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Lecture 3: Proof of Burton,Pemantle Theorem
Lecturer: Shayan Oveis Gharan March 31st

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we prove the Burton,Pemantle Theorem [BP93].

3.1 Properties of Matrix Trace

In this part we record the properties of the trace that we talked about in the last lecture. For a matrix
A ∈ Rn×n,

Tr(A) =

n∑
i=1

A(i, i).

It is easy to see that for any pair of matrices A ∈ Rn×k and B ∈ Rk×n,

Tr(AB) = Tr(BA).

The matrix dot product is defined analogous to the vector dot product. For matrices A,B ∈ Rk×n,

A •B :=

k∑
i=1

n∑
j=1

A(i, j)B(i, j).

It is easy to see that

A •B = Tr(ABᵀ).

Lemma 3.1. For any symmetric matrix A with eigenvalues λ1, . . . , λn,

Tr(A) =

n∑
i=1

λi.

Proof. Let x1, . . . , xn be orthonormal eigenvectors corresponding to λ1, . . . , λn. Also, let 1i be the indicator
vector of the i-th coordinate. Then, by definition of the trace,

Tr(A) =

n∑
i=1

1iA1i

=

n∑
i=1

1i

 n∑
j=1

λjxjx
ᵀ
j

1i

=

n∑
i=1

n∑
j=1

λj〈xj ,1i〉2
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Now, we swap the sums and we use that each xj has norm 1, so
∑n
i=1〈xj ,1i〉2 = 1.

Tr(A) =

n∑
j=1

λj

n∑
i=1

〈xj ,1i〉2

=

n∑
j=1

λj .

3.2 Characteristic Polynomial

For an indeterminant t, the characteristic polynomial of A, χ[a](t) is defined as follows,

χ[A](t) = det(tI −A).

Note that the characteristic polynomial is of degree n with respect to t. The roots of this polynomial are
the eigenvalues of A. This is because if λ is an eigenvalue of A, then (λI −A)x = 0. So, λI −A is singular,
and det(λI −A) = 0, i.e., λ is a root of det(tI −A).

Recall that if A is symmetric then all eigenvalues of A are real. Therefore, if A is symmetric with eigenvalues
λ1, . . . , λn, the characteristic polynomial is a real-rooted polynomial with roots λ1, . . . , λn and we can write,

χ[A](t) = (t− λ1)(t− λ2) . . . (t− λn)

Note that by definition the characteristic polynomial is invariant under rotation. That is, it only captures
the eigenvalues of A; so any matrix with the same eigenvalues as A have the same characteristic polynomial.
Opening up the above identity we can write,

χ[A](t) = tn − (λ1 + · · ·+ λn)tn−1 + (λ1λ2 + λ2λ3 + · · ·+ λn−1λn)tn−2 + . . .

=

n∑
k=0

tn−k(−1)k
∑

S∈([n]
k )

∏
i∈S

λi. (3.1)

For a set S ⊆ [n], we write AS to denote the sub-matrix of A indexed by the elements of S. AS is also known
as the principal sub-matrix of A. We use detk(A) to denote the sum of all principal minors of A of size k,
i.e.,

det
k

(A) =
∑

S∈([n]
k )

det(AS).

It is easy to see that the coefficient of tn−k in the characteristic polynomial is (−1)k detk(A). Therefore, we
can write

χ[A](t) =
∑
k=0n

tn−k(−1)k det
k

(A). (3.2)

Therefore, by (3.1), for any k ≥ 0, we can write

det
k

(A) =
∑

S∈([n]
k )

∏
i∈S

λi.
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In particular, for k = 1 we get that

Tr(A) = det
1

(A) =

n∑
i=1

λi.

This gives another proof of Lemma 3.1.

The following elementary statement follows from the definition of the characteristic polynomial and the
Cauchy-Binet formula.

Theorem 3.2 ([MSS13]). For rank 1 symmetric matrices W1, . . . ,Wm ∈ Rn×n, and scalars z1, . . . , zm,

det

(
tI +

m∑
i=1

ziWi

)
=

n∑
k=0

tn−k
∑

S∈([m]
k )

zS det
k

(∑
i∈S

Wi

)
.

We leave the proof of this as an exercise.

3.3 Proof of the Burton, Pemantle Theorem

Recall that for any edge e we defined

ye = L
†/2
G be,

if G is weighted we defined

ye =
√
w(e)L

†/2
G be.

In this section we prove Theorem 3.3.

Theorem 3.3 (Burton and Pemantle [BP93]). Given any (weighted) graph G, let Y ∈ RE×E where for each
pair of edges e, f ∈ F ,

Y (e, f) = 〈ye, yf 〉.

Let µ be the weighted uniform distribution of spanning trees, µ(T ) =
∏
e∈T w(e). Then, for any set of edges

F ⊆ E,

PT∼µ [F ⊆ T ] = det(YF ).

Proof of Theorem 3.3. We prove this by induction on the size of F . Say the claim is true for any set of size
less than |F |. By the inclusion-exclusion principle we can write,

P [F ∩ T 6= ∅] =

|F |∑
k=1

(−1)k−1
∑
S∈(F

k)

P [S ⊆ T ]

=

|F |−1∑
k=1

(−1)k−1
∑
S∈(F

k)

det(YS) + (−1)|F |−1P [F ⊆ T ] (3.3)

By Cauchy-Binet, for any set S ⊆ F ,

det(YS) = det
|S|

(∑
e∈S

yey
ᵀ
e

)
.
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So,

P [F ∩ T 6= ∅] =

|F |−1∑
k=1

(−1)k−1
∑
S∈(F

k)

det
k

(∑
e∈S

yey
ᵀ
e

)
+ (−1)|F |−1P [F ⊆ T ]

=

|F |−1∑
k=1

(−1)k−1 det
k

(∑
e∈F

yey
ᵀ
e

)
+ (−1)|F |−1P [F ⊆ T ] . (3.4)

Note that the coefficients in the RHS are just the coefficients of the characteristic polynomial of the matrix∑
e∈F yey

ᵀ
e . By (3.2),

det
|F |

(
I −

∑
e∈F

yey
ᵀ
e

)
= 1−

|F |∑
k=1

(−1)k−1 det
k

(∑
e∈F

yey
ᵀ
e

)

= 1− P [F ∩ T 6= ∅] + (−1)|F |+1P [F ⊆ T ] + (−1)|F | det
|F |

(∑
e∈F

yey
ᵀ
e

)
.

On the other hand, we can write

1− P [F ∩ T 6= ∅] = P [F ∩ T = ∅]

=
det(L̃G −

∑
e∈F beb

ᵀ
e )

det(L̃G)

= det

(
I −

∑
e∈F

yey
ᵀ
e

)
.

Therefore,

P [F ⊆ T ] = det
|F |

(∑
e∈F

yey
ᵀ
e

)
= det(YF ).

In words, the Burton, Pemantle theorem implies that the probability that a set S ⊆ E is in a random
spanning tree is equal to the square of the volume of the |S|-dimensional parallelepiped defined on the set
of points {ye}e∈S . Having this characterization characterization we can write a geometric variant of the
algorithm for sampling random spanning trees that we presented in lecture 2 (see Algorithm 1).

Note that Algorithm 1 is purely algebraic and it has nothing to do with the graph G. Indeed the same
algorithm can be applied to sample a basis from a weighted uniform distribution of bases of a given set of
isotropic vectors in Rd where the probability of each basis is proportional to the square of the volume of the
d-dimensional parallelepiped defined on the vectors of that basis.

3.4 Negative Correlation & Concentration

Recall that in the last lecture we used the Burton, Pemantle theorem to show that edges are negatively
correlated in a random spanning tree distribution. That is, for any set of edges F ,

PT∼µ [F ⊆ T ] ≤
∏
e∈F

P [e ∈ T ] .
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Algorithm 1 An equivalent geometric translation of Random Spanning Tree algorithm in Lecture 2.

Let ye = L
†/2
G be for each e ∈ E. and T = {}.

Choose an arbitrary ordering of the edges, e1, . . . , em.
for i = 1→ m do

With probability ‖yei‖2 add ei to T , and for every j > i let

yej = yej −
〈yej , yei〉yei
‖yei‖2

.

With the remaining probability do not add ei and for every j > i let

yej =
yej√

1− ‖yei‖2
.

end for

It is also not hard to see that

PT∼µ [|F ∩ T | = 0] ≥
∏
e∈F

(1− P [e ∈ F ]).

Negative correlation is generally a nontrivial property of probability distributions. It is a widely open problem
to find families of matroids that satisfy negative correlation property. For example, the following conjecture
is proposed independent by Pemantle [Pem00], Grimmett and Winkler [GW04] on the negative correlation
property on uniform forests of a graph.

Conjecture 3.1. Let µ be a uniform distribution on all spanning forests of G, i.e., all forests that include
all vertices of G. Then, for any two edges e, f in G,

PF∼µ [e, f ∈ F ] ≤ P [e ∈ F ] · P [f ∈ F ] .

See [Goe+15] for an application of this conjecture in credit networks.

It was shown by Panconesi and Srinivasan [PS97] that a direct implication of negative correlation is the
concentration of linear functions of the edges.

Theorem 3.4 (Panconesi and Srinivasan [PS97]). For graph G a (weighted) uniform spanning tree distri-
bution µ, and any set F ⊆ E,

PT∼µ [|F ∩ T | ≥ (1 + δ)E [|F ∩ T |]] ≤
(

eδ

(1 + δ)1+δ

)E[|F∩T |]

Proof. The basic idea of the proof is simple. Let Xe := I [e ∈ T ] be the indicator random variable of e being
in the tree and let X̃e be a set of independent Bernoulli random variables one for each e ∈ F each with

success probability E
[
X̃e

]
= E [Xe]. Also, let X :=

∑
e∈F Xe and X̃ :=

∑
e∈F X̃e. It follows by the negative

correlation that for any k ≥ 0,

E
[
Xk
]
≤ E

[
X̃k
]
. (3.5)
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This is because we can write

E
[
Xk
]

=
∑
S∈(F

k)

E

[∏
e∈S

Xe

]

≤
∑
S∈(F

k)

∏
e∈S

E [Xe]

=
∑
S∈(F

k)

E

[∏
e∈S

X̃e

]
= E

[
X̃k
]
.

The inequality follows by the negative correlation property.

It follows from (3.5) that for any t ≥ 0,

E
[
etX
]
≤ E

[
etX̃
]
.

Now, we can write,

PT∼µ [|F ∩ T | ≥ (1 + δ)E [|F ∩ T |]] ≤
E
[
etX
]

et(1+δ)E[X]

≤
E
[
etX̃
]

et(1+δ)E[X̃]

The rest of the proof is similar to the usual Chernoff bound arguments.

Note that the above theorem is fairly general and it holds for a large families of distributions. It turns out
that random spanning tree distributions satisfy many virtues of negative dependence so we can prove much
stronger concentration inequality. For example, we can show that the number of vertices of degree 2 in a
random spanning tree is highly concentrated around its expected value.
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