
 

 
Figure 1. Subjects using SpiroSmart (left) and a clinical spi-
rometer (right) and example curves from each device.  
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ABSTRACT 
Home spirometry is gaining acceptance in the medical 
community because of its ability to detect pulmonary exac-
erbations and improve outcomes of chronic lung ailments. 
However, cost and usability are significant barriers to its 
widespread adoption. To this end, we present SpiroSmart, a 
low-cost mobile phone application that performs spirometry 
sensing using the built-in microphone. We evaluate Spi-
roSmart on 52 subjects, showing that the mean error when 
compared to a clinical spirometer is 5.1% for common 
measures of lung function. Finally, we show that pul-
monologists can use SpiroSmart to diagnose varying de-
grees of obstructive lung ailments. 
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INTRODUCTION 
Spirometry is the most widely employed objective measure 
of lung function [37] and is central to the diagnosis and 
management of chronic lung diseases, such as asthma, 
chronic obstructive pulmonary disease (COPD), and cystic 
fibrosis. During a spirometry test, a patient forcefully ex-
hales through a flow-monitoring device (a tube or mouth-
piece), which measures instantaneous flow and cumulative 
exhaled volume (Figure 1). Spirometry is generally per-
formed in medical offices and clinics using conventional 
spirometers, but home spirometry with portable devices is 
slowly gaining acceptance [6,26]. Measurement of spirome-
try at home allows patients and physicians to more regular-
ly monitor for trends and detect changes in lung function 
that may need evaluation and/or treatment. Home spirome-
try has the potential to result in earlier treatment of exacer-

bations, more rapid recovery, reduced health care costs, and 
improved outcomes [15,23,34,35]. However, challenges 
currently faced by home spirometry are cost, patient com-
pliance and usability, and an integrated method for upload-
ing results to physicians [9,12]. Importantly, while office-
based spirometry is coached by a trained technician, current 
home spirometers have no coaching, feedback, or quality 
control mechanisms to ensure acceptable measurements. 

In this paper, we present SpiroSmart, a smartphone-based 
approach that measures lung function using the phone’s 
built-in microphone (i.e., a complete software-enabled solu-
tion). SpiroSmart requires the user to hold the smartphone 
at approximately arm’s length, breathe in their full lung 
volume, and forcefully exhale at the screen of the phone 
until the entire lung volume is expelled. The phone’s mi-
crophone records the exhalation and sends the audio data to 
a server, which calculates the exhaled flow rate by estimat-
ing models of the user’s vocal tract and the reverberation of 
sound around the user’s head. Flow rate is estimated by 
calculating the envelope of the sound in the time domain; 
performing resonance tracking in the frequency domain; 
while measuring white noise gain through linear prediction. 
SpiroSmart is able to compute and provide flow rates and 
graphs similar to those found in home or clinical spirome-
ters (Figure 1). † 
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Figure 2. Example of different Flow vs. Volume curves and 
example lung function measures.  

There are important advantages to developing a 
smartphone-based solution as compared to current commer-
cial spirometers. Firstly, the low-cost and inherent portabil-
ity of the smartphone allows much greater uptake of home 
spirometry. The relative low cost of smartphones as com-
pared to spirometers can also help in lowering access barri-
ers to medical devices in the developing world. Secondly, a 
smartphone spirometer can have built-in coaching and 
feedback—mechanisms to maximize measurement accepta-
bility that are critically lacking in current home spirometers. 
Thirdly, smartphones provide the capability of easy data 
uploading, enabling longitudinal tracking of results and 
instantaneous alerts. Finally, with the smartphone, spirome-
try can easily be coupled with evaluations such as symptom 
scores, cough sensing, or oximetry to provide a comprehen-
sive disease self-management tool.  

Our research team closely collaborated with experienced 
pulmonologists from two different hospitals to help inform 
the design of SpiroSmart and to critically compare the accu-
racy of SpiroSmart to a clinical spirometer (endorsed by the 
American Thoracic Society or ATS). Through a study that 
included 52 subjects, we show that SpiroSmart has a mean 
error of 5.1% for the most common measures of lung func-
tion and that SpiroSmart can be used directly out-of-the-
box, without any user-specific training or calibration. How-
ever, our results indicate that the performance of Spi-
roSmart improves if we calibrate this generic system for a 
particular user, decreasing the mean error in estimation of 
lung function to 4.6%. Lastly, we compare the differences 
in diagnosis from five pulmonologists using measures and 
graphs generated from SpiroSmart and from a clinical spi-
rometer. We show that SpiroSmart is effective for diagnos-
ing not only abnormal lung function but also the degree of 
obstruction.  

EXPLANATION OF SPIROMETRY 
A standard spirometer measures flow rate of air as it passes 
through a mouthpiece. This flow can be integrated from the 
mouthpiece to achieve Flow vs. Time (FT), Volume vs. 
Time (VT), or Flow vs. Volume (FV) plots of the expira-
tion. An example FV plot can be seen in Figure 2. From the 
plot, several quantities are measured:  

(1) Forced Vital Capacity (FVC) is the total expelled 
volume during the expiration,  

(2) Forced Expiratory Volume in one second (FEV1) is 
the volume exhaled in the first second,  

(3) FEV1/FVC is simply the ratio of the aforementioned 
two measures, and, 

(4) Peak Expiratory Flow (PEF) is the maximum flow 
velocity reached during the test. 

The most common clinically-reported measures are FEV1, 
FVC, and FEV1/FVC, as they are used to quantify the de-
gree of airflow limitation in chronic lung diseases such as 
asthma, COPD, and cystic fibrosis. In general, a healthy 
result is >80% of the predicted value based on height, age, 
and gender [16]. Abnormal values are [22]: 

• Mild Lung Dysfunction: 60-79%  
• Moderate Lung Dysfunction: 40-59% 
• Severe Lung Dysfunction: below 40% 

However, diagnosis from spirometry is more complicated 
than simple benchmarking—the shape of the flow curve is 
subjectively evaluated by a pulmonologist, who examines 
the descending limb of the Flow vs. Volume curve (i.e., 
after PEF, Figure 2). A linear slope indicates the absence of 
airflow limitation (i.e., normal lung function, solid line in 
Figure 2). A concave or “scooped” slope signifies airflow 
limitation (e.g., asthma or COPD, purple dashed line in 
Figure 2) due to differing time constants of exhaled air in 
different parts of the lung. The last curve (orange dashed 
line in Figure 2) is suggestive of restrictive lung disease 
such as that caused by respiratory muscle weakness or pul-
monary fibrosis; it can be seen as a slight bowing of the 
curve, a plateau, and/or a decreased FVC. 

Modern Spirometry Devices 
Modern spirometers are generally flow based, measuring 
the instantaneous exhaled flow (liters/sec.). There are four 
prevalent types of flow-based spirometers: pneumotacho-
graphs, turbines, anemometers, and ultrasounds. Pneumo-
tachs measure the pressure differential across a membrane 
as the subject exhales. These devices are affected by humid-
ity and temperature and require daily calibration. Pneumo-
tachs are the most prevalent spirometers in medical offices 
and clinics because of their accuracy.  

High-end clinical spirometers can cost upwards of $5000 
USD and be comparable in size to a small refrigerator. The 
patient sits inside an enclosure that controls humidity, tem-
perature, and oxygen levels. Portable, ATS-endorsed spi-
rometers (about the size of a laptop) generally cost between 
$1,000-$4,000 USD, and although they are relatively porta-
ble compared to their counterparts, they are still bulky, 
complicated devices (Figure 1).  

Low cost peak flow meters exist, which can only measure 
PEF ($10-$50 USD). They are about the size of a baseball 
and typically use a mechanical apparatus without any elec-
tronics. PEF in isolation, however, is generally considered 
to be a poor indicator of lung function [28]. Digital home 
spirometers that report only FEV1 are also commercially 
available ($50-$200 USD). These meters vary widely in 
their reporting and archiving of results—some require pa-
tients to manually write down the values in journals or have 
a USB desktop connection. The newest models (e.g., Spi-



 

 
Figure 3. Interface and configurations used to test SpiroSmart. 

Subject Demographics (N=52) 
Males (n, %) 32 (61.5%) 
Age (yrs) (mean, range) 32 (18 – 63) 
Height (cm) (mean, range) 172 (152 – 196) 
Reported Lung Ailments (n, %)  

Mild Asthma, 9 (17.3%) Chronic Bronchitis, 2 (3.8%) 
Cystic Fibrosis, 1 (1.9%) Collapsed Lung, 1 (1.9%) 

Abnormal Curves (n, %) 12 (23.1%) 
Wheeze Present (n, %) 26 (50.0%) 
Never Performed Spirometry (n, %) 29 (55.8%) 
Table 1. Demographic information for participants. 

roTube) can connect to a mobile phone or laptop via Blue-
tooth, but cost considerably more, from $900-$3500 USD. 
In 2011, Gupta et al. presented mobileSpiro, a $100-$200 
pneumotach that connects to an Android smart phone [13]. 
This is one of the first systems that reduce cost by leverag-
ing the mobile phone to present feedback and process data. 

We note that a number of applications (e.g., mySpirometer, 
Spirometer Pro) have recently appeared on the iPhone and 
Android platforms that claim to measure aspects of lung 
function. However, these applications are advertised as 
games and have disclaimers warning not to use them for 
medical assessment. 

RELATED WORK 
Our work draws motivation from prior research exploring 
solutions that leverage sensing and computing capabilities 
of smartphones as well as technologies that leverage audi-
ble sensing for improvement in healthcare.  

Mobile Phone Based Health Sensing 
There are a number of healthcare sensing systems in which 
external sensors are connected to smartphones. Poh et al. 
developed a system containing electro-optic sensors worn 
on the earlobe to provide photoplethysmography (PPG) 
data on a smartphone [30]. A number of researchers have 
also evaluated how multiple sensors could be connected to 
a smartphone via an external board to collect physiological 
information [7,21]. Bishara et al. have successfully modi-
fied the existing on-device camera to perform lens-free hol-
ographic microscopy [4]. Pamplona et al. have developed 
NETRA, a system that combines simple optical compo-
nents, like lenses, with high-resolution LCD screens of 
smartphones to detect human eye impairments [27].  

Researchers have also been exploring solutions that require 
no hardware modification. Grimaldi et al. employed a 
smartphone’s camera and LED flashlight to measure pulse 
from the fingertip using photoplethysmography [11]. While 
this requires users to be in contact with the device, Poh et 
al. use a tablet’s camera and blind source separation of col-
or channels to measure pulse at a distance [29].  

Audio Based Health Sensing 
Like SpiroSmart, there are several technologies that sense 
medically relevant quantities using a microphone. Using an 
in-ear microphone, researchers have shown that one can 
detect when (and sometimes what) a person is eating [3,25]. 
Wheeze detection with in-air and throat microphones has 
shown promising results in diagnosing the severity of asth-
ma [14]. Respiratory rate is another vital sign typically 
sensed with body worn [2] or bedside microphones [17].  

A few systems have leveraged simple, low-cost micro-
phones to analyze signals, such as heart rate and cough. 
Many systems exist that extract heart rate using a mobile 
phone [24,40] and, with higher-end microphones, some 
systems can actually be used to detect certain audible mani-
festations of high blood pressure referred to as Korotkoff 
sounds [1]. In 2011, we presented a solution that uses the 
microphone on the mobile phone to detect and count 

coughs [20]. Similar to SpiroSmart—this was a tool for 
measuring a medically accepted quantity without the need 
for specialized equipment. 

DATA COLLECTION PROCEDURE 
To evaluate and inform the design of SpiroSmart, we creat-
ed a dataset of audio samples. In all, 52 volunteers partici-
pated in a 45-minute study session (Table 1). All partici-
pants self-identified themselves as having none or only mild 
lung conditions. Our custom data collection application for 
the iPhone 4S recorded subjects’ exhalation sounds using 
the built-in microphone (at 32 kHz) and provided feedback 
to the user, coaching them through the spirometry maneu-
ver. We also obtained measurements during the same ses-
sion using an ATS certified standard clinical spirometer, the 
nSpire KoKo Legend, as the “gold standard.” The KoKo is 
a pneumotach spirometer and was calibrated with a 3L sy-
ringe before each session.  

Spirometry measurements are completely effort-dependent 
and patients are coached through this maneuver by a trained 
technician. While using the clinical spirometer, participants 
were coached both orally and with gestures. With Spi-
roSmart, participants were coached with textual prompts on 
the screen and only with gestures—oral prompts would 
have interfered with the audio recording (Figure 3).  

SpiroSmart also calculated a real-time estimate of flow (us-
ing LPC gain, discussed in the next section), and displayed 
the measure as a real-time visualization. This also provided 
an incentive graphic; namely, a ball displaced vertically in a 
cylinder proportionally to the strength of the exhalations. 
After the initial burst, the ball dropped slowly to the bottom 
of the cylinder, signifying the end of the test. Like the Ko-
Ko Legend Spirometer, SpiroSmart displayed an estimated 
Flow vs. Volume curve at the end of the effort (Figure 1). 
An estimate of exhaled volume was calculated by integrat-
ing estimated flow with respect to time.  

The forced expiratory maneuver was explained to partici-
pants and they were asked to practice using the spirometer. 



 

 
Figure 4. Block diagram of SpiroSmart’s feature extraction.  
 

Once the participants were able to perform an acceptable 
maneuver according to ATS criteria for reproducibility, 
three efforts were recorded using the spirometer [22]. The 
raw flow and volume measurements from the KoKo were 
obtained using a USB connection and custom software. 
Next, participants were introduced to SpiroSmart. 

In our pilot study, we observed that participants uninten-
tionally varied the distance at which they held the phone as 
well as lip posture, potentially introducing unwanted varia-
bility. We therefore had participants use SpiroSmart in four 
configurations, in random order: with a mouthpiece (to 
maintain lip posture), with a sling (to maintain distance), 
with neither attachment; and with both attachments (Fig-
ure 3). Note that it was impossible to collect data from Spi-
roSmart and the KoKo Legend at the same time so explicit 
ground truth is unknown. Instead, each effort from Spi-
roSmart was associated with one randomly selected ac-
ceptable curve from the KoKo device during that same ses-
sion. The signals were aligned using PEF for the KoKo and 
the maximum amplitude in the audio stream from Spi-
roSmart as reference points. The audio stream was seg-
mented automatically starting one second before and ending 
six seconds after the maximum audio amplitude.  

We also selected 10 participants to return for two more data 
collection sessions (2 days up to two weeks apart), allowing 
us to look at the consistency of measurements from Spi-
roSmart over longer periods. The participants were asked 
back based on specific demographics—an equal number of 
men and women, and equal number of normal and abnor-
mal subjects. We refer to “abnormal” subjects as those with 
abnormally shaped curves, not necessarily reduced lung 
function measures. In total, we collected data from 248 
clinical spirometer uses and 864 SpiroSmart uses.  

Interestingly, 6 subjects were found to have abnormally 
shaped curves from ailments that they were unaware of and 

8 of the 13 subjects who reported lung ailments produced 
normally shaped curves—albeit with less than expected 
lung function measures.  

ALGORITHM AND THEORY OF OPERATION  
Our data collection resulted in a dataset of digitized audio 
samples from a smartphone. These audio samples are uncal-
ibrated, AC-coupled measures of pressure, p(t). However, 
we want to convert them into measures of airflow at the 
lips, ulips(t). Our main goals, then, are (1) to compensate for 
pressure losses as the sound travels from mouth to micro-
phone, (2) convert the pressure values to an approximation 
of flow, and (3) remove the effects of AC-coupling. Pres-
sure losses can be approximated using an inverse model of 
the sound reverberation around the head. Turbulent airflow, 
as it passes through a fixed opening (i.e., the mouth), has a 
characteristic pressure drop that we can use for converting 
pressure into flow. Lastly, we use signal power, frequency 
characteristics, and models of the vocal tract to remove the 
effects of AC-coupling and refine the measurement. 

Finally, we use regression to combine these approximations 
and remove non-linearity. Our methodology is broken into 
two block diagrams: compensation and feature extraction 
(Figure 4), and machine learning regression (Figure 5). 

Distance and Flow Compensation 
The first stage in the processing pipeline (Figure 4) is in-
verse radiation modeling, which compensates for pressure 
losses sustained over the distance from mouth to micro-
phone, and reverberation/reflections caused in and around 
the subject’s body. The transfer function from the micro-
phone to the mouth is approximated by a spherical baffle in 
an infinite plane and is given by [10]: 

𝐻(𝑒𝑗𝜔) =
𝑃(𝑒𝑗𝜔)
𝑃𝑙𝑖𝑝𝑠(𝑒𝑗𝜔)

~
𝑗𝜔𝐶ℎ𝑒𝑎𝑑
𝐷𝑎𝑟𝑚

exp �−
𝑗𝜔𝐷𝑎𝑟𝑚

𝑐
� 

where Darm is the arm length, Chead is the head circumfer-
ence (both approximated from the patient’s height), and c is 
the speed of sound. The transfer function inverse is applied 
by converting it to the time domain, hinv(t), and using FIR 
filtering with the incoming audio. Once applied, the output 
is an approximation of the pressure at the lips, plips(t). 

This pressure value is then converted to a flow rate. For 
turbulent airflow, the non-linear equation converting pres-
sure drop across the lips to flow rate through the lips is giv-
en by (ignoring viscous losses) [10]: 

𝑢𝑙𝑖𝑝𝑠(𝑡)~2𝜋 𝑟𝑙𝑖𝑝𝑠2 �2𝑝𝑙𝑖𝑝𝑠(𝑡)  

where rlips is the radius of the mouth opening (a constant 
resistance across frequency). Note that some scaling con-
stants from each equation have been removed and the equa-
tions are only proportional. This is done because p(t) is not 
calibrated, so ulips(t) is only proportional to the actual flow 
rate. Moreover, it is unclear how well these equations per-
form when using approximations of Darm, Chead, and rlips and 
how non-linearity in the electret microphone affects inverse 
modeling. Therefore, we use each measure p(t), plips(t), and 



 

 
Figure 5. Block diagram of regression used in SpiroSmart 

ulips(t) for feature extraction and let the regression decide 
which features are most stable.  

Feature Extraction 
At this point, each measure, p(t), plips(t), and ulips(t), is a 
high frequency, AC-coupled signal (Figure 4), from which 
we want to approximate the volumetric flow rate. We 
achieve this conversion using three transformations of the 
signals: (1) envelope detection, (2) spectrogram processing, 
and (3) linear predictive coding (LPC).  The envelope of the 
signal can be assumed to be a reasonable approximation of 
the flow rate because it is a measure of the overall signal 
power (or amplitude) at low frequency. In the frequency 
domain, resonances can be assumed to be amplitudes excit-
ed by reflections in the vocal tract and mouth opening—and 
therefore should be proportional to the flow rate that causes 
them. Finally, we can use linear prediction as a flow ap-
proximation. Linear prediction assumes that a signal can be 
divided into a source and a shaping filter and it estimates 
the source power and shaping filter coefficients. The “fil-
ter” in our case is an approximation of the vocal tract [38]. 
The “source variance” is an estimate of the white noise pro-
cess exciting the vocal tract filter—in our case this is an 
approximation of the power of the flow rate from the lungs. 
The implementation of each stage is explained below.  

Envelope Detection: The time domain envelope is taken 
using the Hilbert envelope. The Hilbert transform of the 
signal is taken and added back to the original signal, then 
low pass filtering is used to extract the envelope (an exam-
ple envelope is shown in Figure 4, callout). Each signal is 
down-sampled to have the same sampling rate as the spec-
trogram and linear prediction models.  

Spectrogram Processing: During the forced exhalation, 
the audio from the phone is buffered into 30ms frames 
(with 50% overlap between frames). Most tests last from 4 
to 7 seconds, resulting in 250-500 frames per exhalation. 
Each frame is then windowed using a hamming window 
and the |FFT|dB is taken to produce the magnitude spectro-
gram of the signal. We extract the resonances using local 
maxima in each FFT frame, calculated over a sliding win-
dow (callout in Figure 4). Any maxima that is greater than 
20% of the global maximum is saved. After all frames have 

been processed, in order to preserve only large and relative-
ly long resonances, any resonance less than 300ms is dis-
carded as noise. Finally, the average resonance magnitude 
in each frame is calculated and saved (callout in Figure 4).  

Linear Prediction Processing: The audio signal is again 
windowed into 30ms overlapping frames. For each frame a 
number of LPC models are taken with filter orders of 2, 4, 
8, 16 and 32 (increasing vocal tract complexity). The ap-
proximated “source power” that excites the filter is saved 
for each frame as an approximation of the flow rate. Exam-
ples of the LPC from using p(t), plips(t), and ulips(t) are 
shown at the bottom of Figure 4. 

Post Feature Processing: Once the approximated flow 
rates are returned they are denoised using a Savitsky-Golay 
polynomial filter of order 3 and size 11 [33]. This operation 
fits a 3rd order polynomial inside a moving window and is 
robust to many types of noise while keeping the relative 
shape of the most prominent signal intact. The filtered and 
non-filtered signal are both fed as features to the subsequent 
regression stage. 

Machine Learning Regression  
The feature extraction results in a number of uncalibrated 
approximations of the flow rate. These features are used in 
two different regressions (Figure 5): one to attain specific 
lung function measures and a second to attain the relative 
shape of the curve.  

Folding: The participants in the dataset are folded into sev-
eral training subsets, providing a number of diverse models 
that can be combined to create a global model. For exam-
ple, one subset randomly divides the participants into ten 
folds equally. Another subset divides participants with 
wheezes together into ten folds. Another subset divides the 
dataset into ten folds, but ensures there are equal numbers 
of abnormal and normal curves to train on. Each subset is 
used to create a different regression model and the ensem-
ble can be clustered together to form one decision. Note 
that for any subset a participant in a testing fold is never 
used in the training fold. Moreover, to investigate “person-
alizing” the models, we also create augmented folds that 
contain data from repeat sessions (for the 10 subjects who 
performed three sessions spanning multiple days). In this 
way, “personalized” models are trained using data from the 
same participant (but on different days) mixed with data 
from the general model. We evaluate general and personal-
ized models separately.  

Lung Function Regression: The output of the feature ex-
traction creates a number of features at 15ms time steps that 
approximate flow rate over time. If we treat each feature as 
a flow rate, we can regress directly to PEF, FEV1, and FVC. 
For example, PEF is defined as the maximum flow reached 
in a single effort. Thus, for a curve in a given fold, we can 
take the max of each feature and regress to the PEF. Note 
that integrating flow with respect to time gives us the vol-
ume of air exhaled. Thus for FVC, the integration of each 



 

  
Figure 6. Cumulative error plot of the percentage of the results (y-axis) within the percent error of the x-axis, shown for “normal,” 
“abnormal” and “personalized abnormal” groups. Also shown are the accuracies for each measure, defined as the percentage of 
measures within accepted clinical limits (i.e., the variation one would expect on a traditional spirometer).  

feature is taken. For FEV1, the integration of the features 
during the first second is used (Figure 5).  

Regression is implemented using bagged decision trees and 
mean square error; 100 trees are used in each forest. Each 
training subset is used to predict lung function for a given 
test instance, resulting in an ensemble of predictions. The 
final decision is made by clustering the ensemble using k-
means (k=2). The centroid of the cluster with the most in-
stances is the final prediction of PEF, FEV1, or FVC.  

Curve Shape Regression: The shape of the curve is a more 
difficult and involved regression. Instead of a single meas-
ure to regress to for each curve, we want to measure the 
flow rate and volume for each 15ms frame of the curve. The 
ideal regression should use not only the feature value, but 
also the correlations across time (as flow rates that are close 
in time should also be close in value). To exploit this, we 
employ a conditional random field (CRF) [19] and a bagged 
decision tree regression. In order to reduce the complexity 
for CRF based regression, we also generate normalized 
flow-volume curves aimed at obtaining the correct shape of 
the curve. We also normalize each feature. Once the shape 
is obtained, the curve is scaled by measures from the lung 
function regression stage.  

This process is then repeated for the volume (i.e., each fea-
ture is integrated and the volume curve is regressed to ra-
ther than the flow curve). This results in separately calcu-
lated flow and volume curves. Much like the regression for 
lung function measures, the curves from different subsets 
are clustered using k-means with k=2 (in this case the area 
under the curve is used to cluster). Before clustering, outli-
ers are removed and curves that are physically impossible 
are discarded (i.e., the volume is not monotonically increas-
ing). Finally, the average of the curves in the largest cluster 
is taken as the predicted flow-volume loop. 

RESULTS AND DISCUSSION 
In this section, we discuss the performance of SpiroSmart 
when compared to a clinical spirometer in terms of the ac-
curacy of estimated lung function measures and false posi-
tive vs. false negative readings. We then discuss the ability 
of participants to use SpiroSmart without the need for a 
mouthpiece or sling to control distance. Finally, we discuss 
the accuracy of the curves SpiroSmart generates and com-
pare different diagnoses from pulmonologists using Spi-

roSmart and a clinical spirometer. Based on our evaluation 
we conclude that SpiroSmart will meet the needs of home 
lung function monitoring. 

Estimate of Lung Function Measures 
We breakdown the comparison of measurements from Spi-
roSmart and a clinical spirometer by how the percent error 
is distributed and how well this conforms to accepted clini-
cal variances in each measure. 

Distribution of Percent Error in Lung Function Measures 
The curves in Figure 6 present the cumulative percentage 
error plots for FVC, FEV1, PEF, and FEV1/FVC. Explana-
tion: The horizontal axis on the top shows the percent error 
between the actual and predicted value. The vertical axis 
shows the percentile of the lung function measures that are 
within that percent error. Hence, curves that approach the 
top left quickly are more accurate for a greater percentage 
of subjects. The results are categorized by normal subjects, 
abnormal subjects, and abnormal subjects whose models 
have been personalized. Result: For all lung function 
measures the algorithms perform best on normal subjects, 
and abnormal distributions tend to have longer tails. The 
mean percent errors are 5.2%, 4.8%, 6.3%, and 4.0% for 
FVC, FEV1, PEF, and FEV1/FVC, respectively. When per-
sonalization is used, the means improve to 5.0%, 3.5%, 
4.6% and 3.6%. The personalized models significantly im-
prove FEV1, PEF, and FEV1/FVC for abnormal subjects 
(based on an F-test of the residual variance, p<0.05), but do 
not significantly improve FVC. Personalized models for 
normal subjects (not shown) are not statistically significant. 
Implication: SpiroSmart produces results that are con-
sistent with other handheld spirometers, even without per-
sonalization [31,39]. The long tails for abnormal subjects 
require further investigation, but it appears that personaliza-
tion brings the error distributions much closer to that of 
normal subjects. 

Accuracy of Lung Function Measures 
Bar graphs are also shown in Figure 6, displaying the “ac-
curacy” of each measure categorized by normal, abnormal, 
and personalized, as before. Explanation: For FVC, FEV1, 
and PEF the accuracy is calculated by finding the number 
of measures that fall within a certain clinically relevant 
range. A range is used because the “actual value” of the 
measure is not specifically known. As previously discussed, 



 

 
Figure 8. Average percent error for each configuration.  

 
Figure 7. Bland Altman plots of percent error between SpiroSmart and a clinical spirometer versus the value obtained from the 
clinical spirometer. ±2σ (long dashes) and the 10th and 90th percentiles (short dashes) are also shown. Outliers in each plot are the 
result of two participants, as shown. 

a subject cannot simultaneously use a spirometer and Spi-
roSmart, so actual ground truth is unattainable. The range is 
calculated using ATS criteria for what constitutes a “repro-
ducible” lung function measure [22], and published limits 
of variability for that measure of lung function [8,18,31,32]. 
For example, a subject’s FVC values can consistently be 
within 0.05 L or within 7% over short durations [22,32]. 
Result: From the accuracies, it is apparent that, for normal 
individuals, FVC is within the range of expected variability 
almost 80% of the time and FEV1 and PEF over 90% of the 
time. However, there is a significant drop in accuracy for 
patients with abnormal lung function. Implication: Most 
subjects will almost always produce similar FEV1 and PEF 
whether using SpiroSmart or a spirometer. When abnormal-
ity is detected, personalization can be performed at the clin-
ic to increase performance. FVC has the least accuracy and 
it appears personalization has little effect. We discuss this 
result more in the limitations section.  

Explanation: The accuracy of FEV1/FVC is calculated 
differently than the other measures. Notice that FEV1/FVC 
is already a percentage and the x-axis on top is absolute 
error (not percent error). FEV1/FVC is the most common 
measure of lung function used in diagnosis [36] and there 
are a number of standards for interpreting the value. For 
example, if the FEV1/FVC is less than 80%, the subject is 
generally considered to have obstructive lung function [36]. 
If greater than 80%, other measures are used to interpret 
lung function. The primary motive of this measure is to 
classify between obstructive, non-obstructive dysfunctional, 
or normal lungs. Hence we consider estimation accurate (a) 
if both, spirometer and SpiroSmart estimate FEV1/FVC 
values on same side of 80% (either lower or higher); or (b) 
the two estimates are within ±3 percentage points [22,36]. 
Result: Both normal and abnormal subjects have similar 
accuracy (80-90% of all results), and personalization in-
creases this accuracy to near 100%. Implication: Spi-
roSmart can be effectively used to diagnose normal vs. ob-
structed spirometry using FEV1/FVC, especially when a 
personalized model is used.  

False Positives vs. False Negatives 
In previous analysis, we did not investigate whether the 
lung function measure is under-estimated or over-estimated. 

Explanation: To elucidate the direction of the bias, Figure 
7 shows modified Bland-Altman plots [5] of each lung 
function measure, showing percentage difference between 
the spirometer and SpiroSmart versus the spirometer meas-
ure. Measures taken from normal subjects are shown as 
black dots and abnormal subjects are circles. Lines indicat-
ing the ±2σ (long dashes) and the 10th and 90th percentiles 
(short dashes) are also shown. Result: From these plots it 
can be seen that SpiroSmart tends to over-estimate actual 
value for abnormal subjects (a false negative). However, the 
most prominent outliers in each plot are from a single indi-
vidual, which also accounts for the long tails in Figure 6. 
Implication: SpiroSmart generalizes well across normal 
and abnormal participants. However, the real problem is 
that for some participants (2 of 52 in our dataset), Spi-
roSmart gives completely erroneous values. We note that 
for these subjects, SpiroSmart returns values with large 
dynamic ranges that could be used to detect when a subject 
is an outlier.  

Confounding Factors and Trends 
We performed an 8-way ANOVA to determine if other var-
iables significantly contributed to the magnitude of the re-
sidual variance (difference between SpiroSmart and spi-
rometer). We used grouping variables of height, weight, 
gender, recent illness, if a mouthpiece was used, if distance 
was controlled using a sling, whether the subject had per-
formed spirometry tests before, and how often the subject 
used a spirometer. The only significant variable was if the 
subject had used a spirometer in the past (p<0.001). The 
level of agreement and reproducibility between spirometry 
measures is highly correlated with how experienced the 
subject is at performing the tests [22]. The only other varia-
ble suggestive of being associated with bias magnitude 
(p<0.1) was mouthpiece use.  



 

Curve Range of Diagnoses Within Rater  
Spirometer SpiroSmart Agree One-off 

1 Norm-Obs. (Mild) Norm-Obs. (Min.) 3 1 
2 Norm-Obs. (Mild) Norm-Obs. (Mild) 3 1 
3 Normal Norm-Obs. (Mild) 3 1 
4 Normal Normal 5 0 
5 Normal Normal 5 0 
6 Obs. (Min.-Mod.) Restrictive 0 0 
7 Obs. (Mild-Mod.) Norm-Obs. (Mild) 0 2 
8 Insuff.-Norm Insuff.-Norm 3 0 
9 Normal Normal 5 0 

10 Normal Normal 5 0 
Total N/A N/A 32/50 5/18 

Table 2. Summary of survey responses from 5 pulmonologists. 
Also shown are the number of times a pulmonologist’s diagno-
ses matched (within rater agreement) and were similar to with-
in one degree (within rater one-off). 

We investigate this further in Figure 8. Explanation: Fig-
ure 8 shows the average percent error in the lung function 
measures, categorized by the four different configurations. 
Result: For FVC (not shown), there are no statistically sig-
nificant differences. For FEV1, there is a small but signifi-
cant decrease in the percent error when both a mouthpiece 
and sling are used—about 0.5% decrease on average. For 
PEF, there is a significant reduction in the percent error 
when no mouthpiece is used, about 1% on average. This 
may at first seem surprising, but recall that our measure of 
flow rate is derived from a model of the lip reverberation—
a factor that is diminished when using the mouthpiece. Im-
plication: For general spirometry, the mouthpiece and fixed 
distances are not indicated. However, for clinical studies 
that report on a specific spirometry measure, a mouthpiece 
might be indicated for FEV1 or contraindicated for PEF. 

Participant Feedback 
It is interesting that a mouthpiece and fixed distance did not 
significantly improve measures of lung function. This im-
plies that the subject does not need to carry any additional 
equipment for performing spirometry outside of the clinic. 
However, some subjects expressed a preference for using 
the mouthpiece during the test. In an exit survey, we asked 
the participants to rate the ease of use and comfort level 
with each of the configurations. 54% chose the "mouthpiece 
only" as their strongest preference. Many subjects ex-
pressed that it "felt awkward without the mouthpiece" (Subj. 
22) or that "I felt like I had to concentrate on the position of 
my mouth when it was just me and the phone" (Subj. 35). 
Thus, it may be more comfortable for some individuals to 
use a mouthpiece during the tests, even though measures of 
lung function are unaffected. Some participants felt “the 
phone is so much more mobile without the mouthpiece” 
(Subj. 43) and “it made the test more simple” (Subj. 20). In 
these scenarios, carrying a mouthpiece (that also needs to 
be cleaned) is perceived as an impediment.  

Evaluating Curves Generated by SpiroSmart 
To investigate whether the shapes of curves and lung func-
tion measures could be used for diagnosis, we designed an 
online survey for pulmonologists to interpret curves from 
SpiroSmart. Three subjects with abnormal curves were se-
lected at random and the two abnormal subjects that made 
up the outliers in Figure 7, participants 47 and 48. The out-
lier subjects were chosen to investigate the worst case per-
formance of SpiroSmart. These and five randomly selected 
subjects with normal curves (a total of 10 subjects) were 
used in the survey. SpiroSmart curves from the no mouth-
piece, fixed distance configuration were used (again, cho-
sen at random). One representative curve from each system 
was selected for each subject. Per ATS criteria,  curve with 
the largest FVC value was selected [22].  

The curves were compiled into an annotated sheet that pul-
monologists regularly see summarizing a spirometry ses-
sion. Along with the resultant volume vs. time and flow vs. 
volume plots, the sheets identified subject’s age, gender, 
height, and weight along with the expected lung function 

values [16]. The measured FVC, FEV1, and FEV1/FVC 
were also shown along with the percentage of expected 
(i.e., measured/expected × 100). The summary sheet con-
figuration was based on an example from a local clinic. 
Two digital sheets (from the clinical spirometer and from 
SpiroSmart) were created for each of the ten subjects.  

Five pulmonologists completed the survey over a two-week 
period. The survey took 20-30 minutes. Four respondents 
worked primarily in pediatric pulmonology and one in adult 
pulmonology. Two respondents reported that they use these 
types of summaries 5-10 times per week, two use them 10-
20 times per week, and one used them >20 times per week. 
The pulmonologists were shown each of the 20 summary 
sheets in the online survey in random order and were not 
aware which came from SpiroSmart and which came from 
the clinical spirometer (they were told that some curves 
may be from a cell-phone based spirometer).  

For the survey, the pulmonologists were asked to view each 
sheet and select whether the curve suggested normal lung 
function, obstructed, restrictive, or whether the information 
presented was insufficient. If obstructed, classification into 
minimal, mild, moderate, or severe was sought (i.e., a total 
of 7 possible diagnoses). These categories are the exact 
categories used on standard spirometry sheets used by pul-
monologists [22]. There was also an optional comments 
block, where the doctors could enter any additional infor-
mation about the diagnosis.  

Explanation: Table 2 summarizes the results of the survey. 
For each curve, the range of responses is shown for the spi-
rometer and SpiroSmart. Also shown are the “within rater 
agreement” (the number of times the ratings from one pul-
monologist agreed exactly) and the “within rater, one off” 
(the number of times ratings from the same pulmonologist 
are off by one degree). For example, “Mild” and “Moder-
ate” obstructions would be considered one away from each 
other and so would “Normal” and “Minimal Obstruction”. 
“Restrictive” and “Insufficient” were not considered ‘one 
off’ from any other response. Note that curves 6 and 7 are 
from the subjects whose measures were considered outliers 
in Figure 7. Result: Overall, the pulmonologists had strong 



 

agreement with one another. For normal curves (3, 4, 5, 9 
and 10) there was a general agreement from the pul-
monologist regardless of whether they used SpiroSmart or a 
traditional spirometer. 23 of the 25 responses matched iden-
tically and 2 responses were false positives rated as Mini-
mal or Mild obstructions. Curves 1, 2, and 8 are rated with 
9 of 15 responses matching exactly and 2 being one degree 
off. Of the four remaining, three were false positives, indi-
cating worse obstruction or insufficient effort, and one was 
a false negative (mild obstruction categorized as normal). 
Implication: For these eight subjects the range of diagnoses 
for each subject is nearly identical. It appears SpiroSmart 
can be effective for diagnosing not only if the patient is 
obstructed, but also the degree of the obstruction. More data 
is still needed from a larger survey and database to establish 
clinical significance. For the data presented here, the initial 
results appear very promising.  

As expected most disagreement occurred in curves 6 and 7 
(the outliers marked in Figure 7). Result: For curve 6, all 
respondents thought the curve was restrictive because of a 
falsely high FEV1 value. The low FVC indicates the ab-
normality is not from obstruction, but from restriction. Even 
so, it is encouraging that the curve is judged as abnormal on 
both the Spirometer and SpiroSmart. For curve 7, the 
FEV1/FVC is falsely high in SpiroSmart, resulting in three 
of the five responses being false negatives. Implication: In 
this worst-case scenario, the inflated lung function values 
caused diagnostic disagreement in pulmonologists, despite 
the curves having a similar “scooping” shape.  

LIMITATIONS AND FUTURE WORK  
We conclude that SpiroSmart will meet the needs of home 
lung function measurement. However there are some limita-
tions of SpiroSmart. First, inhalation measures are also rec-
orded in clinical spirometry, but are seldom used in diagno-
sis. This inhalation is inaudible and hence, cannot be meas-
ured with SpiroSmart. Another limitation is that the setting 
where the test is performed must remain relatively quiet. 
This also precludes the coaching that normally occurs dur-
ing spirometry for children and adolescents. A technician 
motivates the user with high-energy explanations like "real-
ly push it out" and "keep going." With SpiroSmart, these 
motivations would need to be handled from a user interface 
or embedded into the playing of a blowing game. It will be 
interesting to analyze how incentives and motivations could 
be used with SpiroSmart to improve compliance, reproduc-
ibility, and accessibility to children with chronic lung func-
tion ailments.  

Another limitation of SpiroSmart is that there is a decreased 
accuracy in FVC compared to other measures (even when 
personalization is used). This may be a limitation of audible 
flow rate sensing. Only about the first three seconds of the 
test is audible. The first two seconds make up 90-100% of 
the flow-volume loop and includes FEV1and PEF (which 
could explain why these measures are so accurate). Howev-
er, the remainder of the test is mostly inaudible. We believe 
that the regression is extrapolating what the FVC should be, 

rather than regressing from the audible signal. Thus, it is 
worth exploring if FVC accuracy can be increased by creat-
ing an interface that requires users to bring the phone closer 
to their mouth as the test progresses, and thereby boosting 
the signal-to-noise ratio at the end of the test.  

It is unclear from the current study how well SpiroSmart 
tracks trends in lung function. SpiroSmart consistently pre-
dicted lung function for subjects over repeat sessions, but 
none of the subjects' lung function changed from session to 
session. Although there is no indication that SpiroSmart 
will poorly track trends, larger clinical studies are currently 
underway to verify such an important outcome. Additional-
ly, these studies also aim to evaluate SpiroSmart outside of 
a lab setting.   

Lastly, current smartphones cannot simultaneously calcu-
late all the features of SpiroSmart in real time and need to 
do the analysis offline or in the cloud. Our current imple-
mentation uses the cloud. The lung function measures are 
each calculated through a bagged decision tree, and there-
fore should be straightforward to implement on a phone, 
rather than in the cloud. However, the calculation of the flo-
volume loop requires complex computation and is more 
appropriate for implementation on a server. Even so, a lap-
top with 4GB memory can calculate the flow volume loop 
in less than 30 seconds. As such we believe such computa-
tional capabilities are not too far away to be available on 
smartphones.  

Given these limitations, it is useful to examine the context 
and utility of this technology. The current implementation 
of SpiroSmart is most useful for replacing home spirome-
ters of individuals with chronic lung ailments. These pa-
tients are already familiar with the maneuver, can easily be 
in a quiet environment somewhere in their home, and likely 
have access to a smartphone. Smartphones are, at times, 
accused of widening the “digital divide” and push people in 
low socio-economic environments further away from facili-
ties. However, the cost of current home spirometers has 
already done that. SpiroSmart lowers this cost, helping de-
vices to pervade such environments. As smartphones be-
come cheaper, technologies like SpiroSmart will help in 
improving access to medical devices and, rather, narrow the 
digital divide. Another group that may initially encounter 
problems adopting SpiroSmart is individuals who have 
never used a spirometer. Once we better understand ways to 
train individuals to perform a spirometry maneuver with 
SpiroSmart, we can lower the adoption- and access-barrier. 
This can then lead to wider adoption of spirometry in other 
areas like non-chronic disease management, air quality ef-
fects, allergic reactions, etc.  
CONCLUSION 
In conclusion, we presented SpiroSmart, an accurate mobile 
phone spirometer that uses the built-in microphone to infer 
flow rate during a spirometry test. Our evaluation implies 
that, although SpiroSmart cannot replace a clinical spirome-
ter, it may be used to replace many handheld monitors and 



 

home spirometers in a variety of cases.  SpiroSmart is not 
intended as a substitute for clinical spirometry, but rather a 
home-based solution that can increase compliance and 
monitoring through the convenience of a mobile phone. 
SpiroSmart can be used as an out-of-the-box system (with-
out calibration), but certain individuals may benefit from 
personalized models.  
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