the 101 regularization parameters of the 1 vs. all classifiers that comprise a multi-class
classifier. The objective was the so-called macro-average F -score Tague (1981) on the test set. The
F score for one category is F = 2rp/(r + p), where r and p are the recall and precision rates
for that category. The macro-average F score is the average of the F scores over all categories.
Each evaluation requires training the classifier using the given hyperparameters and evaluating the
resulting classifier on the test set, and takes only a second since the text features have been pre-
computed.

Algorithm 1 with grid search as a subordinate optimizer with a grid resolution of three discrete values
along each dimension found no coupling between the hyperparameters. As a result, the algorithms
of Section 4.1 reduce to optimizing over each one-dimensional parameter independently. We carried
out these one-dimensional optimizations with Direct Search, FIPS, and grid search (discretizing each
dimension into 100 values). After roughly 100,000 evaluations, these resulted in similar scores of
F = 0.6764, 0.6720, and 0.6743, respectively. But with the same number of evaluations, off-the-
shelf Direct Search and FIPS result in scores of F = 0.6324 and 0.6043, respectively, nearly 11%
worse.

The cost of estimating the structure in this problem was large, since it grows quadratically with the
number of classes, but worth the effort because it indicated that each variable should be optimized
independently, ultimately resulting in huge speedups 6.

7 Conclusion
We quantified the coupling between variables of optimization in a way that parallels the notion of
independence in statistics. This lets us identify decoupling between variables in cases where the
function does not factorize, making it strictly stronger than the notion of decoupling in statistical
estimation. This type of decoupling is also easier to evaluate empirically. Despite these differences,
this notion of decoupling allows us to migrate to global optimization many of the message pass-
ing algorithms that were developed to leverage factorization in statistics and optimization. These
include belief propagation and the junction tree algorithm. We show empirically that optimizing
cost functions by applying these algorithms to an empirically estimated decoupling structure out-
performs existing black box optimization procedures that rely on numerical gradients, deterministic
space carving, or biologically inspired searches. Notably, we observe that it is advantageous to
decompose optimization problems into a sequence of small deterministic grid searches using this
technique, as opposed to employing existing black box optimizers directly.

5Available from http://trec.nist.gov/data/reuters/reuters.html.
6After running these experiments, we discovered a result of Fan & Lin (2007) showing that optimizing the

macro-average F-measure is equivalent to optimizing per-category F-measure, thereby validating decoupling
structure recovered by Algorithm 1.
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A Synthetic optimization functions

Table 2: Synthetic optimization functions. The dimensionality for all is n = 50, except for Colville.
Colville 100(x21−x2)2+(x1−1)2+(x3−1)2 +90(x23−x4)2+

10.1((x2 − 1)2 +(x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)
−10 ≤ xi ≤ 10

Levy
∑n−1

i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+ (yn −

1)2(1 + 10 sin2(2πyn)) + sin2(πy1)

−10 ≤ xi ≤ 10, yi = 1 + xi−1
4

Michalewics −
∑n

i=1 sin(xi)(sin(ix
2
i /π))

2m 0 ≤ xi ≤ π, m = 10
Rastrigin 10n+

∑n
i=1(x

2
i − 10 cos(2πxi)) −5.12 ≤ xi ≤ 5.12

Schwefel 418.9829n−
∑n

i=1

(
xi sin

√
|xi|
)

−500 ≤ xi ≤ 500

Dixon&Price (x1 − 1)2 +
∑n

i=2 i(2x
2
i − xi−1)

2 −10 ≤ xi ≤ 10
Rosenbrock

∑n−1
i=1 [100(x

2
i − xi+1)

2 + (xi − 1)2] −5 ≤ xi ≤ 10
Trid

∑n
i=1(xi − 1)2 −

∑n
i=2 xixi−1 −n2 ≤ xi ≤ n2

Powell
∑n/4

i=1(x4i−3+10x4i−2)
2+5(x4i−1−x4i)2 +(x4i−2−

x4i−1)
4 + 10(x4i−3 − x4i)4

−4 ≤ xi ≤ 5

B Decoupling does not imply factorization

To demonstrate that decoupling is more powerful than the notion of coupling induced by factor-
ization, we construct a function all of whose arguments are mutually decoupled, yet admits no
factorization whatsoever. Specifically, we build a function f(x1, . . . , xn) so that xi ⊥f xj

∣∣xk
for all i 6= j 6= k, and yet f cannot be written as ⊗sgs(Xs) where Xs are any strict subsets of
{x1, . . . , xn} and where ⊗ is any continuous associative distributive operator over which the “min”
operator distributes.

Consider the function f0(x1, . . . , xn) = (
∑n

i=1 xi)
2. None of its parameters exhibit decoupling

because argminxi
f0(x1, . . . , xn) = −

∑
j 6=i xi depends on all remaining variables. In other words,

there are no non-overlapping non-empty subsets of variables X ,Y,Z for which X ⊥f Y
∣∣Z holds.

Therefore, by Theorem 1, there are no non-empty subsets of variables X ,Y,Z for which X ⊥⊗
Y
∣∣Z , and so f0 does not factorize.

Now construct the function

f(x1, . . . , xn) =

{
−∞ if any xi = 0

f0(x1, . . . , xn) otherwise
(5)

that is, f = f0 on a domain D that includes all of Rn except the coordinate axis hyperplanes.
Therefore f also does not factorize.

Yet since argminxi
f(x1, . . . , xn) = 0 regardless of the setting of any of the other variables, xi ⊥f

xj
∣∣xk for all i 6= j 6= k.

C Proof of Proposition 1

The proof is by induction, and requires the following lemma for the inductive step.
Lemma 1. [Intersection property] If X ⊥f Y|Z∪W and X ⊥f Z|Y∪W , then X ⊥f (Y∪Z)|W .

Proof. The conditions imply thatW blocks X from Y ∪ Z:

X ⊥f Y|Z ∪W implies
∀

Y1,Y2∈Y
Z∈Z
W∈W

argmin
X∈X

f(X,Y1, Z,W ) = argmin
X∈X

f(X,Y2, Z,W ), (6)

and X ⊥f Z|Y ∪W implies
∀

Y ∈Y
Z1,Z2∈Z

W∈W

argmin
X∈X

f(X,Y, Z1,W ) = argmin
X∈X

f(X,Y, Z2,W ). (7)
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Let X̂ be a minimizer of f(X,Y, Z,W ) for some Y, Z,W . By (6), X̂ is a minimizer of
f(X,Y2, Z,W ) for all Y2, and additionally by (7), X̂ is a minimizer of f(X,Y2, Z2,W ) for all
Y2 and Z2. Thus

∀
Y1,Y2∈Y
Z1,Z2∈Z

W∈W

argmin
X∈X

f(X,Y1, Z1,W ) = argmin
X∈X

f(X,Y2, Z2,W ),
(8)

soW blocks X from Y ∪ Z .

The conditions also imply thatW blocks Y ∪ Z from X . Assume the contrary. Then

∃
W∈W

X1∈X ,X2∈X

argmin
Y ∈Y
Z∈Z

f(X1, Y, Z,W ) 6= argmin
Y ∈Y
Z∈Z

f(X2, Y, Z,W ).

Let Y1, Z1 denote optimizers of the left hand side and Y2, Z2 optimizers of the right hand side. This
implies

f(X1, Y1, Z1,W ) < f(X1, Y2, Z2,W ) (9)
f(X2, Y1, Z1,W ) > f(X2, Y2, Z2,W ). (10)

However, because X ⊥f Y|Z ∪W , we have

∀
X1,X2∈X

Z1∈Z
W∈W

argmin
Y ∈Y

f(X1, Y, Z1,W ) = argmin
Y ∈Y

f(X2, Y, Z1,W ).

Since Y1 ∈ argminY ∈Y f(X1, Y, Z1,W ), this implies f(X1, Y1, Z1,W ) = f(X2, Y1, Z1,W ). We
can likewise show f(X1, Y2, Z2,W ) = f(X2, Y2, Z2,W ). But these equalities contradict (9) and
(10).

The remainder of the proof is identical to that of the proof of (Koller & Friedman, 2009, Thm. 4.4),
which we reproduce here for completeness.

Proof of Proposition 1. We must show X ⊥⊗ Y
∣∣
f
Z ⇒ X ⊥f Y

∣∣Z . DefineW = Ω \ {X ,Y,Z}.
Consider three situations:

(1) IfW = Ø and both X and Y has one element, Z = Ω \ {X ,Y} and X ⊥f Y|Z based on the
definition.

(2) IfW = Ø, when either X or Y has at least two elements, say X . If α ∈ X then (X \ {α}) ⊥⊗
Y|(Z ∪ {α}) and also α ⊥⊗ Y|(Z ∪ X \ {α}). Thus by the induction hypothesis:
(X \ {α}) ⊥f Y|(Z ∪ {α}) and {α} ⊥f Y|(Z ∪ X \ {α}).
Now gives X ⊥f Y|Z based on Lemma 1.

(3) IfW 6= Ø, we choose α ∈ W . Then X ⊥⊗ Y|(Z ∪ {α}), and hence the induction hypothesis
yields X ⊥f Y|(Z ∪ {α}). Either X ∪ Z separates Y from {α} or Y ∪ Z separates X from {α}.
Assuming the former gives α ⊥f Y|X ∪ Z . Using Lemma 1 we get (X ∪ {α}) ⊥f Y|Z , and thus
X ⊥f Y|Z . The latter case is similar.
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